In this commit, we add fully verification (other than checking the
commitment point matches after the fact) of the new optional fields
added to the lnwire.ChannelReestablish message. Two scenarios can
arise: we realize the remote party is on a prior state (and possibly
lost data), or we realize that *we* are on a prior state with the
remote party verifiably proving that they’re on a newer state.
In this commit we extend the set of fields populated within the
returned lnwire.ChannelReestablish to populate the optional data loss
fields. This entails included the commitment secret of the most
recently revoked remote commitment transaction and also our current
unrevoked commitment point.
In this commit, we add support within lnwire for the optional dataloss
fields in ChannelReestablish. With these fields, it’s possible to:
verify that the remote node really knows of the state of our prior
local commitment, and also that they’ve sent us the current commitment
point for their current state.
In the event of dataloss, it’s possible for the party which lost data
to claim their commitment output in the remote party’s commitment if
they broadcast their current commitment transaction.
In this commit, we update all the key derivation within the state
machine to account for the recent spec change which introduces a
distinct key for usages within all HTLC scripts. This change means that
the commitment payment and delay base points, are only required to be
online in the case that a party is forced to go to chain.
We introduce an additional local tweak to the keyring for the HTLC
tweak. Additionally, two new keys have been added: a local and a remote
HTLC key. Generation of sender/receiver HTLC scripts now use the local
and remote HTLC keys rather than the “payment” key for each party.
Finally, when creating/verifying signatures for second-level HTLC
transactions, we use these the distinct HTLC keys, rather than re-using
the payment keys.
In this commit, we modify the naming and comments of the routines that
create the sender/receiver HTLC scripts to denote that a set of
distinct keys are used. The scripts materially haven’t changed, but the
set of keys expected has.
In this commit, we begin implementing the latest spec change to reduce
the attack surface on online channels. In this commit, we introduce a
distinct HTLC base point which will be used to sign the second-level
HTLC transactions for each active HLTC on the commitment transaction of
the remote node. With this, we allow the commitment key to remain
offline, as it isn’t needed in routine channel updates, unless we need
to go to chain.
This commit removes the use of a purge height from the nursery
store, instead tracking the last graduated height. This serves
to indicate the last height that the nursery store successfully
graduated. It also adds a method for retrieving the set of all active
heights below a particular threshold, e.g. the last graduated height,
allowing the utxo nursery to replay these heights on startup for the
specific purpose of re-registering for confirmations of outputs in the
height index.
This commit addresses an issue that could occur if a
message was attempted added to the sendQueue by the
queueHandler before the writeHandler had started.
If a message was sent to the queueHandler before the
writeHandler was ready to accept messages on the
sendQueue, the message would be added to the
pendingMsg queue, but would not be attempted sent
on the sendQueue again before a new incoming message
triggered a new attempt.
In this commit we ensure that if this is the first time that the
ChannelRouter is starting, then we set the pruned height+hash to the
current best height. Otherwise, it’s possible that we attempt to update
the filter with a 0 prune height, which will restart a historical
rescan unnecessarily.
In this commit we ensure that we only update the filter, if we have a
non-zero chain view. Otherwise, a mini rescan may be kicked off
unnecessarily if we don’t yet know of any channels yet in the greater
graph.
Run go fmt so config file is formatted correctly. Also rename
newVertex to NewVertex in pathfind_test and notifications_test
as it is now exported from the routing package.
Add tests for new deDupedAnnouncements struct in gossiper_test.
Test the various functionalities of the struct - that empty
struct contains no announcements, that announcements of each type
can be added and properly de-duplicated, that the batch of
announcements is delivered correctly, and that after reset the
struct again contains no announcements.
Add option to set trickleDelay for AuthenticatedGossiper in
command line, with default value of 300 milliseconds. Pass this
value to newServer, which uses it when creating a new instance of
AuthenticatedGossiper. Also set this value to 300 milliseconds when
creating nodes in integration tests.
For Part 1 of Issue #275. Create isolated private struct in
networkHandler goroutine that will de-duplicate
announcements added to the batch. The struct contains maps
for each of channel announcements, channel updates, and
node announcements to keep track of unique announcements.
The struct has a Reset method to reset stored announcements, an
AddMsg(lnwire.Message) method to add a new message to the current
batch, and a Batch method to return the set of de-duplicated
announcements.
Also fix a few minor typos.
In the historical dispatch of btcdnotify, the dispatcher checks if a
transaction has been included in a block. If this check happens before
the notifier has processed the update, it's possible that the
currentHeight of the notifier and the currentHeight of the chain might
be out of sync which causes an off by one error when calculating a
target height for the transaction confirmation. This change uses the
height of the block the transaction was found in, rather than the
currentHeight that's known by the notifier to eliminate this.
This race condition can occur if a transaction is included in a block
right when a notification is being added to the notifier for it AND when
the confirmation requires > 1 confirmations. In this case, the
confirmation gets added to the confirmation heap twice.
This test adds a test for a consumer that registers for a transaction
confirmation but takes some time to check if that confirmation has
occured.
The test reveals a race condition that can cause btcdnotify to add a
confirmation entry to its internal heap twice. If the notification
consumer is not prompt in reading from the confirmation channel, this
can cause the notifier to block indefinitely.
There is a sleep after channels are opened to ensure the channel is
removed from the set of pending reservations. We can avoid this sleep
and get better guarantees of the channel being opened by deleting the
reservation just before updating channel state to active instead of
after.
This helps catch issues in the RPC tests faster by putting a timeout
on all SendPayment requests. Otherwise, if a payment stalled, the test
would run until the test suite timeout, 10 minutes. Also simplifies
some code with a helper function and using SendPaymentSync where
possible.
There is an issue currently where if an error occurs in Start() before
the LightningClient is initialized, the process won't be killed and
the program will segfault (because Stop() tries to call a method on
the nil LightningClient). This handles some of those edge cases.
If an lnd node encounters a fatal process errors, we now log the error
asynchronously, instead of calling Fatalf on the test instance. This
is because calling Fatalf in a separate goroutine does not actually
end the test immediately as expected, but rather just kills the
goroutine. This ensures that we see server errors on all nodes before
the test process exits.