Before this commit, during a reservation, we wouldn’t ever specify our
minHTL value. We don’t yet fully validate all channel constrains, but
doing this now serves to ensure that once those features are merged,
we’ll actually be setting a valid value for minHTLC.
In this commit, we extend the ProcessChanSyncMsg to detect a case where
we don’t have the necessary revocation window to send out a new commit.
This can arise if the remote party sends us a new state, but we haven’t
yet fully processed their FundingLocked message yet, so we would be
unable to create a new commitment state.
We fix this by enumerating each of our actions in the case of an error.
If we get ErrNoWindow, then this indicates that we can’t give the
remote party the commitment we would like to optimistically send over.
This isn’t an issue though, as in the next round, we’ll resynchronize
our state.
In this commit, we fix an existing bug that would cause issues within
the switch due to a value not being properly set. Before this commit we
would copy a byte array into a slice without first creating the
necessary capacity for that slice. To fix this, we’ll now ensure that
the blob has the proper capacity before copying over. Several tests
have been updated to always set a fake onion blob.
In this commit, we extend the initial check within SignNextCommitment
to bail out early if we don’t yet know the commitment point of the
remote party. This prevents a class of nil pointer panics if we attempt
to create a new state without yet having received the FundingLocked
message.
In this commit, we fix an existing bug within the EstimateFeePerWeight
method for the BtcdFeeEstimator. If the sat/byte value returned was too
low, then it was possible for us to end up with a zero valued
sat/weight. We correct this issue by detecting, and falling back to the
default fee rate if so.
In this commit, we fix an existing bug within our cooperative channel
closing transaction generation. Before this commit, we wouldn’t account
for the fee already allocated within the commitment transaction. As a
result, we would calculate the evaluated balance considering the fee
incorrectly. In this commit, we fix this by adding the commitment fee
to the balance of the initiator when crafting the closing transaction
In this commit, we fix an existing bug, as only the initiator needs to
validate any new fee updates. If the initiator sends an invalid fee,
then it will be rejected by the responder as it may put them below
their required reserve.
In this commit, we ensure that we reject any UpdateFee messages if
after applying the update, the initiator doesn’t have enough funds to
actually pay for the new commitment state.
A test has been added to exercise this new behavior.
In this commit, we update the retransmission logic to ensure that we
properly retransmit any sent UpdateFee messages as part of a state
transition. When creating a CommitDiff, if we have a pending fee
update, then we’ll add that to the set of logs updates. When restoring
the commit diff from disk, if we encounter an UpdateFee entry, then
we’ll apply that as waiting to be ACK’d and skip adding it as a log
entry.
A new test has been added to excessive this new behavior.
In this commit, we correct the BTC -> SAT conversion in
BtcdFeeEstimator. Previously, we use 10e8 instead of 1e8, causing us to
be off by an order of magnitude.
Adding 99 here didn’t really do anything but obfuscate when we were
trying to compute. We’re just using internet division to calculate 1%
of the channel capacity amount. This is the amount that the remote
party must remain above at all times.
In this commit, we add a new ResetState method to the channel state
machine which will reset the state of the channel to `channelOpen`. We
add this as before this commit, it was possible for a channel to shift
into the closing state, the closing negotiation be cancelled for
whatever reason, resulting the the channel held by the breachArbiter
unable to act to potential on-chain events.
In this commit, we fix an existing bug that had ramifications within
the operation of the lnd daemon. Before this commit, if the Stop()
method was called, then the closeObserver would exit as well. This
means that would no longer be watching for channel breaches on-chain,
and could miss either a cooperative channel closure or an actual
contract breach.
To fix this, we now introduce a new method to stop for closeObserver:
CancelObserver(). This should ONLY be called once either: the contract
has been fully settled on-chain, or whom ever is watching the relevant
signals has a newer version of the channel that it will watch instead.
In this commit, we modify CreateCloseProposal to no longer return the
same fee passed in. In the past, this method accepted a fee rat rather
than an absolute fee, and would return the computed absolute fee. Now
that the method takes the absolute fee directly, this is unnecessary.
In this commit, we modify the funding reservation workflow slightly to
allow callers to specify their own custom fee when initialization a
funding workflow. This gives power-users the ability to control exactly
how much in fees are paid for each new funding transaction.
In this commit, we extend the existing SendOutputs method on the
WalletController interface to be able to accept a custom fee. With
this, users are now able to specify their exact fee, allowing the
wallet to be fee estimation agnostic.
In this commit, we add a new implementation of the FeeEstimator
interface: the BtcdFeeEstimator. This implementation of the
FeeEstimator is backed by an active bcd instance. Any requests to query
for the current fee for a given confirmation target are proxied to this
active bcd instance.
In this commit, we extend the FeeEstimator methods to allow them to
return an error. This is required as most implementations aside from
the static fee estimator will want to be able to return errors to users
to indicate the inability to properly estimate fees.
In this commit, we move the FeeEstimator interface into a distinct file
as follow up commits will begin to flesh out the interface with
additional implementations.
Fix wrong calculation of overshot amount which causes coin select
function to go into infinite loop. If overshoot amount is calculated
by subtraction of totalSatoshis and amtNeeded than on the second
iteration of loop amtNeeded already include required fee inside, which
causes continuation of the coin selection loop.
In this commit, we add fully verification (other than checking the
commitment point matches after the fact) of the new optional fields
added to the lnwire.ChannelReestablish message. Two scenarios can
arise: we realize the remote party is on a prior state (and possibly
lost data), or we realize that *we* are on a prior state with the
remote party verifiably proving that they’re on a newer state.
In this commit we extend the set of fields populated within the
returned lnwire.ChannelReestablish to populate the optional data loss
fields. This entails included the commitment secret of the most
recently revoked remote commitment transaction and also our current
unrevoked commitment point.
In this commit, we update all the key derivation within the state
machine to account for the recent spec change which introduces a
distinct key for usages within all HTLC scripts. This change means that
the commitment payment and delay base points, are only required to be
online in the case that a party is forced to go to chain.
We introduce an additional local tweak to the keyring for the HTLC
tweak. Additionally, two new keys have been added: a local and a remote
HTLC key. Generation of sender/receiver HTLC scripts now use the local
and remote HTLC keys rather than the “payment” key for each party.
Finally, when creating/verifying signatures for second-level HTLC
transactions, we use these the distinct HTLC keys, rather than re-using
the payment keys.
In this commit, we modify the naming and comments of the routines that
create the sender/receiver HTLC scripts to denote that a set of
distinct keys are used. The scripts materially haven’t changed, but the
set of keys expected has.
In this commit we modify the primary InvoiceRegistry interface within
the package to instead return a direct value for LookupInvoice rather
than a pointer. This fixes an existing race condition wherein a caller
could modify or read the value of the returned invoice.
In this method we fix an existing deadlock within the unit tests when
running with the race condition detector on. We don’t need to grab the
mutex within the ProcessChanSyncMsg method as this should be the very
first method called when initializing the channel if a channel state
sync is needed.
In this commit we ensure that the channel is always able to exit by
adding a select statement with a quit case when we’re waiting on the
result of a job that was previously sent into the sigPool.
In this commit, we’ve added a set of unit tests to cover all enumerated
channel sync scenarios, including the case where both nodes deem that
they’re unable to synchronize properly.
In this commit we revert a prior commit
(5240953de02d281be694b2c87d151d6c7dce2cb5) which was added as a stop
gap before we added the proper state needed to recover from cases where
the commitment transactions of both chains had diverged slightly due to
asymmetric dust limits.
In this commit we do away with the existing availableLocalBalance
attribute and instead add a new, more accurate AvailableBalance method.
The new method will compute the available balance within the channel ,
assuming a new state was created at the instance the method was called.
This new method will now properly account for HTLC fees.
AvailableBalance is now called within AddHTLC in order to ensure we
don’t add any HTLC’s that are unable to be paid for from the PoV of the
fees on the commitment transaction.
We no longer need to manually pass in the channel delta to
AppendToRevocationLog (now called AdvanceCommitChainTail) as the
pointers on-disk will be updated atomically.
In this commit we update the RevokeCurrentCommitment method to properly
use the new database UpdateCommitment method along with properly
converting the in-memory commitment to its corresponding on-disk
format.
In this commit we complete the partially completed ReceiveReestablish
method and rename it to ProcessChanSyncMsg. The new version now
properly implements retransmission as defined within BOLT#2.
Additionally, we’ve added a new case which will optimistically try and
force a resynchronization of the commitment states if we detect we can
deliver a new commitment signature sooner than later after realizing
that we need to retransmit our last revocation message when we recevied
a new state transition.
This commit adds a new method: createCommitDiff. The method will, given
a newly constructed commitment, its signature, and HTLC signatures will
create a channeldb.CommitDiff. The CommitDiff created is to be stored
on disk, as it can be used in the case that the remote party didn’t
receive our CommitSig message and also forgot all the updates that we
queued with the update.
In this commit we complexly revamp the process of restoring all channel
state back into memory after a restart. We’ll now properly do the
following: restore the pending “dangling” commit of the remote party
into the in-memory commitment chain, re-populate all active HTLC’s back
into their respective update logs with the proper indexes/counters, and
properly restore the current commitment of the remote party back in
memory.
This commit adds a new method to the updateLog which will be used when
restoring the state of a channel from disk after a restart. This new
method will add an entry to the updateLog without incrementing either
of the counters as the HTLC already comes pre populated with its
historical index.
With these new fields, we’ll be able to properly reconstruct the log
state after a restart, as each commitment will now note both the
current HTLC and log index.
After addition of the retransmission logic in the channel link, we
should make the onion blobs persistant, the proper way to do this is
include the onion blobs in the payment descriptor rather than storing
them in the distinct struct in the channel link.
In this commit BOLT№2 retranmission logic for the channel link have
been added. Now if channel link have been initialised with the
'SyncState' field than it will send the lnwire.ChannelReestablish
message and will be waiting for receiving the same message from remote
side. Exchange of this message allow both sides understand which
updates they should exchange with each other in order sync their
states.
This commit changes the use of SigHash flags in the spend
transactions created in scrit_utils. Instead of always
using SigHashAll for the sweep signature, we instead use
the sighash flag specified by the passed sign descriptor.
Tis commit makes the btcwallet signer implementation use
signDesc.HashType instead of SigHashAll when signing
transactions. This will allow the creator of the transaction
to specify the sighash policy when creating the accompanying
sign descriptior.
In this commit, we fix an existing derivation from the commitment state
machine as defined within the specification. Before this commit, we
only kept a single counter which both HTLC adds and fails/settles would
share. This was valid in the prior pre-spec iteration of the state
machine. However in the current draft of the spec, only a distinct
counter for HTLCs are used throughout.
This would cause an incompatibility, as if we mixed adds and settles
during an exchange, then our counter values would differ with other
implementations. To remedy this, we now introduce a distinct HTLC
counter and index within the updateLog.
Each Add will increment both the log counter, and the HTLC counter.
Each Settle/Fail will only increment the log counter. Inbound
Settle/Fails will index into the HTLC index as to target the proper
HTLC. The PaymentDescriptor type has been extended with an additional
field (HltcIndex) which itself tracks the index of an incoming/outgoing
HTLC.
This moves the commitment transaction generation code out of
fetchCommitmentView into createCommitmentTx. Aside from being a pretty
clean logical split, this allows the transaction generation code to be
unit tested more effectively.
This commit fixes the TestChannelBalanceDustLimit unit test in
channel_test.go. The unit test does not account for the fees
required by adding an HTLC. As a result, Alice's balance according
to her local and remote commitment chains drops below 0 at certain
points. By using the correct fee, this is avoided.
The fee estimation for funding transactions now properly accounts for
different types of UTXOs spent, whereas previously it assumed all
inputs were spending native P2WKH outputs.
Use binary.Read/Write in functions to serialize and deserialize
channel close summary and HTLC boolean data, as well as in
methods to put and fetch channel funding info. Remove lnd
implementations of readBool and writeBool as they are no
longer needed. Also fix a few minor typos.
Use sort.Slice in SignNextCommitment function in lnwallet/channel.go,
as part of the move to use new language features. Remove
sortableSignBatch type wrapper for slice of signJobs since it is
no longer needed to sort jobs according to their output indices.
Also fix a few minor typos in channel.go and sigpool.go.
This commit fixes an existing bug where we attempted to re-use the same
commitTweak value when creating an HTLC resolution. Instead, we now
create the commit tweak value factoring the key that is to be used for
signing.
In this commit, we extend the help message for `newaddress`
to indicate which address types can be used when directly
funding channels. Additionally, we add some additional text
to the insufficient funding error to detail that we don't have
enough witness outputs.
This commit expands the existing TestForceClose test case to add an
HTLC (outgoing) to Alice’s commitment transaction before force closing.
We then ensure that both the pre-signed timeout transaction _and_ the
sign descriptor to sweep the second-level output are fully valid.
This commit fixes an existing bug within extractHtlcResolutions. The
prior code would use an index to assign the returned
OutgoingHtlcResolutions into a single slice. However, this is invalid
as there are two cases where an HTLC might be skipped: if it’s an
incoming HTLC, or if the HLTC itself is dust from the PoV of the
commitment chain.
To fix this, we now instead use append to add items to the slice. This
ensure that we don’t have any “empty” items in between fully populated
items.
This commit extracts the ending dust adherence test case from the
existing TestForceClose test case into a distinct test case. With this
modification, we now ensure that the two new tests are focused and test
a single scenario at at time.
This commit fixes a bug wherein we would use the incorrect csvDelay
when crafting HTLC resolutions after a unilateral channel closure.
Previously, we would always use the csvDelay of the local party, as in
the force close case that’s the correct value. However, a unilateral
channel closure instead requires the _remote_ delay.
This commit fixes an existing bug when crafting the HTLC resolution in
the face of a commitment broadcast. Previously, we we’re using the
localKey which is incorrect, as directly below we properly use the
delayKey when crafting the secondLevelHtlcScript to sign.
This commit adds a new field: MaturityDelay, to the
UnilateralCloseSummary struct. This new field will be required, in an
upcoming update as it’s needed in order to properly sweep the
second-level HTLC outputs after MaturityDelay blocks has passed since
confirmation.
This commit fixes a minor bug (that doesn’t affect anything atm) when
crafting the SignDesc for sweeping breached outputs. Previously, we
would take the p2wkh script and then p2wsh-ify that, placing that into
the SignDesc. This is incorrect as the p2wkh script is “injected” into
the sighash when signing, and thus doesn’t need another encoding layer.
This commit adds an additional return value to SettleHTLC in order to
make way for an upcoming change to modify the way bandwidth status from
the link to the switch is reported.
This commit removes the current active LocalAvailableBalance method
from the channel state machine itself. We still maintain the internal
availableLocalBalance method locally as this is used to ensure that we
don’t add an HTLC which puts our available balance below zero.
This commit also adds an incoming flag to
HtlcRetribution struct to allow the breach arbiter to
generate the appropriate witness based on the htlc's
directionality.
It also ensures that the size of the htlc retribution
slice is now determined by the size of the number of
htlcs present in the revoked snapshot, which fixes a
minor bug that could lead to nil pointer deferences.
This commit is a follow up to the prior commit, as since we reversed
the order of the pubkeys in the multi-sig scripts, then we also need to
reverse the order of the signatures that we use when attempting to
spend the funding output directly.
When creating the script for the funding output, we were reversing the
order of the public keys due to an incorrect assertion of the return
value of the bytes.Compare function. To fix this, we now flip the
order, allowing us to properly create channels as specified within the
specification.
This commit adds to methods to the ChannelReservation struct: one for
generating the channel constraints we require for the remote party, and
one for validating their desired constraints, and committing them to
our ChannelConfig.
With these two new methods, we can now begin to properly store and
adhere to the current set of channel flow control constraints.
This commit fixes an existing w.r.t the way that we constructed all
commitment transactions. We were computing the hash that the obfsucator
was derived form correctly, but we were using the first 6-bytes, rather
than the last 6 bytes.
We no longer attach the RPC client to the lnwallet logging instance as
it can generate a ton of spam in trace mode as it’ll dump the entire
hex encoded blocks, transactions, etc.
This commit fixes a bug within the HTLC construction and commitment
transaction construction that would result in HTLC _values_ within the
commitment transaction being off by a factor of 1000. This was due to
the fact that we failed to convert the amount of an HTLC, in mSAT, to
SAT before placing it as an output within the commitment transaction.
When attempt to locate the output index of a particular half, we use
the unconverted amount, meaning it was unnoticed.
This commit adds a new assertion within the TestSimpleAddSettleWorkflow
test to ensure that the HTLC is found within the commitment transaction
with the proper value in satoshi.
This commit updates the script we use to match the current
specification. The change is minor: we can say an extra byte by moving
the OP_CHECKSIG to the end of the script, and swapping the checks and
seqverify operations in the second clause. However, the witness remains
the same!
Note that this commit is temporary, and should be reverted once #231 is
merged. The reason we need to do this for now, is that we don’t
properly track the exact state of the remote party’s commitment. In
this test case, the resulting HTLC’s added are dust to one party, but
non-dust to another. So upon restart, the states (balance wise) has
diverged.
This commit fixes a lingering bug in the way the internal channel state
machine handled fee calculation. Previously, we would count the dust
HTLC’s that were trimmed towards the fee that the initiator paid. This
is invalid as otherwise, the initiator would always benefit from dust
HTLC’s. Instead, we now simply “donate” the dust HTLC’s to the miner in
the commitment transaction. This change puts us in compliance with
BOLT-0003.
This commit modifies the CommitSpendNoDelay script witness generation
function. We must modify this function as all non-delayed outputs now
also require a key derivation. The current default
signer.ComputeInputScript implementation is unable to directly look up
the public key required as it attempt to target the pub key using the
pkScript.
This commit modifies the closeObserver code to populate the signDesc in
the case we have a non-trimmed balance. Additionally, we now also add a
*wire.OutPoint field to the struct in order to allow receivers of the
message to construct a witness that can spend the newly created output
to their wallet.
This commit modifies the methods that transition the state of the
channel into an active closing state. With the new commitment design,
the delivery scripts are no longer pre-committed to the initial funding
messages. Instead, the scripts are sent at the instant that either side
decides to shutdown within the Shutdown message.
This commit adds a new companion struct: OutgoingHtlcResolution to the
commitment state machine. The purpose of this struct is the provide the
caller with the information necessary to sweep all outgoing HTLC’s in
the case of a broadcast up-to-date commitment transaction.
The HTLC resolutions allow a caller to sweep an outgoing HTLC into
their wallet after the absolute timeout of the HTLc has passed. This is
a two step process, with the first portion consisting of broadcasting
the HTLC timeout transaction itself, and the second portion consisting
of claiming the HTLC itself after a CSV delay.
This commit adds awareness of active HTLC outputs to the
BreachRetribution struct. Previously, in the case of a breach, the
struct was only populated with enough information to sweep the two
commitment outputs. With this commit, the struct now has enough
information to sweep _all_ outputs within the commitment transaction.
This commit updates the central fetchCommitmentView method to manage
and derive the necessary easy required to create new commitments due to
the new state machine design within the specification. Each state now
requires us to derive a number of keys for each commitment state:
localDelay, remoteDelay, localKey, remoteKey, the commitment point, and
finally the revocation key itself.
This commit updates the set of functions tasked with generating HTLC’s
scripts for new commitments to now adhere to the new commitment
transaction design. With this change, the process of claiming an HTLC
now requires a second-level HTLC transaction, which solves a prior
issues due to the tight coupling of the timeout and delay clauses when
claiming an HTLC.
This commit adds a new method to the commitment struct:
populateHtlcIndexes. populateHtlcIndexes modifies the set of HTLC's
locked-into the target view to have full indexing information
populated. This information is required as we need to keep track of the
indexes of each HTLC in order to properly write the current state to
disk, and also to locate the PaymentDescriptor corresponding to HTLC
outputs in the commitment transaction.
We also modify toChannelDelta to take not of these new changes, and
access the appropriate index directly.
This commit modifies the way we account for dust HTLC’s within the
commitment state machine when creating and validating new states.
Previously, an HTLC was dust if the amount of the HTLC was below the
dustLimit of the commitment chain. Now, with the HTLC covenant
transaction, the value of the HTLC also needs to cover the required fee
of the HTLC covenant transaction at the specified fee rate of the
commitment chain.
As a result, we now determine if an HTLC is dust or not, only at the
commitment site, using the new htlcIsDust function.
This commit modifies the current core channel state machine in order to
may a step towards BOLT-0002 and BOLT-0003 compliance. In this change,
we abandon the prior revocation window, in favor of a fixed revocation
window of size two. The revocation window will be filled at the start
of the lifetime of the channel, and never extended from there until the
channel has been fully closed.
We now maintain two variables, the current un-revoked commitment point,
and the next commitment point to use when creating a new state. The
next commitment point must initially be inserted into the channel state
with the InitNextRevocation method.
A major difference between the prior revocation key handling is that
the remote party now instead sends us the _commitment point_ in
isolation, which we then use locally (with our revocation base point)
to create the next full revocation key for _their_ commitment
transaction.
This commit updates much of the state interaction within the
LightningChannel structure to account for the recent changes within the
chanenldb involving the OpenChannel struct, namely the introduction of
ChannelConfig and ChannelConstraints.
This commit introduce a new struct which acts as a companion struct to
the channel state machine struct. With the new commitment state
machine, we require a signature to be signed and validated for each
outstanding non-trimmed HTLC within the commitment state. As it’s
possible to have hundreds of HTLC’s on a given commitment transaction,
rather than perform all ECDSA operations in serial, we instead aim to
parallelize the computation with a worker pool of sign+verify workers.
The two primary methods of the sigPool are SubmitVerifyBatch and
SubmitSignBatch which allow a caller to trigger an asynchronous job
execution when creating or validating a new commitment state.
This commit updates the prior set of interface-level wallet tests to
exercise the new funding workflow, and also to switch to utilizing two
wallet instances throughout the tests. This allows us to abandon the
dependency on the bobNode struct.
This commit modifies the interface-level wallet integration tests to
spin up two distinct wallet instances, wiping them after each
successful test. This change paves the way for an upcoming change which
uses two live wallet instances, rather than mocking out most of the
other interaction.
This commit removes bobNode from the wallet’s funding interaction
tests. bobNode was originally created at a very early point in lnd’s
life time before any sort of back end chain access was hooked in. At
that time the integration tests were unable to run, but bobNode allowed
us to test a portion of the funding workflow given idealized inputs.
The tests will be modified in a later commit to eschew bobNode in favor
of just having two LightningWallet instances communicate with one
another.
This commit updates the engine that drives the reservation workflow to
utilize the new ChannelConfig and ChannelConstraint structs added in
prior commits. With this change, the internal reservation engine has
been modified to retain the prior dual funder workflow, but also be
able to properly manage and execute the new single funder workflow
defined in BOLT-0002.
This commit updates the channel reservation workflow in order to
properly implement the new funding workflow defined in BOLT-0002.
The workflow itself hasn’t changed significantly, but the contents of
the contributions of both sides have. The bulk of the fields within the
contribution of both sides has been boiled down into a pointer to the
ChannelConfig which houses all the data required to handle all states
of the channel, and commitment state machine.
For the two portions which are dictated by the other party, we now add
builder-like modifiers to allow specifying the constraints after the
initial portion of the workflow.
This commit modifies the Signer interface to reflect the new key
derivation defined within BOLT-0003. This entails removing the prior
PrivateTweak field all together in favor of two new fields: SingleTweak
and DoubleTweak.
These two fields are mutually exclusive. The SingleTweak field is now
required in order to sign all regular non-delay, and also must be used
to generate signatures for the localKey, or delayKey. The DoubleTweak
field is used to generate the private key that corresponds to the
revoked revocation key.
This commit updates the constants in size.go to include the weight of
the HTLC success and timeout transactions. These values are required in
order to properly compute the fee required for a particular HTLC
transaction. The fee will change depending on if the HTLC is incoming
or outgoing.
This commit adds a series of new functions that can be used to generate
the second level HTLC transactions, and also to claim the output
created by the transaction after a delay. The details of the scripts
and transaction format can be found in BOLT #3.
This commit updates all the pkScripts used within the commitment
transaction of the party that is on the reign side of an HTLC.
The major difference in these scripts as the prior generation’s is that
the claim action is now spared into a distinct transition. This clause
is guarded by a 2-of-2 multi-sig op code, which effecting creates an
off-chain covenant forcing the party claiming the transaction to incur
a delay before the funds can be swept.
This commit updates all the spendHtlcSpend* functions which are used to
spend each of the possible clauses within the HTLC contract placed on
the sender’s commitment transaction.
This commit updates the key derivation to match the derivation required
in order to construct and validate the commitment scheme that is used
within the draft specification of the Lightning Network. The new scheme
is very similar to the prior scheme aside from the following major
differences:
* Each key (not just the revocation key) now changes with each state.
* A commitment point (a component of the revocation key) is used to
randomize each key, and also generate new tweaked versions of the key.
* Base points are used along with the commitment point to generate
the keys for the commitment transaction.
* Before the remote party would send over the fully valid revocation
key. Now the remote party sends us a commitment point, which we then
use our local revocation base point to generate their revocation key.
This commit modifies the prior revocation root generation to a newer
version which is intended to allow for easy recovery of revocation
state. Rather than using the node’s keys (which we can’t count on NOT
to change), we instead now use the block hash as a salt. With this,
given the block hash prior to the one that funded the channel, and the
node’s identity key, we can reconstruct our revocation state.
This commit adds the possibility for the initiator of a
channel to send the update_fee message, as specified
in BOLT#2. After the message is sent and both parties
have committed to the updated fee, all new commitment
messages in the channel will use the specified fee.
If an HTLC’s value is below a node’s dust limit, the amount for that
HTLC should be applied to to the fee used for the channel’s commitment
transaction.
The btclog package has been changed to defining its own logging
interface (rather than seelog's) and provides a default implementation
for callers to use.
There are two primary advantages to the new logger implementation.
First, all log messages are created before the call returns. Compared
to seelog, this prevents data races when mutable variables are logged.
Second, the new logger does not implement any kind of artifical rate
limiting (what seelog refers to as "adaptive logging"). Log messages
are outputted as soon as possible and the application will appear to
perform much better when watching standard output.
Because log rotation is not a feature of the btclog logging
implementation, it is handled by the main package by importing a file
rotation package that provides an io.Reader interface for creating
output to a rotating file output. The rotator has been configured
with the same defaults that btcd previously used in the seelog config
(10MB file limits with maximum of 3 rolls) but now compresses newly
created roll files. Due to the high compressibility of log text, the
compressed files typically reduce to around 15-30% of the original
10MB file.
This commit fixes a race condition that would at times occur in the
htlcswitch.TestChannelLinkBidirectionalOneHopPayments test case. A race
condition would occur in the goroutine running ReceiveNewCommitment
compared with the grouting that would obtain the snapshot in order to
make a forwarding decision.
We fix this by creating a new public key for each new commitment
transaction such that we complete avoid the read/write race condition.
This commit fixes a race condition that was discovered as a result of
the new htlcswitch package. The StateSnapshot method and all of the
other methods which mutate the state of the channel state machine were
using distinct mutexes. The fix is trivial: all methods accessing the
internal channel state variable now use the same mutex.
This commit fixes a bug wherein the wallet would use the default relay
fee to craft transactions. On testnet, this might be insufficient or be
rejected all together in a mainnet setting. Therefore, we now pass in
the FeeEstimator interface and ensure that it’s consulted in order to
set the relay fee the wallet will use to craft transactions.
Note that this is a hold over until we have true dynamic fee
calculation within lnd which can then be extended to the internal
wallets.
In order to be able to use the DeriveRevocationRoot in the createChannel
function inside the htlcswicth package we need to make it public.
NOTE: The original lnwallet.CreateChannel function haven't been
sufficient as far it not takes the private keys as input.
add rhash to the payment descriptor when receiving the settle htlc in
order to be able to pass it during settle htlc packet generation and
later find the user pending payment by rhash without additional hashing.
In this commit we made state machine to be responsible for returning
proper available balance - amount of satoshi which we able to use at
current moment. This will help us in constrction channel link
abstraction.
In this commit severe bug have been fixed which allows the state of the
nodes to be desychnorinesed in the moments of high htlc flow. We limit
the number of the htlc which we can add to commitment transaction
to half of the available capcity. This change fixes the bug when
commimtment transaction on the verge of being full, in this case race
condition might occures and remote htlc will be rejected, but at the
same time they will be added on remote side, the same situiation will
happen with htlc we have added, which cause the commitment transactions
to be different.
This commit changes the cooperative channel close workflow to comply
with the latest spec. This adds steps to handle and send shutdown
messages as well as moving responsibility for sending the channel close
message from the initiator to the responder.
This commit modifies the fee calculation logic when creating or
accepting a new commitment transaction to use the set FeePerKw within
the channel rather then re-query the estimator each time. The prior
behavior was benign as we currently use a static fee estimator, but the
dynamic setting this could’ve caused a state divergence.
This commit corrects an error in the scaling as currently implemented
in the default static fee estimator. The spec draft has an error and
erroneously recommends multiplying by 4 to arrive at the fee-per-weight
from the fee-per-byte. This is incorrect as with the segwit block-size
increase, the ratio is 1/4 rather than 4.
This commit modifies the coin selection logic around selecting inputs
for a funding transaction to query the fee estimator directly (and use
fee-per-byte), rather than use the fee estimate which was passed into
the context.
We also use the value passed into the InitChannelReservation method
directly rather than make a call to the fee estimator. With this
change, the responder to a funding workflow will now properly adopt the
fee-per-kw suggested by the funder of the channel.
The remote balance in the case of a single funder workflow is simply
what ever the pushSat amount is. The capacity - fundingAmt in this
scenario would always be zero, so we simply just set it directly to
pushSat.
This commit replaces the hard-coded 5000 satoshi fees with calls to the
FeeEstimator interface. This should provide a way to cleanly plug in
additional fee calculation algorithms in the future. This change
affected quite a few tests. When possible, the tests were changed to
assert amounts sent rather than balances so that fees wouldn't need to
be taken into account. There were several tests for which this wasn't
possible, so calls to the static fee calculator were made.
This commit adds the FeeEstimator interface, which can be used for
future fee calculation implementations. Currently, there is only the
StaticFeeEstimator implementation, which returns the same fee rate for
any transaction.
In order to cleanly handle shutdowns and restarts during state machine operation, the fee for the current
commitment transaction must be persisted. This allows the fee to be
reapplied when the current state is reloaded.
In order to make the node's dust limit available to the wallet during
the initial stages of the funding process, add and set a
DustLimit field in the Contribution.
Primarily to avoid linting errors, the lnwallet.OP_CHECKSEQUENCEVERIFY
variable was removed and references to it replaced with
txscript.OP_CHECKSEQUENCEVERIFY.
This commit changes t.Fatal to t.Fatalf in TestCheckDustLimit so as to
provide more information. This commit also makes some column width
adjustments and minor spelling/formatting changes.
This commit modifies the GetUtxo method of the BlockChainIO interface
to be more light client friendly by introducing a height hint which
gives light clients that don’t have UTXO set commitments a way in which
they can restrict their search space. Light clients will now be able to
have a concrete cut off point in the chain as they scan backwards for
spentness of an output.
This commit modifies the actions of the closeObserver goroutine to
utilize a _new_ channel to send channel close details over. The
original close signal channel is still used to notify observers that a
channel _has_ been closed, but this new channel will provide a single
observer with details w.r.t _how_ a channel was closed.
This commit adds an additional field to the ForceCloseSummary that
allows observers of the channel that sends this struct to track _which_
channel the force close came from.
Previously, if an error was returned during handleSingleFunderSigs or
handleFundingCounterPartySigs, the wallet would hang waiting for
the completeChan channel to be populated. This commit adds nil returns for
the completeChan when errors are propagated.
This commit modifies the way we go about unlocking the wallet. With the
latest changes to the API of btcwallet, we can on longer directly
access the waddrmgr struct. As a result, we’re now forced to go
_directly_ via the wallet to unlock the waddrmgr. The root
LightingWallet has been modified to not request the root key until we
finish starting the underlying wallet, so we can unlock the wallet in
the Start() method.
This commit modifies the initialization logic of the LightningWallet to
fetch the root key during startup rather than during creation. We make
this change in order to give enough time for the underlying
WalletController to properly boot up before we ask it to do any work.
This commit removes the now deprecated FundingSigner struct as part of
the btcwallet package, and instead replaces it within an implementation
of the MessageSigner interface.
This commit introduces the MessageSigner interface which is an abstract
object capable of signing arbitrary messages with a target public key.
This interface will be used within the daemon for: signing channel
authentication proofs, signing node/channel announcements, and also to
possibly sign arbitrary messages in the future.
This commit improves the channel state machine by converting the
objective PendingUpdates method to a subjective FullySynced method
which is to be used in place of PendingUpdates. The new FullySynced
method is fully encompassing and replaces any upper state required by
the state machine which wraps this one.
The new FullySynced method is identical to PendingUpdates aside from
the fact that: it now also factors in the log message index of the
remote commitment chain, and also introduces a concept of an “owed
commitment”. A commitment chain owes a commitment if the height of the
local commitment chain is higher than that of the remote chain.
This commit removes the theirPrevPkScript field from the
LightningChannel struct all together. It’s no longer needed as the more
fundamental mutation bug has been fixed within the channel state
machine.
This commit fixes a class of bug that can arise in the channel state
machine when a very high throughput workflow is attempted. Since the
PaymentDescriptor’s within a commitment pointed directly into the log,
any changes to a payment descriptor would also be reflected in all
other ones. Due to this mutation possibility, at times, the
locateOutputIndex method would fail since the HTLC’s pkScript was
modified, causing the channel to fail.
We fix this class of bug by simply ensure that once an HTLC has been
associated with a particular commitment, then it becomes immutable.
This commit fixes a build issue that appears when attempting to
cross-compile binaries to a 32-bit system from a 64-bit system. The
issue was that the defined max-state hint overflows a 32-bit integer. To
fix this issue, we now proeprly specify a type of a uint64 for the typed
constant.
This commit bolsters the logging available within the lnwallet package
by include the logging from both web sockets connections, and the
wtxmgr as part of the exposed package level logging. With this, users
will gain additional avenues for obtaining debug logs from various
parts of the system.
This commit implements some minor coding style, commenting and naming
clean up after the recent major discovery service was merged into the
codebase.
Highlights of the naming changes:
* fundingManager.SendToDiscovery -> SendAnnouncement
* discovery.Discovery -> discovery.AuthenticatedGossiper
The rest of the changes consist primary of grammar fixes and proper
column wrapping.
Added the signer which will be needed in the funding manager to sign
the lnwaire announcement message before sending them to discovery
package. Also in the future the message signer will be used to sign
the users data.
This commit fixes a slight oversight in the current state machine which
assumes that both commitment chains are always at the same height. In a
future where we move back to allowing nodes to pipeline commitment
updates, this will not always be the case.
This commit fixes a lingering TODO within the wallet portion of the
codebase by properly adhering to the set dust limits when closing a
channel. With this new commit if a party’s current settled balance is
below their current dust-limit, then it will be omitted from the
commitment transaction.
The prior test that asserted negative outputs are rejected has been
removed as they’ll now be avoided by ensuring we omit dust outputs from
the commitment transaction.
This commit does some minor shuffling around and also adds some
additional comments to the restoreStateLogs method within the channel
state machine. After the latest merge in this area, the code has
diverged slightly from what’s considered typical within the rest of the
codebase.
It is possible that that there are multiple HTLCs with different values,
but the same public key script. As such, a check against the value should
be performed when looking for HTLC outputs in a commitment transaction.
Create a new helper method called genHtlcScript which will
generate the public key scripts for a supplied HTLC. This functionality
from addHTLC is removed, and addHTLC will instead call this new
method.
In restoreStateLogs we will regenerate the public key scripts for the
HTLCs with genHtlcScript and restore the proper values.
When an HTLC is either cancelled or settled we must properly set the
pkScript for the HTLC on the remote commitment, such that we can
generate a valid ChannelDelta.
Description of bug:
When calling ReceiveNewCommitment() we will progress through methods
fetchCommitmentView and addHTLC which will add HTLC outputs to the
commitment transaction in the local commitment chain and save the
pkScript to the relevant PaymentDescriptor which resides in the
corresponding updateLog. Finally the local commitment will be added
to the local commitment chain.
When the same user next calls SignNextCommitment we will again
progress through fetchCommitmentView and addHTLC. In addHTLC we will
now overwrite the pkScripts in the PaymentDescriptors with the
pkScript from the context of the remote commitment. When we later
call RevokeCurrentCommitment and proceed into toChannelDelta, we
will not be able to find the correct pkScript in the PaymentDescriptor
to match it against the outputs in the commitment transaction.
This will lead to the nested function locateOutputIndex returning
incorrect values.
Fixing the bug:
We introduce three new fields in PaymentDescriptor:
* ourPkScript
* theirPkScript
* theirPrevPkScript
ourPkScript will include the pkScript for the HTLC from the context
of the local commitment.
theirPkScript will take the value of the latest pkScript for the HTLC
from the context of the remote commitment.
theirPrevPkScript will take the second-latest pkScript for the HTLC
from the context of the remote commitment. This is the value we use
in toChannelDelta when we save a revoked commitment from our peer.
The appropriate value of these fields are set in the addHTLC method.
Additionally we pass a boolean value to toChannelDelta so we know
whether we are operating on a local or remote commitment and grab
the correct pkScript in locateUpdateIndex.
This commit removes all instances of the fastsha256 library and
replaces it with the sha256 library in the standard library. This
change should see a number of performance improvements as the standard
library has highly optimized assembly instructions with use vectorized
instructions as the platform supports.
If the value of the to-local output is below the dust limit, the
ForceCloseSummary should not include a sign descriptor for this output.
We also find the proper to-self output by looking for the expected public
key script and not assume that no HTLC outputs exist.
Currently non-HTLC outputs will be accepted in the commitment
transaction as long as it is non-zero. We change this by not allowing
outputs with a value lower than the dust limit. The value of such
an output will go towards transaction fees.
This commit fixes a class of bug that currently exists within the
cooperative closure methods for the channel state machine. As an
example, due to the current hard coded fees, if one of the outputs
generated within the generated closure transaction has a negative
output, then the initiating node would gladly forward this to the
remote node. The remote node would then reject the closure as the
transaction is invalid. However, the act of completing the closure
would cause the remote node’s state machine to shift into a “closed”
state. As a result, any further closure attempts by the first node
(force or regular) would go unnoticed by the remote node.
We fix this issue by ensuring the transaction is “sane” before
initiating of completing a cooperative channel closure.
At test case has been added exercising the particular erroneous case
reported by “moli” on IRC.
This commit avoids a class of bug wherein the state of the channel
would be marked as closing enough though an error occurred somewhere in
the function. The bug was due to the fact that the channel `status` was
shifted before any actual logic within the function(s) were executed.
We fix this bug by _only_ shifting the channel status once the function
has completed without any error.
This commit adds a new method to the channel’s state machine:
NextRevocationKey. This method is being added in preparation for the
upcoming change to switch to the commitment transaction format outlined
in the spec. When this comes to pass, the ExtendRevocationWindow method
will be removed, as it will no longer be needed.
The NextRevocationKey method will be needed as to conform to the spec,
we’ll need to send the next revocation key within the `fundingLocked`
message.
This commit adds the FundingManagerPersistence test to ensure that the
funding process completes as expected when nodes shutdown after the the
funding transaction has been broadcast. Note that the final parts of
several wallet tests have been removed, as functionality has been moved
to the Funding Manager and should now be tested there.
Once a channel funding process has advanced to the point of broadcasting
the funding transaction, the state of the channel should be persisted
so that the nodes can disconnect or go down without having to wait for the
funding transaction to be confirmed on the blockchain.
Previously, the finalization of the funding process was handled by a
combination of the funding manager, the peer and the wallet, but if
the remote peer is no longer online or no longer connected, this flow
will no longer work. This commit moves all funding steps following
the transaction broadcast into the funding manager, which is available
as long as the daemon is running.
When a pending channel is persisted and then reloaded upon system startup
it's necessary to also persist the number of confirmations that will be required
before the pending channel can be opened.
In order to facilitate persistence during the funding process, added
the isPending flag to channels so that when the daemon restarts, we can
properly re-initialize the chain notifier and update the state of
channels that were going through the funding process.
In this commit the initial implementation of revocation hash
generation 'elkrem' was replaced with 'shachain' Rusty Russel
implementation which currently enshrined in the spec. This alghoritm has
the same asymptotic characteristics but has more complex scheme
to determine wish hash we can drop and what needs to be stored
in order to be able to achive full compression.
Introduce TimelockShift which is used to make sure the commitment
transaction is spendable by setting the locktime with it so that
it is larger than 500,000,000, thus interpreting it as Unix epoch
timestamp and not a block height. It is also smaller than the current
timestamp which has bit (1 << 30) set, so there is no risk of having
the commitment transaction be rejected. This way we can safely use
the lower 24 bits of the locktime field for part of the obscured
commitment transaction number.
Add tests to assert maximum state can be used. Also test
that more than one input in the commitment transaction
will fail and that having state number larger than
maxStateHint will fail.
Fix SetStateNumHint and GetStateNumHint to properly
set and get the stateNumHints using the lower 24 bits
of the locktime of the commitment transaction as the
lower 24 bits of the obfuscated state number and the
lower 24 bits of the sequence field as the higher 24
bits.
This commit fixes a bug in the wallet’s internal reservation manager
that prevented it from cleaning up the resources used by a reservation
after it was finished running through the workflow.
We fix this issue by ensuring the reservations context is deleted from
the funding limbo.
It is the callers responsibility to properly .Cancel() a reservation in
the case of an error during the funding workflow.
This commit adds an additional case of the closeObserver that will
properly handle the case of a channel being closed by a de-sync’d
commitment transaction from the PoV of the local node. In the case of a
minor 1-state divergence, the commitment transaction broadcast by the
remote node will be 1 state ahead of the commitment transaction we have
locally. This should be seen as a regular unilateral close as they
remote peer didn’t violate the channel contract in any way.
We address this case by changing the `==` to a `>=`.
This commit updates the set of channel state machine tests to properly
compile and execute with the latest set of changes to the state
machine.
Most of the changes within this commit are just renaming and field
changes as a result of the new wire messages.
The more substantial change is due to the change in semantics of the
new state machine w.r.t what has and has not been ACK’d when a new
state transition is implemented. In the case of a concurrent update
(both sides add to the log before a state transition), both sides need
to trigger a state update in order to ensure their updates have been
included.
This commit updates the internal channel state machine to the one as
described within the spec and currently implemented within the rest of
the other Lightning implementations.
At a high level the following modifications have been made:
* When signing we no loner include the index of the remote party’s
log
that our signature covers. Instead we include ALL of our current
updates, but only the updates of the remote party that we’ve
ACK’d.
* A pending change is considered ACK’d once a revocation message
has been received, locking in the changes in the remote party’s
commitment transaction.
* When sending a new commitment, we remember the index of our
log at that point so we can mark that portion of the log as ACK’d
once we receive a revocation message from the remote party.
* When receiving a new commitment signature, we include ALL of
the remote party’s changes that we’ve received but only our set
of changes that’ve been ACK’d by the remote party.
* Implicitly a revocation message now also implicitly serves to ACK
all the changes that were included in the CommitSig message
received before it.
The resulting change is a rather minor diff. However, with this state
machine it’s important to note that the order to sig/revoke messages
has been swapped. A proper exchange now looks like the following:
* Alice -> Add, Add, Add
* Alice -> Sig
* Revoke <- Bob
* Sig <- Bob
* Alice -> Revoke
One other thing that’s worth noting is that with this state machine,
since what’s included in an update is implicit, both side may need to
at times send a new commitment update in the case of a concurrent state
transition initiated by both sides.
Finally, all counters/indexes have been made 64-bit integers in order
to properly match the spec.
This commit adds a new struct to the channel state machine: updateLog.
updateLog encapsulates the update log linked list itself, a series of
new counters we’ll need in order to switch to the spec’s state machine
and also the index into the log itself. This new struct serves to
simplify much of the logic surrounding the update log and also
elminates a bit of code duplication within the current state machine.
This commit only adds the new struct. The rest of the state machine
will be updated in a later commit to use the new log and its new
counters.
This commit fixes a bug in the LightingChannel commitment state machine
which could occasionally result in the total number of satoshis sent or
received being counted twice if a redundant state transition were
initiated.
To fix this bug, we now only increment the number of satoshi
sent/recv’d iff it’s the first time the HTLC has been processed.
This commit ensures that when a channel’s closeObserver is signaled to
exit before a channel closure has been detected, then the resources
dedicated to the pending spend notification can be freed up.
rHashMap is used to store the PaymentDescriptor belonging to a received
HTLC's revocation hash. This improves the efficiency of looking up
PaymentDescriptors from their RHash whenever we want to settle or cancel
that HTLC.
This commit fixes a bug which would cause the node on the _receiving_
side of a channel force close to be blind of their immediately funds
on-chain. The root of the issue was that within the btcwallet
implementation of the WalletController method ‘NewRawKey’, the wallet
wouldn’t request notifications for the new address, as the direct
function from the waddrmgr was used which skips registration of the new
address.
To fix, this, we now ensure that btcwallet will receive notifications
for keys used within the raw p2wkh commitment output. This ensures that
the wallet is aware of funds that are made available as a result of a
channel force closure by the channel counter party.
This commit fixes a slight scripting related issue as a result of
default policy in Bitcoin Core 0.13.1. With this version of Bitcoin
Core, nodes will now enforce a policy that ensures the first argument
of OP_IF is either an empty vector or a 0x01 value. Our current sent of
functions to generate the witness for the delay clause of the
commitment transaction instead uses a 0x00 value rather than an empty
byte vector.
With this commit we fix the issue by ensuring that we use an empty
vector rather an 0x00 for forcing the commitment delay script pathway.
This commit adds the ability to cancel a channel’s internal
closeObserver goroutine by adding a new public facing Stop method.
Additionally, we now make passing a ChainNotifier interface completely
optional. If the ChainNotifier isn’t passed in as a constructor, then
the closeObserver goroutine will never be launched. This new feature
lets the caller ensure that only a single closeObsever for any given
channels exists.
This commit removes the BlockChainIO interface as a dependency to the
LightningChannel struct as the interface is no longer used within the
operation of the LightningChannel.
This commit ensures that we now properly handle and propagate errors
that arise when attempting to create a new channel after the funding
transaction is believed to be confirmed.
A previous edge case would arise when a user attempted to create a new
channel, but their corresponding btcd node wasn’t yet fully synced.
This commit fixes a prior bug in the wallet triggered by the creation
of a channel using the single funder workflow, but pushing exactly
*half* of the channel over to the other side. The prior logic to
determine who the initiator would result in a disagreement over who
created the channel initially. This wouldn’t manifest until the channel
was attempted to be closed cooperatively. As both side disagreed about
who created the channel they would apply the closing fee to different
outputs, thereby creating mismatched closing transaction. The signature
would fail to validate as the closer will create a different
transaction from that of the responder.
This commit fixes the issue by properly detecting who initially created
the channel.
This commit fixes a bug introduced by the past attempt to Make Logging
Great Again. Since we unset the curve parameters when reading/writing
the messages, if we have a lingering reference that’s active elsewhere
in the daemon, then we’ll modify that reference. To fix this, we now
explicitly set the Curve parameters in two areas.
A similar commit has been pushed to lightning-onion.
This commit modifies the closeObserver goroutine to ensure that a close
summary has been inserted into the database before signalling any
observers that a unilateral channel closure was detected. This fixes a
slight bug where a peer would force close a channel, but we wouldn’t
properly detect that and clean up the channel state if had a failed
cooperative channel closure.
This commit modifies the logic of the closeObserver slightly to not
incorrectly mark the broadcast of the commitment transaction triggered
by a cooperative channel closure as an unprompted broadcast.
This commit adds support to the wallet’s internal funding workflow for
pushing a certain amount of BTC to the responder’s side for a single
funder workflow as part of the first commitment.
This commit modifies the logic around adding cancel entries to the
update log for the commitment state machine slightly by also including
the r-hash of the HTLC that’s been cancelled in the entry for the
cancellation. With this change, we can accurately track which HTLC is
being cancelled within outer sub-systems.
This commit alters the new HTLC cancellation logic to instead allow the
canceller of an HTLC to cancel the HTLC by the payment hash rather than
the index of the HTLC.
This commit adds the ability to send/recv HTLC cancellation to the
commitment state machine. Previously this feature had been
unimplemented within the state machine, with only adds/settles working.
With this change, there’s now now no concept of “timing” out HTLC’s,
only the cancellation of HTLC’s which may be triggered for various
reasons.
This commit makes a large number of minor changes concerning API usage
within the deamon to match the latest version on the upstream btcsuite
libraries.
The major changes are the switch from wire.ShaHash to chainhash.Hash,
and that wire.NewMsgTx() now takes a paramter indicating the version of
the transaction to be created.
This commit partially rectifies a quick hack that was previously thrown
in to address an issue discovered due to possible state inconsistencies
between an active channel object and the daemon’s breachAbrbiter.
A prior commit has modified the interaction between the peer and the
breachArbiter to eliminate the state in consistency. Therefore, we no
longer need to access the database to ensure that we’re observing the
latest channel state in order to correctly make a decision about
whether a broadcast commitment transaction is a breach or not.
This commit fixes an unnoticed bug within btcwallet’s implementation of
the BlockChainIO interface, specifically the GetUtxo method. In order
to maintain compatibility with Bitcoin Core’s gettxout method, btcd
doesn’t return an error if the targeted output is actually spent.
We weren’t properly detecting this, but we do now by creating a new
error which is returned in the case of a nil error but a nil return
value.
This commit slightly modifies the channel reservation workflow to
expose the new information conerning the exact confirmation location of
the channel provided by the ChainNotifier. The DispatchChan() method of
the ChannelReservation now also returns the blockHeight and txIndex
where the transaction was ultimately confirmed. This information will
be needed by the fundingManager so it can properly generate the
authenticated channel announcement proofs.
This commit fixes a bug within the btcwallet implementation of the
BlockChainIO interface. The exact nature of the bug was a rounding
error that would only manifest if the value of the UTXO was below 1
BTC.
The tests within this package currently test channels with mostly whole
values of BTC, as a result the bug went unnoticed until now.
The fix itself is trivial: convert to an int64 AFTER performing the
multiplication to convert to satoshis from Bitcoin.
This commit modifies the attributes of the LightningChannel struct to
publicly expose the funding keys used within the channel for the local
and remote party. Exposing these keys publicly will allow callers to
use the keys involved to generate authenticated channel advertisements
for the routing layer.
This commit expands the data returned by the current GetCurrentHeight
to also return the current best block hash, expanding the method into
GetBestBlock. Additionally, the current best BlockHash is also now
displayed within the GetInfo RPC call.
This commit fixes a lingering bug within the channel funding
reservation workflow that caused the address of a channel counter-party
to not be written to disk, resulting in an error on start up. To fix
this, we now properly populate the node’s TCP address when initiating
the reservation.
This commit adds a new method to the WalletController interface:
IsSynced. The role of the function is to query the local wallet about
if it thinks it has fully synced to the tip of the current main chain.
This function can be useful within U.I’s to block off certain
functionality until the wallet is fully synced to the main chain.
This commit modifies the channel closing logic to remove the hard coded
bools indicating which side is attempting the closure. With the recent
changes, the initiator must always pay the channel closure fees.
This information is recently stored on disk, therefore we can use the
boolean to ensure that the closure transaction is created properly no
matter who initiates the close.
This fixes a bug.
This commit introduces a new sub-system into the daemon whose job it is
to vigilantly watch for any potential channel breaches throughout the
up-time of the daemon. The logic which was moved from the utxoNursery
in a prior commit now resides within the breachArbiter.
Upon start-up the breachArbiter will query the database for all active
channels, launching a goroutine for each channel in order to be able to
take action if a channel breach is detected. The breachArbiter is also
responsible for notifying the htlcSwitch about channel breaches in
order to black-list the breached linked during any multi-hop forwarding
decisions.
This commit adds detection of contract breaches within the commitment
state-machine for a channel. A contract breach is defined as the event
wherein a channel counter-party broadcasts a previously revoked
commitment transaction. Such an event immediately closes a channel as
the funds are now in a state of dispute.
Once a breach is detected, a snapshot of the breached state is
retrieved from the database’s revocation log. This snapshot is then
used to generate the revocation leaf used within this particular state
along with all the other information ncessary to sweep ALL active funds
within the channel. This information is encapsulated within the
BreachRetribution struct which is sent over a new channel dedicated to
sending/receiving BreachRetributions.
This commit modifies the logic within the state machine to properly
populate the new field of `OutputIndex` which the HTLC stored within a
channel delta.
With this change, in the future we’ll be able to quickly locate a
particular HTLC output in the scenario that the commitment transaction
has been broadcast on-chain and we need to sweep it. Allocating a few
extra bytes on-disk saves us from the guess-and-check logic+code
required otherwise.
This commit adds some necessary locking to ensure that all updates to
the internal state of the commitment state machine are fully serial and
thread-safe. This change is required to ensure future actions w.r.t
taking action once a revoked commitment transaction has been broadcast
are not carried out while the channel’s state is being updated.
This commit extends the SignDescriptor with a single attribute, the
‘PrivateTweak’. The duties of the Signer interface have also been
augmented to properly derive a private key using the specified tweak,
iff it’s non-nil.
As currently defined in order to generate the proper private key based
off of a PrivateTweak, the signer is to add the tweak value to the
private key for the specified public key. This generated value is to be
used for signing within the specified context.
This change paves the way for automatic revoked output sweeping with
signatures generated directly by the Signer interface, maintaining the
structure of the abstraction.
A test has been added at the interface level in order to excerise each
WalletController’s implementation of the key derivation as currently
defined.
This commit converts the rearming two commitment spend functions to use
the lnwallet.Signer interface directly rather than manually manage
private keys during the signing process. This commit is in preparation
for implementation of fully automated revoked uncooperative closure
detection and retribution.
This commit finalizes the implementation of #58 by integrating passing
around the obfuscate state hints into the funding workflow of the
wallet, and also the daemon’s funding manager.
In order to amend the tests, the functions to set and receive the state
hints are now publicly exported.
This commit modifies the channel state machine slightly to encode the
current state number using 30-bits of the sequence number within the
commitment transaction’s only input.
Such a modification reduces up the processing time required to punish
the counter party for breaching the contract established within the
channel by broadcasting an older revoked state.
This fixes#58 with a minor modification to what was originally
suggested.
This commit adds two utility functions along with corresponding tests
for adding obfuscated state number hints to each commitment
transaction.
Such a feature reduces the search time to recover the necessary
material to punish a counterpaty for broadcasting an invalid state from
O(N), to O(1), where N is the number of states in the channel’s
transcript. By encoding the obsfucated state number, either side is
able to quickly obtain the ncessary state to excerise “justice”.
This commit modifies the existing channel reservation workflow slightly
to thread through the IP address that we were able to reach the node
at, or the one which the node reached us via. Additionally, rather than
using OpenChannel.FullSync() at the end of the reservation workflow, we
now use OpenChannel.FullSyncWithAddr() in order to create the
relationship in the database between the channel, and the p2p node we
created the channel with.
All tests, as well as a portion of the fundingManager have been updated
accordingly,
This commit modifies the lnwallet code and related tests in order to
adhere to the recent field-name change to channeldb.OpenChannel.
Instead of having the field ‘TheirLNID’ which is the sha256 of the
node’s public key, we now instead use the public key directly in all
contexts.
This commit consists of a mass variable renaming to call the pkScript being executed for segwit outputs the `witnessScript` instead of `redeemScript`. The latter naming convention is generally considered to be reserved for the context of BIP 16 execution. With segwit to be deployed soon, we should be using the correct terminology uniformly through the codebase.
In addition some minor typos throughout the codebase has been fixed.
This commit returns the BtcWallet wrapper struct back to conformance to
the WalletController interface by adding support for
SubscribeTransactions.
The implementation of the lnwallet.TransactionSubscription consists
simply of a proxy goroutine which forwards notifications from the
wallet’s internal NotificaitonServer.
This commit adds a new simple interface related to the WalletController
which allows for subscribing to new notifications as transactions
relevant to the wallet are seen on at the network and/or mined. The
TransactionSubscription interface will prove useful for building higher
level UI’s on-top of the daemon which update the presentation layer in
response to received notifications.
This commit implements the new ListTransactionDetails method within
btcwallet’s concrete implementation of the WalletController interface.
Both mined and unmined transactions are currently returned via the same
method. Unmined transactions are indicated by their lack of an
inclusion block hash and lack of confirmations.
This commit modifies the prior funding workflow to account for fees
when creating the funding output. As a stop gap, the current fee for
the commitment transaction is now hard-coded at 5k satoshis. Once the
fee models are in place this should instead be some high multiple of
the current “average” fee rate within the network, continuing, the
proper fee should be adjusted from the commitment transaction has
outputs are added/removed.
This commit introduces the concept of a manually initiated “force”
closer within the channel state machine. A force closure is a closure
initiated by a local subsystem which broadcasts the current commitment
state directly on-chain rather than attempting to cooperatively
negotiate a closure with the remote party.
A force closure returns a ForceCloseSummary which includes all the
details required for claiming all rightfully owned outputs within the
broadcast commitment transaction.
Additionally two new publicly exported channels are introduced, one
which is closed due a locally initiated force closure, and the other
which is closed once we detect that the remote party has executed a
unilateral closure by broadcasting their version of the commitment
transaction.
This commit slightly modifies btcwallet’s SignOutputRaw method to work
properly in the case that the pkScript of the output being spent isn’t
one of the template pkScripts (p2pkh, multi-sig, etc). Rather than
examining the address, we now attempt to find the private key which
matches the public key passed within the sign descriptor.
This commit adds full persistence logic of the current lowest
un-revoked height within each commitment chain. The newly added
channeldb methods for record state transitions within both commitment
chains are now utilized. This un-settled HTLC state is now read upon
initialization, with the proper log entries inserted into the state
update log which reflect the garbage collected log right before the
restart.
A new set of tests have been added to exercise a few edge cases around
HTLC persistence to ensure the in-memory log is properly restored based
on the on-disk snapshot.
This commit implements a state update log which is intended the record
the relevant information for each state transition on disk. For each
state transition a delta should be written recording the new state. A
new method is also provided which is able to retrieve a previous
channel state based on a state update #.
At the moment no measures has been taken to optimize the space
utilization of each update on disk. There are several low-hanging
fruits which can be addressed at a later point. Ultimately the update
log itself should be implemented with an append-only flat file at the
storage level. In any case, the high level abstraction should be able
to maintained independent of differences in the on-disk format itself.
This commit removes a flaky assertion within the interaction tests. Due
to differences in final coin selection across tests due to the
pseudo-random nature of map iterations, a single output might be
selected rather than two as we previously expected.
Additionally a duplicate test has been removed, and the locked output tests
simplified a bit.
This commit performs a major refactor of the current wallet,
reservation, and channel code in order to call into a WalletController
implementation rather than directly into btcwallet.
The current set of wallets tests have been modified in order to test
against *all* registered WalletController implementations rather than
only btcwallet. As a result, all future WalletControllers primary need
to ensure that their implementation passes the current set of tests
(which will be expanded into the future), providing an easy path of
integration assurance.
Rather than directly holding the private keys throughout funding and
channel creation, the burden of securing keys has been shifted to the
specified WalletController and Signer interfaces. All signing is done
via the Signer interface rather than directly, increasing flexibility
dramatically.
During channel funding, rather than creating a txscript.Engine to
verify commitment signatures, regular ECDSA sig verification is now
used instead. This is faster and more efficient.
Finally certain fields/methods within ChannelReservation and
LightningChannel have been exposed publicly in order to restrict the
amount of modifications the prior tests needed to undergo in order to
support testing directly agains the WalletController interface.
This commit modifies the elkrem root derivation for each newly created
channel. First a master elkrem root is derived from the rood HD seed
generated from private wallet data. Next, a HKDF is used with the
secret being the master elkrem root.
This file is no longer needed as each implementation of the
WalletController is expected to handle its own set up via an instance
of the WalletDriver factory struct.
This commit adds the first concrete implementation of the
WalletController interface: BtcWallet. This implementation is simply a
series of wrapper functions are the base btcwallet struct.
Additionally, for ease of use both the BlockChain IO and Signer
interface are also implemented by BtcWallet. Finally a new WalletDriver
implementation has been implemented, and will be register by the init()
method within this new package.
This commit revamps the previous WalletController interface, edging it
closer to a more complete version.
Additionally, this commit also introduces two new interfaces:
BlockchainIO, and Singer along with a new factor driver struct, the
WalletDriver.
This BlockChainIO abstracts read-only access to the blockchain, while
the Singer interface abstracts the signing of inputs from the base
wallet paving the way to hardware wallets, air-gapped signing, etc.
Finally, in order to provide an easy method for selecting a particular
concrete implementation of a WalletController interface, the concept of
registering “WalletDriver”s has been introduced. A wallet driver is
essentially the encapsulation of a factory function capable of create a
new instance of a Wallet Controller.
This commit removes the wrapper functions used to rely on the coinset
package for coin selection. In a future commit the prior behavior will
be replaced by a custom coin selection implementation which estimates
the size of the funding transaction.
This commit refactors the code within lnwallet interacting with the
ChainNotifier to accept, and call against the implementation rather
than a single concrete implementation.
LightningWallet no longer creates it’s own BtcdNotifier implementation
doing construction, now instead accepting a pre-started `ChainNotifier`
interface. All imports have been updated to reflect the new naming
scheme.
This commit fixes a bug in the lockTimeToSequence function when mapping
a block-based relative lock time to the proper sequence number.
Applying the mask isn’t necessary since the values are expected to be
blow 65K blocks.
This commit adds a basic test for cooperative channel closure. The
current test ensures correctness of the cooperative closure procedure
initiated by either the channel initiator, or the channel responder.
This commit adds glide integration in order to make lnd builds fully
reproducible. Rather than using “go get” users should now manually pull down
the repo, use glide to fetch+install the dependancies, then manually install
all related binaries.
With this change we no longer have to chase dependancies making breaking API
changes under us. We can manually update the managed dependancies once a new
stable release of a defendant package is released.
Additionally, reproducible builds are a strong requirement in order to securely
distribute future major releases of lnd.
This commit adds a new method, “PendingUpdates” to the channel state
machine which is intended to be a source to give callers a hint as to
when an additional commitment signature should be sent independent of
any request/response book keeping.
This commit patrons the state update logs properly within the channel
state machine. This change fixes a number of bugs caused by treating a
central log as two logically distinct logs. Rather than having a bit
indicating if the entry is incoming/outgoing, an entry is added to a
remote or local log depending on which modification method is used.
As a result the code is much easier to follow due to separation of
concerts.
Finally, when attempting to sign a new update with an exhausted
renovation window a distinct error is returned in order to allow higher
level callers to properly back-off and handle the protocol event.
This commit fixes a slight bug in the channel state machine’s code
executed when processing a revocation messages. With this commit after
processing a revocation, log entries which we should forward to the
downstream or upstream peer for settling/adding HTLC’s are now properly
returned.
The testa have also been updated to ensure to correct htlc’s are
returned “for forwarding”.
We no longer track HTLC’s by their r-hash within the log into the
index, as we may have multiple HTLC’s that can be redeemed by the same
pre-image. Instead we now use a separate index which is keyed by a
log-index.
Additionally, the SettleHTLC method now also returns the index of the
HTLC being settled which allows the remote party to quickly locate the
HTLC within their log.
This commit also introduces a few trace/debug log messages which will
likely be pruned in the near future
This commit finishes the initial draft of the commitment state machine.
A full re-write of the prior protocol which combines aspects of the
former ‘lnstate’ package has replaced the prior un-finished
stop-and-wait protocol.
This new protocol is designed to operate in an asynchronous environment
and to facilitate non-blocking batched and pipelined updates to the
committed channel states. The protocol is also de-synchronized meaning
that either side can propose new commitment states independent of the
actions of the other party.
The state machine implemented is very similar to that of c-lightning,
however we allow multiple unrevoked commentates in order to minimize
blocking, and also to reduce latency across several hops in a
bi-directional setting.
The current implementation consists of 3 main data structures: a
commitment chain which consist of unrevoked commitment transactions
(one for each side), and a (mostly) append-only log of HTLC updates
shared between both sides. New commitments proposed index into the log
denoting which updates they include, this allows both parties to
progress chains independent of one another. Revoked commitments, reduce
the length of the chain by one, and free up space within the revocation
window.
At this point only basic tests are in place for the state machine,
however more extensive testing infrastructure along with formal proofs
using PlusCall are planned.
This commit changes prior behavior which stored a “hot” commitment
transaction, meaning one which all the sigScript fully assembled and
able to be broadcast.
Instead, we now store the current signature for our commitment
transaction as a separate field within the database and within memory.
As a result, this eliminates a class of bugs which would erroneously
broadcast a fully loaded commitment transaction, either leading to a
loss of funds, or suspending availability to funds for a period of
time.
This update the wallet to implement the new single funder workflow
which uses revocation keys rather than revocation hashes for the
commitment transactions.
The derivation is current bed on an HKDF invocation using our private
key as the secret, and the node’s channel multi-sig key as the salt.
This scheme allows us to derive the key on the fly given data known to
only us and the remote node.
The current derivation is just a place-holder and will be re-visited at
a later time.
With this commit, the reservation workflow for the single funder use
case is now aware of the usage of revocation keys.
The changes are relatively minor:
* contributions now have RevocationKeys instead of RevocationHashes
* CompleteReservationSingle now takes the initiators revocation key
This commit implements the “send coins” RPC request which was
introduced at both the lnrpc and command line level in a prior commit.
A small refactoring has taken place w.r.t to sendmany+sendcoins in
order to eliminate some code duplication.
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
This unifies some inconstancies across the code-base with hashes being
32 vs 20 bytes. All hashes, whether payment or revocation are now
uniformly 32 bytes everywhere. As a result, only OP_SHA256 will be used
within commitment and HTLC scripts. The rationale for using sha256
instead of hash160 for the HTLC payment pre-image is that alternative
chains are more likely to have sha256 implemented, rather than
ripemd160.
A forthcoming commit will update the current commitment, and HTLC
scripts.
This commit introduces the fundingManger which is used as a bridge
between the wallet’s internal ‘ChannelReservation’ workflow, and the
wire protocol’s funding messages.
The funding manger is responsible for progressing the workflow, and
communicating any errors generated during the workflow back to the
source peer.
This commit adds additional test cases to test both cases (initiator vs
responder) for a single funder channel workflow. Additionally, the
previous dual funder tests have been extended in order to detect proper
funding channel broadcast, and the ChainNotifier’s role in notifying
upstream callers that a funding transaction has been embedded in the
chain at a sufficient depth.
At this point the tests certainly need to be cleaned up. bobNode should
be replaced with a second instance of the wallet modeling a remote
peer.
This commit modifies the existing workflow to add additional paths to
be used when on the responding side of a single funder workflow.
Additionally, several bugs encountered within the existing dual funder
workflow logic have been fixed, and modified to account for the wallet
being on the igniting side of a single funder workflow.
The previous logic incorrectly assumed the returned address was already
a p2wkh address. Instead, a p2sh address was returned. So we now
correctly craft both the sigScript and witness stack for a nested p2sh
spend.
This is required since for single funder channels, we don’t contribute
any funds so we don’t need to select any change or coins for input into
the funding transaction.
This commit adds 3 methods to lnwallet.ChannelReservation intended to
facilitating a single funder channel workflow between two nodes. A
single funder workflow is characterized as the initiator committing all
the funds to a channel, with the responder only providing public keys,
and a revocation hash.
The workflow remains the same for the initiator of the funding
transaction, however for the responder, the following methods are
instead called in order:
* .ProcessSingleConribution()
* .CompleteSingleContribution()
* .FinalizeReservation()
These methods are required for the responder as they are never able to
construct the full funding transaction, and only receive the out point
of the funding transaction once available.
A cooperative closure of a LightningChannel proceeds in two steps.
First, the party who wishes to close the channel sends a signature for
the closing transaction. Next, the responder reconstructs the closing
transaction identically as the initiator did using a canonical
input/output ordering, and the currently settled balance within the
channel. At this point, the responder then broadcasts the closure
transaction. It is the responsibility of the initiator to watch for
this transaction broadcast within the network to clean up any resources
they committed to the active channel.
Only nested p2sh or pure witness outputs are used when selecting coins
for inputs to a funding transaction.
The funding transaction output now uses p2wsh rather than regular p2sh.
All tests have been updated accordingly.
This method has been added in order to allow lnd to collect eligible
unspent witness programs outputs from the wallet controller for use as
inputs to the funding transaction.
Additionally, the change address functions now also specify whether the
generated change address should be payable to a witness program or not.
The WalletController will serve as a layer of separation between “base”
Bitcoin wallet logic, and the higher level Lightning Network logic. As
a result LightningWallet will no behave as an overly wallet, relying on
the lower wallet for basic services such as new address, signing etc.
Within this higher level lies the awareness of channel types, chain
monitoring, HTLCs, and so on.
* Previously, if the call to SetUp(..) returned an error, then the test
harness would fail to stop the running bcd process, and clean up the
test directories. This would cause any subsequent tests to fail. This
commit remedies this scenario.
Allows us to remove a lot of duplicated code pertaining to wallet
setup. We also gain hooks into the wallet to trigger callbacks once the
wallet is created/opened.
Instead of creating “fake” utxos for bob, and alice. We now employ a
dedicated mining node to hand out utxos, and generate blocks with hand
picked transactions.
A major change for btcwallet adding a new RPC wallet, refactoring parts
of the wallet, and introducing new functionality has been introduced.
This commit updates lnwallet to the API changes. A future commit will
change lnwallet to use some of the new functionality such as the
notification server, etc.
Select over the quit channel in order to shutdown goroutines waiting
for funding txn confirmations. Without this we may leak goroutines
which are blocked forever if the process isn’t exiting when the walet
is signaled to shutdown.
* Hooks into the ChainNotifier infrastructure to receive a notification
once the funding transaction gets enough notifications.
* Still need to set up the notification grouting within a
LightningChannel to watch for uncooperative closures, and broadcasts
and revoked channel states.
* In preparation for regression testing once nodetest is finished.
* These sections we’re previously uncommented to allow for testing the
wallet without a full-node hooked up.
* Updates to the channel are made atomic, and consistent via a proxy
object: “ChannelUpdate” which encapsulates an update transaction. Only
one update transaction may be outstanding at any time.
* Update transactions are initiated via AddHTLC or SettleHTLC.
* Once a transaction has been begun, in order to complete the update
the transaction must first be presented with a signature from the
counter-party for our new version of the commitment tx
(VerifyNewCommitmentSigs), and finally to atomically commit the
transaction, the counterparty’s pre-image to their previous revocation
hash must be validate (Commit).
* Workflow along with expected call orders have been documented.
* With this, the initial iteration of ChannelReservation is mostly
complete.
* However, there are still some unfinished steps internally within the
wallet related to processing. Such as factoring proper tx fees,
splitting fees, some node interaction etc.
* moved sorting of transaction outside of createCommitTx also us to add
HTLC’s before sorting
* On the fence about the proxy object design, will re-visit once we
start to implement the p2p code.
* As a result in order to not over-shadow the Start/Stop methods of
btcwallet.Wallet, the Start/Stop methods on LightningWallet have been
renamed to Startup/Shutdown.
* Initial draft of brain dump of chandler. Nothing yet set in stone.
* Will most likely move the storage of all structs to a more “column”
oriented approach. Such that, small updates like incrementing the total
satoshi sent don’t result in the entire struct being serialized and
written.
* Some skeleton structs for other possible data we might want to store
are also included.
* Seem valuable to record as much data as possible for record keeping,
visualization, debugging, etc. Will need to set up a time+space+dirty
cache to ensure performance isn’t impacted too much.
* Contribution from remote host necessary to construct the initial
commitment transaction is now also expected
* All message structs and handlers updated accordingly
* AddContribution now also generates both commitment tnxs, and
generates a signature for their version of the commitment transaction
* Future commit will ditch all the thread-safe “getter” like methods.
We’re all adults just make sure to grab the lock.
* All wallet mutation funcs will also document which fields are set
after completion of the request
* Set shaChain, delivery address, commitment key