In this commit, we update the `HopIterator` to gain awareness of the new
TLV hop payload. The default `HopIterator` will now hide the details of
the TLV from the caller, and return the same `ForwardingInfo` struct in
a uniform manner. We also add a new method: `ExtraOnionBlob` to allow
the caller to obtain the raw EOB (the serialized TLV stream) to pass
around.
Within the link, we'll now pass the EOB information into the invoice
registry. This allows the registry to parse out any additional
information from the EOB that it needs to settle the payment, such as a
preimage shard in the AMP case.
htlcs
config: Adding RejectHTLC field in config struct
This commit adds a RejectHTLC field in the config struct in config.go.
This allows the user to run lnd as a node that does not accept onward
HTLCs.
htlcswitch/switch: Adding a field RejectHTLC to the switch config
This commit adds a field RejectHTLC to the switch config. When the
switch receives an HTLC it will check this flag and if the HTLC is not
from the source hop, the HTLC will be rejected.
htlcswitch/switch: adding check for RejectHTLC flag and incomingChanID
This commit adds a check when receiving UpdateAddHTLC. The check looks
for the RejectHTLC flag set and whether the HTLC is from the sourceHop
(the local switch). If the HTLC is not from the sourceHop, then we
reject the HTLC and return a FailChannelDisabled error.
server: adding RejectHTLC field to initialization of switch
lnd_test: adding test for RejectHTLC
This commit adds a test which tests that a node with the --rejecthtlc
flag will reject any onward HTLCs but still can receive direct HTLCs and
can send HTLCs.
Previously a temporary channel failure was returning for unexpected
malformed htlc failures. This is not what we want to communicate to the
sender, because the sender may apply a penalty to us only.
Returning the temporary channel failure is especially problematic if we
ourselves are the sender and the malformed htlc failure comes from our
direct peer. When interpretating the failure, we aren't able to
distinguish anymore between our channel not having enough balance and
our peer sending an unexpected failure back.
Debug invoices are rarely used nowadays, but keep asking for maintenance
every time refactoring in primarily the invoice registry occurs. We have
passed the cost/benefit tipping point, so therefore the debug invoice
concept is removed in this commit.
Previously the debughtlc flag also controlled whether hodl masks were
active. It is safe to remove that additional condition because the hodl
masks are still guarded by the dev build tag.
In order to prevent information leaks by nodes probing with a payment
hash, this commit changes exit hop processing so that it always returns
incorrect_or_unknown_payment_details and leaves the prober in the dark
about whether an invoice actually exists.
Align naming better with the lightning spec. Not the full name of the
failure (FailIncorrectOrUnknownPaymentDetails) is used, because this
would cause too many long lines in the code.
The current value was based on the previous default CLTV delta of 144
blocks. This has been lowered to 40 since lnd v0.6.0-beta, making the
current value of 5000 blocks a bit high. Lowering it to one week should
be more than enough to account for the other major lightning
implementations. Eclair currently has a default CLTV delta of 144, while
c-lightning's is 14.
This commit makes the outgoing link pipeline the settle to the
switch as soon as it receives it. Previously, it would wait for a
revocation before sending it, which caused increased latency on
payments as well as possibly never settling on the incoming link.
A duplicate settle is still sent to the switch, but it is handled
gracefully. A new AckEventTicker was added to the switch which
acknowledges any pending settle / fail entries in an outgoing
link's fwd pkgs in batch. This was needed in order to reduce the
number of db txn's which would have been incurred by acking whenever
we receive a duplicate settle without batching.
Methods on failure message types used to be defined on value receivers.
This allowed assignment of a failure message to ForwardingError both as
a value and as a pointer. This is error-prone, especially when using a
type switch.
In this commit the failure message methods are changed so that they
target pointer receivers.
Two instances where a value was assigned instead of a reference are
fixed.
TestSwitchGetPaymentResult tests that the switch interacts as expected
with the circuit map and network result store when looking up the result
of a payment ID. This is important for not to lose results under
concurrent lookup and receiving results.
paymentResultStore is a persistent store where we keep track of all
received payment results. This is used to ensure we don't lose results
from payment attempts on restarts.
In this commit, we fix a lingering TOOD statement in the channel arb.
Before this commitment, we would simply wipe our our local HTLC set of
the HTLC set that was on the remote commitment transaction on force
close. This was incorrect as if our commitment transaction had an HTLC
that the remote commitment didn't, then we would fail to cancel that
back, and cause both channels to time out on chain.
In order to remedy this, we introduce a new `HtlcSetKey` struct to track
all 3 possible in-flight set of HTLCs: ours, theirs, and their pending.
We also we start to tack on additional data to all the unilateral close
messages we send to subscribers. This new data is the CommitSet, or the
set of valid commitments at channel closure time. This new information
will be used by the channel arb in an upcoming commit to ensure it will
cancel back HTLCs in the case of split commitment state.
Finally, we start to thread through an optional *CommitSet to the
advanceState method. This additional information will give the channel
arb addition information it needs to ensure it properly cancels back
HTLCs that are about to time out or may time out depending on which
commitment is played.
Within the htlcswitch pakage, we modify the `SignNextCommitment` method
to return the new set of pending HTLCs for the remote party's commitment
transaction and `ReceiveRevocation` to return the latest set of
commitment transactions on the remote party's commitment as well. This
is a preparatory change which is part of a larger change to address a
lingering TODO in the cnct.
Additionally, rather than just send of the set of HTLCs after the we
revoke, we'll also send of the set of HTLCs after the remote party
revokes, and we create a pending commitment state for it.
In this commit we move handing the deobfuscator from the router to the
switch from when the payment is initiated, to when the result is
queried.
We do this because only the router can recreate the deobfuscator after a
restart, and we are preparing for being able to handle results across
restarts.
Since the deobfuscator cannot be nil anymore, we can also get rid of
that special case.
This lets us distinguish an critical error from a actual payment result
(success or failure). This is important since we know that we can only
attempt another payment when a final result from the previous payment
attempt is received.
With the following commits, it'll become important to not resuse
paymentIDs, since there is no way to tell whether the HTLC in question
has already been forwarded and settled/failed.
We clarify this in the SendHTLC comments, and alter the tests to not
attempt to resend an HTLC with a duplicate payment ID.
This commit moves the responsibility of generating a unique payment ID
from the switch to the router. This will make it easier for the router
to keep track of which HTLCs were successfully forwarded onto the
network, as it can query the switch for existing HTLCs as long as the
paymentIDs are kept.
The router is expected to maintain a map from paymentHash->paymentID,
such that they can be replayed on restart. This also lets the router
check the status of a sent payment after a restart, by querying the
switch for the paymentID in question.
This commit is the final step in making the link unaware of invoices. It
now purely offers the htlc to the invoice registry and follows
instructions from the invoice registry about how and when to respond to
the htlc.
The change also fixes a bug where upon restart, hodl htlcs were
subjected to the invoice minimum cltv delta requirement again. If the
block height has increased in the mean while, the htlc would be canceled
back.
Furthermore the invoice registry interaction is aligned between link and
contract resolvers.
Now that the success resolver preimage field is always populated by the
incoming contest resolver, preimage lookups earlier in the
process (channel and channel arbitrator) can mostly be removed.