lnd.xprv/lnd_test.go

7996 lines
264 KiB
Go
Raw Normal View History

// +build rpctest
package main
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"path/filepath"
"strings"
"testing"
"time"
"sync/atomic"
"encoding/hex"
"reflect"
"crypto/rand"
prand "math/rand"
"github.com/btcsuite/btclog"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/integration/rpctest"
"github.com/roasbeef/btcd/rpcclient"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"golang.org/x/net/context"
"google.golang.org/grpc"
)
var (
harnessNetParams = &chaincfg.SimNetParams
)
// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aid in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
t *testing.T
// testCase is populated during test execution and represents the
// current test case.
testCase *testCase
}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
return &harnessTest{t, nil}
}
// Fatalf causes the current active test case to fail with a fatal error. All
// integration tests should mark test failures solely with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
if h.testCase != nil {
h.t.Fatalf("Failed: (%v): exited with error: \n"+
"%v", h.testCase.name, stacktrace)
} else {
h.t.Fatalf("Error outside of test: %v", stacktrace)
}
}
// RunTestCase executes a harness test case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase,
net *lntest.NetworkHarness) {
h.testCase = testCase
defer func() {
h.testCase = nil
}()
defer func() {
if err := recover(); err != nil {
description := errors.Wrap(err, 2).ErrorStack()
h.t.Fatalf("Failed: (%v) panicked with: \n%v",
h.testCase.name, description)
}
}()
testCase.test(net, h)
return
}
func (h *harnessTest) Logf(format string, args ...interface{}) {
h.t.Logf(format, args...)
}
func (h *harnessTest) Log(args ...interface{}) {
h.t.Log(args...)
}
func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
for _, tx := range block.Transactions {
sha := tx.TxHash()
if bytes.Equal(txid[:], sha[:]) {
return
}
}
t.Fatalf("funding tx was not included in block")
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain.
func mineBlocks(t *harnessTest, net *lntest.NetworkHarness, num uint32) []*wire.MsgBlock {
blocks := make([]*wire.MsgBlock, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
}
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, alice, bob *lntest.HarnessNode,
fundingAmt btcutil.Amount, pushAmt btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, fundingAmt,
pushAmt, false)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine 6 blocks, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the first newly mined block. We mine 6 blocks to make sure
// the channel is public, as it will not be announced to the network
// before the funding transaction is 6 blocks deep.
block := mineBlocks(t, net, 6)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
txidHash, err := getChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
if err := net.AssertChannelExists(ctx, bob, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed Lightning node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(ctx context.Context, t *harnessTest,
net *lntest.NetworkHarness, node *lntest.HarnessNode,
fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
txidHash, err := getChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to convert to chainhash: %v", err)
}
chanPointStr := fmt.Sprintf("%v:%v", txid, fundingChanPoint.OutputIndex)
// If we didn't force close the transaction, at this point, the channel
// should now be marked as being in the state of "pending close".
if !force {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := node.PendingChannels(ctx, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
for _, pendingClose := range pendingChanResp.PendingClosingChannels {
if pendingClose.Channel.ChannelPoint == chanPointStr {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as pending close")
}
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, closingTxid)
return closingTxid
}
// numOpenChannelsPending sends an RPC request to a node to get a count of the
// node's channels that are currently in a pending state (with a broadcast, but
// not confirmed funding transaction).
func numOpenChannelsPending(ctxt context.Context, node *lntest.HarnessNode) (int, error) {
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
resp, err := node.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
return 0, err
}
return len(resp.PendingOpenChannels), nil
}
// assertNumOpenChannelsPending asserts that a pair of nodes have the expected
// number of pending channels between them.
func assertNumOpenChannelsPending(ctxt context.Context, t *harnessTest,
alice, bob *lntest.HarnessNode, expected int) {
const nPolls = 10
ticker := time.NewTicker(200 * time.Millisecond)
defer ticker.Stop()
for i := 0; i < nPolls; i++ {
aliceNumChans, err := numOpenChannelsPending(ctxt, alice)
if err != nil {
t.Fatalf("error fetching alice's node (%v) pending channels %v",
alice.NodeID, err)
}
bobNumChans, err := numOpenChannelsPending(ctxt, bob)
if err != nil {
t.Fatalf("error fetching bob's node (%v) pending channels %v",
bob.NodeID, err)
}
isLastIteration := i == nPolls-1
aliceStateCorrect := aliceNumChans == expected
if !aliceStateCorrect && isLastIteration {
t.Fatalf("number of pending channels for alice incorrect. "+
"expected %v, got %v", expected, aliceNumChans)
}
bobStateCorrect := bobNumChans == expected
if !bobStateCorrect && isLastIteration {
t.Fatalf("number of pending channels for bob incorrect. "+
"expected %v, got %v",
expected, bobNumChans)
}
if aliceStateCorrect && bobStateCorrect {
return
}
<-ticker.C
}
}
// assertNumConnections asserts number current connections between two peers.
func assertNumConnections(ctxt context.Context, t *harnessTest,
alice, bob *lntest.HarnessNode, expected int) {
const nPolls = 10
tick := time.NewTicker(300 * time.Millisecond)
defer tick.Stop()
for i := nPolls - 1; i >= 0; i-- {
select {
case <-tick.C:
aNumPeers, err := alice.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch alice's node (%v) list peers %v",
alice.NodeID, err)
}
bNumPeers, err := bob.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch bob's node (%v) list peers %v",
bob.NodeID, err)
}
if len(aNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to alice is incorrect: "+
"expected %v, got %v", expected, len(aNumPeers.Peers))
}
if len(bNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to bob is incorrect: "+
"expected %v, got %v", expected, len(bNumPeers.Peers))
}
// Alice and Bob both have the required number of
// peers, stop polling and return to caller.
return
}
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
//
// TODO(bvu): Refactor when dynamic fee estimation is added.
// TODO(conner) remove code duplication
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(50 * 1000 / 4)
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
// completePaymentRequests sends payments from a lightning node to complete all
// payment requests. If the awaitResponse parameter is true, this function
// does not return until all payments successfully complete without errors.
func completePaymentRequests(ctx context.Context, client lnrpc.LightningClient,
paymentRequests []string, awaitResponse bool) error {
ctx, cancel := context.WithCancel(ctx)
defer cancel()
payStream, err := client.SendPayment(ctx)
if err != nil {
return err
}
for _, payReq := range paymentRequests {
sendReq := &lnrpc.SendRequest{PaymentRequest: payReq}
err := payStream.Send(sendReq)
if err != nil {
return err
}
}
if awaitResponse {
for range paymentRequests {
resp, err := payStream.Recv()
if err != nil {
return err
}
if resp.PaymentError != "" {
return fmt.Errorf("received payment error: %v",
resp.PaymentError)
}
}
} else {
// We are not waiting for feedback in the form of a response, but we
// should still wait long enough for the server to receive and handle
// the send before cancelling the request.
time.Sleep(200 * time.Millisecond)
}
return nil
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(100000)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob with Alice pushing 100k satoshis to Bob's side during
// funding. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// With then channel open, ensure that the amount specified above has
// properly been pushed to Bob.
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get bobs's balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
chanAmt-pushAmt-calcStaticFee(0), aliceBal)
}
if bobBal.Balance != int64(pushAmt) {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
pushAmt, bobBal.Balance)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testUpdateChannelPolicy tests that policy updates made to a channel
// gets propagated to other nodes in the network.
func testUpdateChannelPolicy(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// Launch notification clients for all nodes, such that we can
// get notified when they discover new channels and updates
// in the graph.
aliceUpdates, aQuit := subscribeGraphNotifications(t, ctxb, net.Alice)
defer close(aQuit)
bobUpdates, bQuit := subscribeGraphNotifications(t, ctxb, net.Bob)
defer close(bQuit)
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(100000)
// Create a channel Alice->Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Create Carol and a new channel Bob->Carol.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
carolUpdates, cQuit := subscribeGraphNotifications(t, ctxb, carol)
defer close(cQuit)
if err := net.ConnectNodes(ctxb, carol, net.Bob); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPoint2 := openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint2)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint2)
if err != nil {
t.Fatalf("carol didn't report channel: %v", err)
}
// Update the fees for the channel Alice->Bob, and make sure
// all nodes learn about it.
const feeBase = 1000000
baseFee := int64(1500)
feeRate := int64(12)
timeLockDelta := uint32(66)
req := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
}
req.Scope = &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPoint,
}
_, err = net.Alice.UpdateChannelPolicy(ctxb, req)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
// txStr returns the string representation of the channel's
// funding tx.
txStr := func(chanPoint *lnrpc.ChannelPoint) string {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
return ""
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
return ""
}
cp := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPoint.OutputIndex,
}
return cp.String()
}
// A closure that is used to wait for a channel updates that matches
// the channel policy update done by Alice.
waitForChannelUpdate := func(graphUpdates chan *lnrpc.GraphTopologyUpdate,
chanPoints ...*lnrpc.ChannelPoint) {
// Create a map containing all the channel points we are
// waiting for updates for.
cps := make(map[string]bool)
for _, chanPoint := range chanPoints {
cps[txStr(chanPoint)] = true
}
Loop:
for {
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ChannelUpdates) == 0 {
continue
}
chanUpdate := graphUpdate.ChannelUpdates[0]
fundingTxStr := txStr(chanUpdate.ChanPoint)
if _, ok := cps[fundingTxStr]; !ok {
continue
}
if chanUpdate.AdvertisingNode != net.Alice.PubKeyStr {
continue
}
policy := chanUpdate.RoutingPolicy
if policy.FeeBaseMsat != baseFee {
continue
}
if policy.FeeRateMilliMsat != feeRate*feeBase {
continue
}
if policy.TimeLockDelta != timeLockDelta {
continue
}
// We got a policy update that matched the
// values and channel point of what we
// expected, delete it from the map.
delete(cps, fundingTxStr)
// If we have no more channel points we are
// waiting for, break out of the loop.
if len(cps) == 0 {
break Loop
}
case <-time.After(20 * time.Second):
t.Fatalf("did not receive channel update")
}
}
}
// Wait for all nodes to have seen the policy update done by Alice.
waitForChannelUpdate(aliceUpdates, chanPoint)
waitForChannelUpdate(bobUpdates, chanPoint)
waitForChannelUpdate(carolUpdates, chanPoint)
// assertChannelPolicy asserts that the passed node's known channel
// policy for the passed chanPoint is consistent with Alice's current
// expected policy values.
assertChannelPolicy := func(node *lntest.HarnessNode,
chanPoint *lnrpc.ChannelPoint) {
// Get a DescribeGraph from the node.
descReq := &lnrpc.ChannelGraphRequest{}
chanGraph, err := node.DescribeGraph(ctxb, descReq)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v",
err)
}
edgeFound := false
for _, e := range chanGraph.Edges {
if e.ChanPoint == txStr(chanPoint) {
edgeFound = true
if e.Node1Pub == net.Alice.PubKeyStr {
if e.Node1Policy.FeeBaseMsat != baseFee {
t.Fatalf("expected base fee "+
"%v, got %v", baseFee,
e.Node1Policy.FeeBaseMsat)
}
if e.Node1Policy.FeeRateMilliMsat != feeRate*feeBase {
t.Fatalf("expected fee rate "+
"%v, got %v", feeRate*feeBase,
e.Node1Policy.FeeRateMilliMsat)
}
if e.Node1Policy.TimeLockDelta != timeLockDelta {
t.Fatalf("expected time lock "+
"delta %v, got %v",
timeLockDelta,
e.Node1Policy.TimeLockDelta)
}
} else {
if e.Node2Policy.FeeBaseMsat != baseFee {
t.Fatalf("expected base fee "+
"%v, got %v", baseFee,
e.Node2Policy.FeeBaseMsat)
}
if e.Node2Policy.FeeRateMilliMsat != feeRate*feeBase {
t.Fatalf("expected fee rate "+
"%v, got %v", feeRate*feeBase,
e.Node2Policy.FeeRateMilliMsat)
}
if e.Node2Policy.TimeLockDelta != timeLockDelta {
t.Fatalf("expected time lock "+
"delta %v, got %v",
timeLockDelta,
e.Node2Policy.TimeLockDelta)
}
}
}
}
if !edgeFound {
t.Fatalf("did not find edge")
}
}
// Check that all nodes now know about Alice's updated policy.
assertChannelPolicy(net.Alice, chanPoint)
assertChannelPolicy(net.Bob, chanPoint)
assertChannelPolicy(carol, chanPoint)
// Open channel to Carol.
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPoint3 := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint3)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint3)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Make a global update, and check that both channels'
// new policies get propagated.
baseFee = int64(800)
feeRate = int64(123)
timeLockDelta = uint32(22)
req = &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
}
req.Scope = &lnrpc.PolicyUpdateRequest_Global{}
_, err = net.Alice.UpdateChannelPolicy(ctxb, req)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
// Wait for all nodes to have seen the policy updates
// for both of Alice's channels.
waitForChannelUpdate(aliceUpdates, chanPoint, chanPoint3)
waitForChannelUpdate(bobUpdates, chanPoint, chanPoint3)
waitForChannelUpdate(carolUpdates, chanPoint, chanPoint3)
// And finally check that all nodes remembers the policy
// update they received.
assertChannelPolicy(net.Alice, chanPoint)
assertChannelPolicy(net.Bob, chanPoint)
assertChannelPolicy(carol, chanPoint)
assertChannelPolicy(net.Alice, chanPoint3)
assertChannelPolicy(net.Bob, chanPoint3)
assertChannelPolicy(carol, chanPoint3)
// Close the channels.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint2, false)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint3, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testOpenChannelAfterReorg tests that in the case where we have an open
// channel where the funding tx gets reorged out, the channel will no
// longer be present in the node's routing table.
func testOpenChannelAfterReorg(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// Set up a new miner that we can use to cause a reorg.
args := []string{"--rejectnonstd"}
miner, err := rpctest.New(harnessNetParams,
&rpcclient.NotificationHandlers{}, args)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
if err := miner.SetUp(true, 50); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer miner.TearDown()
if err := miner.Node.NotifyNewTransactions(false); err != nil {
t.Fatalf("unable to request transaction notifications: %v", err)
}
// We start by connecting the new miner to our original miner,
// such that it will sync to our original chain.
if err := rpctest.ConnectNode(net.Miner, miner); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
nodeSlice := []*rpctest.Harness{net.Miner, miner}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// The two should be on the same blockheight.
_, newNodeHeight, err := miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, orgNodeHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if newNodeHeight != orgNodeHeight {
t.Fatalf("expected new miner(%d) and original miner(%d) to "+
"be on the same height", newNodeHeight, orgNodeHeight)
}
// We disconnect the two nodes, such that we can start mining on them
// individually without the other one learning about the new blocks.
err = net.Miner.Node.AddNode(miner.P2PAddress(), rpcclient.ANRemove)
if err != nil {
t.Fatalf("unable to remove node: %v", err)
}
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(0)
ctxt, _ := context.WithTimeout(ctxb, timeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed, and the channel should be pending.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// We now cause a fork, by letting our original miner mine 10 blocks,
// and our new miner mine 15. This will also confirm our pending
// channel, which should be considered open.
block := mineBlocks(t, net, 10)[0]
assertTxInBlock(t, block, fundingTxID)
miner.Node.Generate(15)
// Ensure the chain lengths are what we expect.
_, newNodeHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, orgNodeHeight, err = net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if newNodeHeight != orgNodeHeight+5 {
t.Fatalf("expected new miner(%d) to be 5 blocks ahead of "+
"original miner(%d)", newNodeHeight, orgNodeHeight)
}
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
// Ensure channel is no longer pending.
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// Wait for Alice and Bob to recognize and advertise the new channel
// generated above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// Alice should now have 1 edge in her graph.
req := &lnrpc.ChannelGraphRequest{}
chanGraph, err := net.Alice.DescribeGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
numEdges := len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find one edge in the graph, found %d",
numEdges)
}
// Connecting the two miners should now cause our original one to sync
// to the new, and longer chain.
if err := rpctest.ConnectNode(net.Miner, miner); err != nil {
t.Fatalf("unable to connect harnesses: %v", err)
}
if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
t.Fatalf("unable to join node on blocks: %v", err)
}
// Once again they should be on the same chain.
_, newNodeHeight, err = miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
_, orgNodeHeight, err = net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
if newNodeHeight != orgNodeHeight {
t.Fatalf("expected new miner(%d) and original miner(%d) to "+
"be on the same height", newNodeHeight, orgNodeHeight)
}
time.Sleep(time.Second * 2)
// Since the fundingtx was reorged out, Alice should now have no edges
// in her graph.
req = &lnrpc.ChannelGraphRequest{}
chanGraph, err = net.Alice.DescribeGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
numEdges = len(chanGraph.Edges)
if numEdges != 0 {
t.Fatalf("expected to find no edge in the graph, found %d",
numEdges)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testDisconnectingTargetPeer performs a test which
// disconnects Alice-peer from Bob-peer and then re-connects them again
func testDisconnectingTargetPeer(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
ctxt, _ := context.WithTimeout(ctxb, timeout)
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 1
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have
// been broadcast, but not confirmed. Alice and Bob's nodes
// should reflect this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Disconnect Alice-peer from Bob-peer and get error
// causes by one pending channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one pending channel is existing: err %v", err)
}
time.Sleep(time.Millisecond * 300)
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, numConfs)[0]
assertTxInBlock(t, block, fundingTxID)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Millisecond * 300)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
// Disconnect Alice-peer from Bob-peer and get error
// causes by one active channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one active channel is existing: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, true)
// Disconnect Alice-peer from Bob-peer without getting error
// about existing channels.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect Bob's peer from Alice's: err %v", err)
}
// Check zero peer connections.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 0)
// Finally, re-connect both nodes.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect Alice's peer to Bob's: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
// Mine enough blocks to clear the force closed outputs from the UTXO
// nursery.
if _, err := net.Miner.Node.Generate(4); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
time.Sleep(300 * time.Millisecond)
}
// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
// As we need to create a channel that requires more than 1
// confirmation before it's open, with the current set of defaults,
// we'll need to create a new node instance.
const numConfs = 5
carolArgs := []string{fmt.Sprintf("--bitcoin.defaultchanconfs=%v", numConfs)}
carol, err := net.NewNode(carolArgs)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Create a new channel that requires 5 confs before it's considered
// open, then broadcast the funding transaction
ctxt, _ = context.WithTimeout(ctxb, timeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, carol,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed. Alice and Bob's nodes should reflect
// this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// The following block ensures that after both nodes have restarted,
// they have reconnected before the execution of the next test.
peersTimeout := time.After(15 * time.Second)
checkPeersTick := time.NewTicker(100 * time.Millisecond)
defer checkPeersTick.Stop()
peersPoll:
for {
select {
case <-peersTimeout:
t.Fatalf("peers unable to reconnect after restart")
case <-checkPeersTick.C:
peers, err := carol.ListPeers(ctxb,
&lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("ListPeers error: %v\n", err)
}
if len(peers.Peers) > 0 {
break peersPoll
}
}
}
// Next, mine enough blocks s.t the channel will open with a single
// additional block mined.
if _, err := net.Miner.Node.Generate(3); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Both nodes should still show a single channel as pending.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Finally, mine the last block which should mark the channel as open.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, carol, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: pendingUpdate.Txid,
},
OutputIndex: pendingUpdate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
// Open a channel with 0.16 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := maxFundingAmount
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient,
amount btcutil.Amount) {
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
chanPoint := openChannelAndAssert(ctx, t, net, net.Alice, net.Bob,
amount, 0)
// Wait for both Alice and Bob to recognize this new channel.
ctxt, _ := context.WithTimeout(context.Background(), timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount-calcStaticFee(0))
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
// findForceClosedChannel searches a pending channel response for a particular
// channel, returning the force closed channel upon success.
func findForceClosedChannel(t *harnessTest,
pendingChanResp *lnrpc.PendingChannelsResponse,
op *wire.OutPoint) *lnrpc.PendingChannelsResponse_ForceClosedChannel {
var found bool
var forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel
for _, forceClose = range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as force closed")
}
return forceClose
}
func assertCommitmentMaturity(t *harnessTest,
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
maturityHeight uint32, blocksTilMaturity int32) {
if forceClose.MaturityHeight != maturityHeight {
t.Fatalf("expected commitment maturity height to be %d, "+
"found %d instead", maturityHeight,
forceClose.MaturityHeight)
}
if forceClose.BlocksTilMaturity != blocksTilMaturity {
t.Fatalf("expected commitment blocks til maturity to be %d, "+
"found %d instead", blocksTilMaturity,
forceClose.BlocksTilMaturity)
}
}
// assertForceClosedChannelNumHtlcs verifies that a force closed channel has the
// proper number of htlcs.
func assertPendingChannelNumHtlcs(t *harnessTest,
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
expectedNumHtlcs int) {
if len(forceClose.PendingHtlcs) != expectedNumHtlcs {
t.Fatalf("expected force closed channel to have %d pending "+
"htlcs, found %d instead", expectedNumHtlcs,
len(forceClose.PendingHtlcs))
}
}
// assertNumForceClosedChannels checks that a pending channel response has the
// expected number of force closed channels.
func assertNumForceClosedChannels(t *harnessTest,
pendingChanResp *lnrpc.PendingChannelsResponse, expectedNumChans int) {
if len(pendingChanResp.PendingForceClosingChannels) != expectedNumChans {
t.Fatalf("expected to find %d force closed channels, got %d",
expectedNumChans,
len(pendingChanResp.PendingForceClosingChannels))
}
}
// assertPendingHtlcStageAndMaturity uniformly tests all pending htlc's
// belonging to a force closed channel, testing for the expected stage number,
// blocks till maturity, and the maturity height.
func assertPendingHtlcStageAndMaturity(t *harnessTest,
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
stage, maturityHeight uint32, blocksTillMaturity int32) {
for _, pendingHtlc := range forceClose.PendingHtlcs {
if pendingHtlc.Stage != stage {
t.Fatalf("expected pending htlc to be stage %d, "+
"found %d", stage, pendingHtlc.Stage)
}
if pendingHtlc.MaturityHeight != maturityHeight {
t.Fatalf("expected pending htlc maturity height to be "+
"%d, instead has %d", maturityHeight,
pendingHtlc.MaturityHeight)
}
if pendingHtlc.BlocksTilMaturity != blocksTillMaturity {
t.Fatalf("expected pending htlc blocks til maturity "+
"to be %d, instead has %d", blocksTillMaturity,
pendingHtlc.BlocksTilMaturity)
}
}
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Carol, then
// force closes the channel after some cursory assertions. Within the test, a
// total of 3 + n transactions will be broadcast, representing the commitment
// transaction, a transaction sweeping the local CSV delayed output, a
// transaction sweeping the CSV delayed 2nd-layer htlcs outputs, and n
// htlc success transactions, where n is the number of payments Alice attempted
// to send to Carol. This test includes several restarts to ensure that the
// transaction output states are persisted throughout the forced closure
// process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = btcutil.Amount(10e6)
pushAmt = btcutil.Amount(5e6)
paymentAmt = 100000
numInvoices = 6
)
// TODO(roasbeef): should check default value in config here
// instead, or make delay a param
defaultCSV := uint32(4)
defaultCLTV := uint32(defaultBitcoinTimeLockDelta)
// Since we'd like to test failure scenarios with outstanding htlcs,
// we'll introduce another node into our test network: Carol.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Alice have an open channel before she can send a node
// announcement, so we open a channel with Carol,
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Before we start, obtain Carol's current wallet balance, we'll check
// to ensure that at the end of the force closure by Alice, Carol
// recognizes his new on-chain output.
carolBalReq := &lnrpc.WalletBalanceRequest{}
carolBalResp, err := carol.WalletBalance(ctxb, carolBalReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolStartingBalance := btcutil.Amount(carolBalResp.ConfirmedBalance * 1e8)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, pushAmt)
// Wait for Alice and Carol to receive the channel edge from the
// funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Send payments from Alice to Carol, since Carol is htlchodl mode, the
// htlc outputs should be left unsettled, and should be swept by the
// utxo nursery.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
carolPubKey := carol.PubKey[:]
payHash := bytes.Repeat([]byte{2}, 32)
for i := 0; i < numInvoices; i++ {
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(paymentAmt),
PaymentHash: payHash,
FinalCltvDelta: defaultBitcoinTimeLockDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
}
// Once the HTLC has cleared, all the nodes n our mini network should
// show that the HTLC has been locked in.
nodes := []*lntest.HarnessNode{net.Alice, carol}
err = lntest.WaitPredicate(func() bool {
return assertNumActiveHtlcs(nodes, numInvoices)
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// As we'll be querying the state of Carol's channels frequently we'll
// create a closure helper function for the purpose.
getAliceChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
aliceChannelInfo, err := net.Alice.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(aliceChannelInfo.Channels) != 1 {
t.Fatalf("alice should only have a single channel, "+
"instead he has %v",
len(aliceChannelInfo.Channels))
}
return aliceChannelInfo.Channels[0], nil
}
// Fetch starting height of this test so we can compute the block
// heights we expect certain events to take place.
_, curHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get best block height")
}
// Using the current height of the chain, derive the relevant heights
// for incubating two-stage htlcs.
var (
startHeight = uint32(curHeight)
commCsvMaturityHeight = startHeight + 1 + defaultCSV
htlcExpiryHeight = startHeight + defaultCLTV
htlcCsvMaturityHeight = startHeight + defaultCLTV + 1 + defaultCSV
)
time.Sleep(200 * time.Millisecond)
aliceChan, err := getAliceChanInfo()
if err != nil {
t.Fatalf("unable to get alice's channel info: %v", err)
}
if aliceChan.NumUpdates == 0 {
t.Fatalf("alice should see at least one update to her channel")
}
// Now that the channel is open and we have unsettled htlcs, immediately
// execute a force closure of the channel. This will also assert that
// the commitment transaction was immediately broadcast in order to
// fulfill the force closure request.
_, closingTxID, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the force close section.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
// Compute the outpoint of the channel, which we will use repeatedly to
// locate the pending channel information in the rpc responses.
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
op := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
forceClose := findForceClosedChannel(t, pendingChanResp, &op)
// Immediately after force closing, all of the funds should be in limbo,
// and the pending channels response should not indicate that any funds
// have been recovered.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// The commitment transaction has not been confirmed, so we expect to
// see a maturity height and blocks til maturity of 0.
assertCommitmentMaturity(t, forceClose, 0, 0)
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
// the channel in the closure process and will recover the correct state
// when the system comes back on line. This restart tests state
// persistence at the beginning of the process, when the commitment
// transaction has been broadcast but not yet confirmed in a block.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// The following sleep provides time for the UTXO nursery to move the
// output from the preschool to the kindergarten database buckets
// prior to RestartNode() being triggered. Without this sleep, the
// database update may fail, causing the UTXO nursery to retry the move
// operation upon restart. This will change the blockheights from what
// is expected by the test.
// TODO(bvu): refactor out this sleep.
duration := time.Millisecond * 300
time.Sleep(duration)
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// Now that the channel has been force closed, it should now have the
// height and number of blocks to confirm populated.
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight,
int32(defaultCSV))
// None of our outputs have been swept, so they should all be limbo.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// The following restart is intended to ensure that outputs from the
// force close commitment transaction have been persisted once the
// transaction has been confirmed, but before the outputs are spendable
// (the "kindergarten" bucket.)
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// For the persistence test, we generate three blocks, then trigger
// a restart and then generate the final block that should trigger
// the creation of the sweep transaction.
if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// The following restart checks to ensure that outputs in the
// kindergarten bucket are persisted while waiting for the required
// number of confirmations to be reported.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// At this point, the nursery should show that the commitment output has
// 1 block left before its CSV delay expires. In total, we have mined
// exactly defaultCSV blocks, so the htlc outputs should also reflect
// that this many blocks have passed.
assertCommitmentMaturity(t, forceClose, commCsvMaturityHeight, 1)
// All funds should still be shown in limbo.
if forceClose.LimboBalance == 0 {
t.Fatalf("all funds should still be in limbo")
}
if forceClose.RecoveredBalance != 0 {
t.Fatalf("no funds should yet be shown as recovered")
}
// Generate an additional block, which should cause the CSV delayed
// output from the commitment txn to expire.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
sweepingTXID, err := waitForTxInMempool(net.Miner.Node, 3*time.Second)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Restart Alice to ensure that she resumes watching the finalized
// commitment sweep txid.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Next, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(t, block, sweepTx.Hash())
// We sleep here to ensure that Alice has enough time to receive a
// confirmation for the commitment transaction, which we already
// asserted was in the last block.
time.Sleep(300 * time.Millisecond)
// Now that the commit output has been fully swept, check to see that
// the channel remains open for the pending htlc outputs.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
// The htlc funds will still be shown as limbo, since they are still in
// their first stage. The commitment funds will have been recovered
// after the commit txn was included in the last block.
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
// Compute the height preceding that which will cause the htlc CLTV
// timeouts will expire. The outputs entered at the same height as the
// output spending from the commitment txn, so we must deduct the number
// of blocks we have generated since adding it to the nursery, and take
// an additional block off so that we end up one block shy of the expiry
// height.
cltvHeightDelta := defaultCLTV - defaultCSV - 2 - 1
// Advance the blockchain until just before the CLTV expires, nothing
// exciting should have happened during this time.
blockHash, err = net.Miner.Node.Generate(cltvHeightDelta)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(duration)
// We now restart Alice, to ensure that she will broadcast the presigned
// htlc timeout txns after the delay expires after experiencing an while
// waiting for the htlc outputs to incubate.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
// We should now be at the block just before the utxo nursery will
// attempt to broadcast the htlc timeout transactions.
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 1, htlcExpiryHeight, 1)
// Now that our commitment confirmation depth has been surpassed, we
// should now see a non-zero recovered balance. All htlc outputs are
// still left in limbo, so it should be non-zero as well.
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
// Now, generate the block which will cause Alice to broadcast the
// presigned htlc timeout txns.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Since Alice had numInvoices (6) htlcs extended to Carol before force
// closing, we expect Alice to broadcast an htlc timeout txn for each
// one. Wait for them all to show up in the mempool.
htlcTxIDs, err := waitForNTxsInMempool(net.Miner.Node, numInvoices,
10*time.Second)
if err != nil {
t.Fatalf("unable to find htlc timeout txns in mempool: %v", err)
}
// Retrieve each htlc timeout txn from the mempool, and ensure it is
// well-formed. This entails verifying that each only spends from
// output, and that that output is from the commitment txn.
for _, htlcTxID := range htlcTxIDs {
// Fetch the sweep transaction, all input it's spending should
// be from the commitment transaction which was broadcast
// on-chain.
htlcTx, err := net.Miner.Node.GetRawTransaction(htlcTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc transaction only has one input.
if len(htlcTx.MsgTx().TxIn) != 1 {
t.Fatalf("htlc transaction should only have one txin, "+
"has %d", len(htlcTx.MsgTx().TxIn))
}
// Ensure the htlc transaction is spending from the commitment
// transaction.
txIn := htlcTx.MsgTx().TxIn[0]
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("htlc transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// With the htlc timeout txns still in the mempool, we restart Alice to
// verify that she can resume watching the htlc txns she broadcasted
// before crashing.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
// Generate a block that mines the htlc timeout txns. Doing so now
// activates the 2nd-stage CSV delayed outputs.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// This sleep gives Alice enough to time move the crib outputs into the
// kindergarten bucket.
time.Sleep(duration)
// Alice is restarted here to ensure that she promptly moved the crib
// outputs to the kindergarten bucket after the htlc timeout txns were
// confirmed.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Advance the chain until just before the 2nd-layer CSV delays expire.
blockHash, err = net.Miner.Node.Generate(defaultCSV - 1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Restart Alice to ensure that she can recover from a failure before
// having graduated the htlc outputs in the kindergarten bucket.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
if forceClose.LimboBalance == 0 {
t.Fatalf("htlc funds should still be in limbo")
}
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
// Generate a block that causes Alice to sweep the htlc outputs in the
// kindergarten bucket.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Wait for the single sweep txn to appear in the mempool.
htlcSweepTxID, err := waitForTxInMempool(net.Miner.Node, 15*time.Second)
if err != nil {
t.Fatalf("failed to get sweep tx from mempool: %v", err)
}
// Construct a map of the already confirmed htlc timeout txids, that
// will count the number of times each is spent by the sweep txn. We
// prepopulate it in this way so that we can later detect if we are
// spending from an output that was not a confirmed htlc timeout txn.
var htlcTxIDSet = make(map[chainhash.Hash]int)
for _, htlcTxID := range htlcTxIDs {
htlcTxIDSet[*htlcTxID] = 0
}
// Fetch the htlc sweep transaction from the mempool.
htlcSweepTx, err := net.Miner.Node.GetRawTransaction(htlcSweepTxID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
// Ensure the htlc sweep transaction only has one input for each htlc
// Alice extended before force closing.
if len(htlcSweepTx.MsgTx().TxIn) != numInvoices {
t.Fatalf("htlc transaction should have %d txin, "+
"has %d", numInvoices, len(htlcSweepTx.MsgTx().TxIn))
}
// Ensure that each output spends from exactly one htlc timeout txn.
for _, txIn := range htlcSweepTx.MsgTx().TxIn {
outpoint := txIn.PreviousOutPoint.Hash
// Check that the input is a confirmed htlc timeout txn.
if _, ok := htlcTxIDSet[outpoint]; !ok {
t.Fatalf("htlc sweep output not spending from htlc "+
"tx, instead spending output %v", outpoint)
}
// Increment our count for how many times this output was spent.
htlcTxIDSet[outpoint]++
// Check that each is only spent once.
if htlcTxIDSet[outpoint] > 1 {
t.Fatalf("htlc sweep tx has multiple spends from "+
"outpoint %v", outpoint)
}
}
// The following restart checks to ensure that the nursery store is
// storing the txid of the previously broadcast htlc sweep txn, and that
// it begins watching that txid after restarting.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(duration)
// Now that the channel has been fully swept, it should no longer show
// incubated, check to see that Alice's node still reports the channel
// as pending force closed.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 1)
// All htlcs should show zero blocks until maturity, as evidenced by
// having checked the sweep transaction in the mempool.
forceClose = findForceClosedChannel(t, pendingChanResp, &op)
assertPendingChannelNumHtlcs(t, forceClose, numInvoices)
assertPendingHtlcStageAndMaturity(t, forceClose, 2,
htlcCsvMaturityHeight, 0)
// Generate the final block that sweeps all htlc funds into the user's
// wallet.
blockHash, err = net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(3 * duration)
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
pendingChanResp, err = net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
assertNumForceClosedChannels(t, pendingChanResp, 0)
// In addition to there being no pending channels, we verify that
// pending channels does not report any money still in limbo.
if pendingChanResp.TotalLimboBalance != 0 {
t.Fatalf("no user funds should be left in limbo after incubation")
}
// At this point, Carol should now be aware of his new immediately
// spendable on-chain balance, as it was Alice who broadcast the
// commitment transaction.
carolBalResp, err = net.Bob.WalletBalance(ctxb, carolBalReq)
if err != nil {
t.Fatalf("unable to get carol's balance: %v", err)
}
carolExpectedBalance := carolStartingBalance + pushAmt
if btcutil.Amount(carolBalResp.ConfirmedBalance*1e8) < carolExpectedBalance {
t.Fatalf("carol's balance is incorrect: expected %v got %v",
carolExpectedBalance,
btcutil.Amount(carolBalResp.ConfirmedBalance*1e8))
}
}
// testSphinxReplayPersistence verifies that replayed onion packets are rejected
// by a remote peer after a restart. We use a combination of unsafe
// configuration arguments to force Carol to replay the same sphinx packet after
// reconnecting to Dave, and compare the returned failure message with what we
// expect for replayed onion packets.
func testSphinxReplayPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Carol and Dave with Carol being
// the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
// First, we'll create Dave, the receiver, and start him in hodl mode.
dave, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in both unsafe-replay and unsafe-disconnect,
// which will cause her to replay any pending Adds held in memory upon
// reconnection.
carol, err := net.NewNode([]string{"--unsafe-replay"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, 0)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
carolListChannels, err := carol.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
carolSatoshisSent := carolListChannels.Channels[0].TotalSatoshisSent
if carolSatoshisSent != int64(amt) {
t.Fatalf("Carol's satoshis sent is incorrect got %v, expected %v",
carolSatoshisSent, amt)
}
daveListChannels, err := dave.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for Dave's channel list: %v", err)
}
daveSatoshisReceived := daveListChannels.Channels[0].TotalSatoshisReceived
if daveSatoshisReceived != int64(amt) {
t.Fatalf("Dave's satoshis received is incorrect got %v, expected %v",
daveSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Dave which
// expects a payment of 1000 satoshis from Carol paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := dave.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Carol to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Dave added, send a payment from Carol paying
// to the above generated invoice.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
payStream, err := carol.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to open payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{PaymentRequest: invoiceResp.PaymentRequest}
err = payStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Dave's invoice should not be marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := dave.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if dbInvoice.Settled {
t.Fatalf("dave's invoice should not be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment sent but hedl, all balance related stats should not
// have changed.
time.Sleep(time.Millisecond * 200)
assertAmountSent(0)
// With the first payment sent, restart dave to make sure he is
// persisting the information required to detect replayed sphinx
// packets.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
// Carol should retransmit the Add hedl in her mailbox on startup. Dave
// should not accept the replayed Add, and actually fail back the
// pending payment. Even though he still holds the original settle, if
// he does fail, it is almost certainly caused by the sphinx replay
// protection, as it is the only validation we do in hodl mode.
resp, err := payStream.Recv()
if err != nil {
t.Fatalf("unable to receive payment response: %v", err)
}
// Construct the response we expect after sending a duplicate packet
// that fails due to sphinx replay detection.
replayErr := fmt.Sprintf("unable to route payment to destination: "+
"TemporaryChannelFailure: unable to de-obfuscate onion failure, "+
"htlc with hash(%x): unable to retrieve onion failure",
invoiceResp.RHash)
if resp.PaymentError != replayErr {
t.Fatalf("received payment error: %v", resp.PaymentError)
}
// Since the payment failed, the balance should still be left unaltered.
assertAmountSent(0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPoint, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testSingleHopInvoice(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice being
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
aliceListChannels, err := net.Alice.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
if aliceSatoshisSent != int64(amt) {
t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
aliceSatoshisSent, amt)
}
bobListChannels, err := net.Bob.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for bob's channel list: %v", err)
}
bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
if bobSatoshisReceived != int64(amt) {
t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
bobSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Ensure we obtain the proper preimage in the response.
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
} else if !bytes.Equal(preimage, resp.PaymentPreimage) {
t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
resp.GetPaymentPreimage())
}
// Bob's invoice should now be found and marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment completed all balance related stats should be
// properly updated.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt)
// Create another invoice for Bob, this time leaving off the preimage
// to one will be randomly generated. We'll test the proper
// encoding/decoding of the zpay32 payment requests.
invoice = &lnrpc.Invoice{
Memo: "test3",
Value: paymentAmt,
}
invoiceResp, err = net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Next send another payment, but this time using a zpay32 encoded
// invoice rather than manually specifying the payment details.
sendReq = &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
// The second payment should also have succeeded, with the balances
// being update accordingly.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt * 2)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testListPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// First start by deleting all payments that Alice knows of. This will
// allow us to execute the test with a clean state for Alice.
delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
if _, err := net.Alice.DeleteAllPayments(ctxb, delPaymentsReq); err != nil {
t.Fatalf("unable to delete payments: %v", err)
}
// Check that there are no payments before test.
reqInit := &lnrpc.ListPaymentsRequest{}
paymentsRespInit, err := net.Alice.ListPayments(ctxb, reqInit)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsRespInit.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("B"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
addInvoiceCtxt, _ := context.WithTimeout(ctxb, timeout)
invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
// Grab Alice's list of payments, she should show the existence of
// exactly one payment.
req := &lnrpc.ListPaymentsRequest{}
paymentsResp, err := net.Alice.ListPayments(ctxb, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 1 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), 1)
}
p := paymentsResp.Payments[0]
// Ensure that the stored path shows a direct payment to Bob with no
// other nodes in-between.
expectedPath := []string{
net.Bob.PubKeyStr,
}
if !reflect.DeepEqual(p.Path, expectedPath) {
t.Fatalf("incorrect path, got %v, want %v",
p.Path, expectedPath)
}
// The payment amount should also match our previous payment directly.
if p.Value != paymentAmt {
t.Fatalf("incorrect amount, got %v, want %v",
p.Value, paymentAmt)
}
// The payment hash (or r-hash) should have been stored correctly.
correctRHash := hex.EncodeToString(invoiceResp.RHash)
if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
t.Fatalf("incorrect RHash, got %v, want %v",
p.PaymentHash, correctRHash)
}
// Finally, as we made a single-hop direct payment, there should have
// been no fee applied.
if p.Fee != 0 {
t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
}
// Delete all payments from Alice. DB should have no payments.
delReq := &lnrpc.DeleteAllPaymentsRequest{}
_, err = net.Alice.DeleteAllPayments(ctxb, delReq)
if err != nil {
t.Fatalf("Can't delete payments at the end: %v", err)
}
// Check that there are no payments before test.
listReq := &lnrpc.ListPaymentsRequest{}
paymentsResp, err = net.Alice.ListPayments(ctxb, listReq)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// assertAmountPaid checks that the ListChannels command of the provided
// node list the total amount sent and received as expected for the
// provided channel.
func assertAmountPaid(t *harnessTest, ctxb context.Context, channelName string,
node *lntest.HarnessNode, chanPoint wire.OutPoint, amountSent,
amountReceived int64) {
checkAmountPaid := func() error {
listReq := &lnrpc.ListChannelsRequest{}
resp, err := node.ListChannels(ctxb, listReq)
if err != nil {
return fmt.Errorf("unable to for node's "+
"channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if channel.TotalSatoshisSent != amountSent {
return fmt.Errorf("%v: incorrect amount"+
" sent: %v != %v", channelName,
channel.TotalSatoshisSent,
amountSent)
}
if channel.TotalSatoshisReceived !=
amountReceived {
return fmt.Errorf("%v: incorrect amount"+
" received: %v != %v",
channelName,
channel.TotalSatoshisReceived,
amountReceived)
}
return nil
}
return fmt.Errorf("channel not found")
}
// As far as HTLC inclusion in commitment transaction might be
// postponed we will try to check the balance couple of times,
// and then if after some period of time we receive wrong
// balance return the error.
// TODO(roasbeef): remove sleep after invoice notification hooks
// are in place
var timeover uint32
go func() {
<-time.After(time.Second * 20)
atomic.StoreUint32(&timeover, 1)
}()
for {
isTimeover := atomic.LoadUint32(&timeover) == 1
if err := checkAmountPaid(); err != nil {
if isTimeover {
t.Fatalf("Check amount Paid failed: %v", err)
}
} else {
break
}
}
}
func testMultiHopPayments(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, 0)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, 0)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, 0)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, carol, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->David->Alice->Bob, order is Bob,
// Alice, David, Carol.
const amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Dave(local) => Alice(remote)", dave,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Carol(local) => Dave(remote)", carol,
carolFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Now that we know all the balances have been settled out properly,
// we'll ensure that our internal record keeping for completed circuits
// was properly updated.
// First, check that the FeeReport response shows the proper fees
// accrued over each time range. Dave should've earned 1 satoshi for
// each of the forwarded payments.
feeReport, err := dave.FeeReport(ctxb, &lnrpc.FeeReportRequest{})
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
const exectedFees = 5
if feeReport.DayFeeSum != exectedFees {
t.Fatalf("fee mismatch: expected %v, got %v", 5,
feeReport.DayFeeSum)
}
if feeReport.WeekFeeSum != exectedFees {
t.Fatalf("fee mismatch: expected %v, got %v", 5,
feeReport.WeekFeeSum)
}
if feeReport.MonthFeeSum != exectedFees {
t.Fatalf("fee mismatch: expected %v, got %v", 5,
feeReport.MonthFeeSum)
}
// Next, ensure that if we issue the vanilla query for the forwarding
// history, it returns 5 values, and each entry is formatted properly.
fwdingHistory, err := dave.ForwardingHistory(
ctxb, &lnrpc.ForwardingHistoryRequest{},
)
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
if len(fwdingHistory.ForwardingEvents) != 5 {
t.Fatalf("wrong number of forwarding event: expected %v, "+
"got %v", 5, len(fwdingHistory.ForwardingEvents))
}
for _, event := range fwdingHistory.ForwardingEvents {
// Each event should show a fee of 1 satoshi.
if event.Fee != 1 {
t.Fatalf("fee mismatch: expected %v, got %v", 1,
event.Fee)
}
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the
// tests, only leaving the two seed nodes (Alice and Bob) within our
// test network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testPrivateChannels tests that a private channel can be used for
// routing by the two endpoints of the channel, but is not known by
// the rest of the nodes in the graph.
func testPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
var networkChans []*lnrpc.ChannelPoint
// We create the the following topology:
//
// Dave --100k--> Alice --200k--> Bob
// ^ ^
// | |
// 100k 100k
// | |
// +---- Carol ----+
//
// where the 100k channel between Carol and Alice is private.
2016-10-30 17:55:25 +03:00
// Open a channel with 200k satoshis between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt*2, 0)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create Dave, and a channel to Alice of 100k.
dave, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, 0)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel from her to
// Dave of 100k.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, 0)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all these channels, as they
// are all public.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
2016-10-30 17:55:25 +03:00
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
2016-10-30 17:55:25 +03:00
}
}
}
// Now create a _private_ channel directly between Carol and
// Alice of 100k.
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
chanOpenUpdate, err := net.OpenChannel(ctxb, carol, net.Alice, chanAmt,
0, true)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
2016-10-30 17:55:25 +03:00
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
block := mineBlocks(t, net, 1)[0]
chanPointPrivate, err := net.WaitForChannelOpen(ctxb, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
txidHash, err = getChanPointFundingTxid(chanPointPrivate)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
privateFundPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: chanPointPrivate.OutputIndex,
}
err = net.AssertChannelExists(ctxb, carol, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
err = net.AssertChannelExists(ctxb, net.Alice, &privateFundPoint)
if err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// The channel should be available for payments between Carol and Alice.
// We check this by sending payments from Carol to Bob, that
// collectively would deplete at least one of Carol's channels.
// Create 2 invoices for Bob, each of 70k satoshis. Since each of
// Carol's channels is of size 100k, these payments cannot succeed
// by only using one of the channels.
const numPayments = 2
const paymentAmt = 70000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
2016-10-30 17:55:25 +03:00
}
payReqs[i] = resp.PaymentRequest
}
2016-10-30 17:55:25 +03:00
time.Sleep(time.Millisecond * 50)
// Let Carol pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, carol, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// Bob should have received 140k satoshis from Alice.
assertAmountPaid(t, ctxb, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), 2*paymentAmt)
// Alice sent 140k to Bob.
assertAmountPaid(t, ctxb, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, 2*paymentAmt, int64(0))
// Alice received 70k + fee from Dave.
assertAmountPaid(t, ctxb, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), paymentAmt+baseFee)
// Dave sent 70k+fee to Alice.
assertAmountPaid(t, ctxb, "Dave(local) => Alice(remote)", dave,
daveFundPoint, paymentAmt+baseFee, int64(0))
// Dave received 70k+fee of two hops from Carol.
assertAmountPaid(t, ctxb, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), paymentAmt+baseFee*2)
// Carol sent 70k+fee of two hops to Dave.
assertAmountPaid(t, ctxb, "Carol(local) => Dave(remote)", carol,
carolFundPoint, paymentAmt+baseFee*2, int64(0))
// Alice received 70k+fee from Carol.
assertAmountPaid(t, ctxb, "Carol(local) [private=>] Alice(remote)",
net.Alice, privateFundPoint, int64(0), paymentAmt+baseFee)
// Carol sent 70k+fee to Alice.
assertAmountPaid(t, ctxb, "Carol(local) [private=>] Alice(remote)",
carol, privateFundPoint, paymentAmt+baseFee, int64(0))
// Alice should also be able to route payments using this channel,
// so send two payments of 60k back to Carol.
const paymentAmt60k = 60000
payReqs = make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt60k,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
time.Sleep(time.Millisecond * 50)
// Let Bob pay the invoices.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Alice, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Finally, we make sure Dave and Bob does not know about the
// private channel between Carol and Alice. We first mine
// plenty of blocks, such that the channel would have been
// announced in case it was public.
mineBlocks(t, net, 10)
// We create a helper method to check how many edges each of the
// nodes know about. Carol and Alice should know about 4, while
// Bob and Dave should only know about 3, since one channel is
// private.
numChannels := func(node *lntest.HarnessNode) int {
req := &lnrpc.ChannelGraphRequest{}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanGraph, err := node.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable go describegraph: %v", err)
}
return len(chanGraph.Edges)
}
aliceChans := numChannels(net.Alice)
if aliceChans != 4 {
t.Fatalf("expected Alice to know 4 edges, had %v", aliceChans)
}
bobChans := numChannels(net.Bob)
if bobChans != 3 {
t.Fatalf("expected Bob to know 3 edges, had %v", bobChans)
}
carolChans := numChannels(carol)
if carolChans != 4 {
t.Fatalf("expected Carol to know 4 edges, had %v", carolChans)
}
daveChans := numChannels(dave)
if daveChans != 3 {
t.Fatalf("expected Dave to know 3 edges, had %v", daveChans)
}
// Close all channels.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointPrivate, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(500000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Next create a new invoice for Bob requesting 1k satoshis.
// TODO(roasbeef): make global list of invoices for each node to re-use
// and avoid collisions
const paymentAmt = 1000
preimage := bytes.Repeat([]byte{byte(90)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Create a new invoice subscription client for Bob, the notification
// should be dispatched shortly below.
req := &lnrpc.InvoiceSubscription{}
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
quit := make(chan struct{})
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
select {
case <-quit:
// Received cancellation
return
default:
}
if err != nil {
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled and have SettleDate
if !invoiceUpdate.Settled {
t.Fatalf("invoice not settled but should be")
}
if invoiceUpdate.SettleDate == 0 {
t.Fatalf("invoice should have non zero settle date, but doesn't")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
close(updateSent)
}()
// Wait for the channel to be recognized by both Alice and Bob before
// continuing the rest of the test.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
// TODO(roasbeef): will need to make num blocks to advertise a
// node param
close(quit)
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// With the assertion above set up, send a payment from Alice to Bob
// which should finalize and settle the invoice.
sendReq := &lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
close(quit)
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError != "" {
close(quit)
t.Fatalf("error when attempting recv: %v", resp.PaymentError)
}
select {
case <-time.After(time.Second * 10):
close(quit)
t.Fatalf("update not sent after 10 seconds")
case <-updateSent: // Fall through on success
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBasicChannelCreation test multiple channel opening and closing.
func testBasicChannelCreation(net *lntest.NetworkHarness, t *harnessTest) {
const (
numChannels = 2
timeout = time.Duration(time.Second * 5)
amount = maxFundingAmount
)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctx, _ := context.WithTimeout(context.Background(), timeout)
chanPoints[i] = openChannelAndAssert(ctx, t, net, net.Alice,
net.Bob, amount, 0)
}
// Close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctx, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *lntest.NetworkHarness, t *harnessTest) {
maxPendingChannels := defaultMaxPendingChannels + 1
amount := maxFundingAmount
timeout := time.Duration(time.Second * 10)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode(args)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't open
// the channel if the number of pending channels exceed max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctx, _ = context.WithTimeout(context.Background(), timeout)
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount,
0, false)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctx, _ = context.WithTimeout(context.Background(), timeout)
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 0, false)
if err == nil {
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
t.Fatalf("not expected error was received: %v", err)
}
// For now our channels are in pending state, in order to not interfere
// with other tests we should clean up - complete opening of the
// channel and then close it.
// Mine 6 blocks, then wait for node's to notify us that the channel has
// been opened. The funding transactions should be found within the
// first newly mined block. 6 blocks make sure the funding transaction
// has enough confirmations to be announced publicly.
block := mineBlocks(t, net, 6)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
txidHash, err := getChanPointFundingTxid(fundingChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
// Ensure that the funding transaction enters a block, and is
// properly advertised by Alice.
assertTxInBlock(t, block, fundingTxID)
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, fundingChanPoint)
if err != nil {
t.Fatalf("channel not seen on network before "+
"timeout: %v", err)
}
// The channel should be listed in the peer information
// returned by both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
}
// Next, close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// Finally, shutdown the node we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
func copyFile(dest, src string) error {
s, err := os.Open(src)
if err != nil {
return err
}
defer s.Close()
d, err := os.Create(dest)
if err != nil {
return err
}
if _, err := io.Copy(d, s); err != nil {
d.Close()
return err
}
return d.Close()
}
func waitForTxInMempool(miner *rpcclient.Client,
timeout time.Duration) (*chainhash.Hash, error) {
var txid *chainhash.Hash
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
poll:
for {
select {
case <-breakTimeout:
return nil, errors.New("no tx found in mempool")
case <-ticker.C:
mempool, err := miner.GetRawMempool()
if err != nil {
return nil, err
}
if len(mempool) == 0 {
continue
}
txid = mempool[0]
break poll
}
}
return txid, nil
}
// waitForNTxsInMempool polls until finding the desired number of transactions
// in the provided miner's mempool. An error is returned if the this number is
// not met after the given timeout.
func waitForNTxsInMempool(miner *rpcclient.Client, n int,
timeout time.Duration) ([]*chainhash.Hash, error) {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
var err error
var mempool []*chainhash.Hash
for {
select {
case <-breakTimeout:
return nil, fmt.Errorf("wanted %v, only found %v txs "+
"in mempool", n, len(mempool))
case <-ticker.C:
mempool, err = miner.GetRawMempool()
if err != nil {
return nil, err
}
if len(mempool) == n {
return mempool, nil
}
}
}
}
// testRevokedCloseRetribution tests that Alice is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = maxFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// In order to test Alice's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// With the channel open, we'll create a few invoices for Bob that
// Alice will pay to in order to advance the state of the channel.
bobPayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(255 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPayReqs[i] = resp.PaymentRequest
}
// As we'll be querying the state of bob's channels frequently we'll
// create a closure helper function for the purpose.
getBobChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
bobChannelInfo, err := net.Bob.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(bobChannelInfo.Channels) != 1 {
t.Fatalf("bob should only have a single channel, instead he has %v",
len(bobChannelInfo.Channels))
}
return bobChannelInfo.Channels[0], nil
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Send payments from Alice to Bob using 3 of Bob's payment hashes
// generated above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Alice, bobPayReqs[:numInvoices/2],
true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
var bobChan *lnrpc.ActiveChannel
var predErr error
err = lntest.WaitPredicate(func() bool {
bChan, err := getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bChan.LocalBalance != 30000 {
predErr = fmt.Errorf("bob's balance is incorrect, "+
"got %v, expected %v", bChan.LocalBalance,
30000)
return false
}
bobChan = bChan
return true
}, time.Second*15)
if err != nil {
t.Fatalf("%v", predErr)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// Create a temporary file to house Bob's database state at this
// particular point in history.
bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
defer os.Remove(bobTempDbPath)
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := copyFile(bobTempDbFile, net.Bob.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Bob, consuming Bob's remaining
// payment hashes.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Alice, bobPayReqs[numInvoices/2:],
true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return os.Rename(bobTempDbFile, net.Bob.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Alice's retribution.
force := true
closeUpdates, _, err := net.CloseChannel(ctxb, net.Bob, chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Wait for Bob's breach transaction to show up in the mempool to ensure
// that Alice's node has started waiting for confirmations.
_, err = waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
}
// Here, Alice sees Bob's breach transaction in the mempool, but is waiting
// for it to confirm before continuing her retribution. We restart Alice to
// ensure that she is persisting her retribution state and continues
// watching for the breach transaction to confirm even after her node
// restarts.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
breachTXID, err := net.WaitForChannelClose(ctxb, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Alice here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Alice has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Alice restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, ctxb, net.Alice, 0)
}
// testRevokedCloseRetributionZeroValueRemoteOutput tests that Alice is able
// carry out retribution in the event that she fails in state where the remote
// commitment output has zero-value.
func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = maxFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Alice have an open channel before she can send a node
// announcement, so we open a channel with Carol,
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// In order to test Alice's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, 0)
// With the channel open, we'll create a few invoices for Carol that
// Alice will pay to in order to advance the state of the channel.
carolPayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(192 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
carolPayReqs[i] = resp.PaymentRequest
}
// As we'll be querying the state of Carols's channels frequently we'll
// create a closure helper function for the purpose.
getCarolChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
carolChannelInfo, err := carol.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(carolChannelInfo.Channels) != 1 {
t.Fatalf("carol should only have a single channel, "+
"instead he has %v", len(carolChannelInfo.Channels))
}
return carolChannelInfo.Channels[0], nil
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Next query for Carol's channel state, as we sent 0 payments, Carol
// should now see her balance as being 0 satoshis.
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != 0 {
t.Fatalf("carol's balance is incorrect, got %v, expected %v",
carolChan.LocalBalance, 0)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force him to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := copyFile(carolTempDbFile, carol.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Carol, consuming Carol's remaining
// payment hashes.
err = completePaymentRequests(ctxb, net.Alice, carolPayReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
carolChan, err = getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
// Now we shutdown Carol, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carol.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Carol's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
carolChan, err = getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Alice's retribution.
force := true
closeUpdates, _, err := net.CloseChannel(ctxb, carol, chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
// Here, Alice receives a confirmation of Carol's breach transaction.
// We restart Alice to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to stop Alice's node: %v", err)
}
breachTXID, err := net.WaitForChannelClose(ctxb, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, 15*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v",
err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Alice here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Alice has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Alice restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, ctxb, net.Alice, 0)
}
// testRevokedCloseRetributionRemoteHodl tests that Alice properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = maxFundingAmount
pushAmt = 20000
paymentAmt = 10000
numInvoices = 6
)
// Since this test will result in the counterparty being left in a weird
// state, we will introduce another node into our test network: Carol.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Alice communicate with Carol before they are able to
// open channel, so we connect Alice and Carol,
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// In order to test Alice's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// maxFundingAmount (2^24) satoshis value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, pushAmt)
// With the channel open, we'll create a few invoices for Carol that
// Alice will pay to in order to advance the state of the channel.
carolPayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(192 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
carolPayReqs[i] = resp.PaymentRequest
}
// As we'll be querying the state of Carol's channels frequently we'll
// create a closure helper function for the purpose.
getCarolChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
carolChannelInfo, err := carol.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(carolChannelInfo.Channels) != 1 {
t.Fatalf("carol should only have a single channel, instead he has %v",
len(carolChannelInfo.Channels))
}
return carolChannelInfo.Channels[0], nil
}
// We'll introduce a closure to validate that Carol's current balance
// matches the given expected amount.
checkCarolBalance := func(expectedAmt int64) {
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != expectedAmt {
t.Fatalf("carol's balance is incorrect, "+
"got %v, expected %v", carolChan.LocalBalance,
expectedAmt)
}
}
// We'll introduce another closure to validate that Carol's current
// number of updates is at least as large as the provided minimum
// number.
checkCarolNumUpdatesAtLeast := func(minimum uint64) {
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.NumUpdates < minimum {
t.Fatalf("carol's numupdates is incorrect, want %v "+
"to be at least %v", carolChan.NumUpdates,
minimum)
}
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Ensure that carol's balance starts with the amount we pushed to her.
checkCarolBalance(pushAmt)
// Send payments from Alice to Carol using 3 of Carol's payment hashes
// generated above.
err = completePaymentRequests(ctxb, net.Alice, carolPayReqs[:numInvoices/2],
false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Next query for Carol's channel state, as we sent 3 payments of 10k
// satoshis each, however Carol should now see her balance as being
// equal to the push amount in satoshis since she has not settled.
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force her to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Ensure that carol's balance still reflects the original amount we
// pushed to her.
checkCarolBalance(pushAmt)
// Since Carol has not settled, she should only see at least one update
// to her channel.
checkCarolNumUpdatesAtLeast(1)
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
if err := copyFile(carolTempDbFile, carol.DBPath()); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Carol, consuming Carol's remaining
// payment hashes.
err = completePaymentRequests(ctxb, net.Alice, carolPayReqs[numInvoices/2:],
false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// Ensure that carol's balance still shows the amount we originally
// pushed to her, and that at least one more update has occurred.
time.Sleep(500 * time.Millisecond)
checkCarolBalance(pushAmt)
checkCarolNumUpdatesAtLeast(carolStateNumPreCopy + 1)
// Now we shutdown Carol, copying over the her temporary database state
// which has the *prior* channel state over her current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carol.DBPath())
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that Carol's view of the channel is consistent with the
// state of the channel just before it was snapshotted.
checkCarolBalance(pushAmt)
checkCarolNumUpdatesAtLeast(1)
// Now query for Carol's channel state, it should show that she's at a
// state number in the past, *not* the latest state.
carolChan, err = getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting her current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so she'll soon
// feel the wrath of Alice's retribution.
force := true
closeUpdates, _, err := net.CloseChannel(ctxb, carol, chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
_, err = waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Generate a single block to mine the breach transaction.
block := mineBlocks(t, net, 1)[0]
// Wait so Alice receives a confirmation of Carol's breach transaction.
time.Sleep(200 * time.Millisecond)
// We restart Alice to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to stop Alice's node: %v", err)
}
// Finally, Wait for the final close status update, then ensure that the
// closing transaction was included in the block.
breachTXID, err := net.WaitForChannelClose(ctxb, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// We restart Alice here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Alice has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Alice restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Query for the mempool transaction found above. Then assert that (1)
// the justice tx has the appropriate number of inputs, and (2) all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
exNumInputs := 2 + numInvoices/2
if len(justiceTx.MsgTx().TxIn) != exNumInputs {
t.Fatalf("justice tx should have exactly 2 commitment inputs"+
"and %v htlc inputs, expected %v in total, got %v",
numInvoices/2, exNumInputs,
len(justiceTx.MsgTx().TxIn))
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
assertNodeNumChannels(t, ctxb, net.Alice, 0)
}
// assertNodeNumChannels polls the provided node's list channels rpc until it
// reaches the desired number of total channels.
func assertNodeNumChannels(t *harnessTest, ctxb context.Context,
node *lntest.HarnessNode, numChannels int) {
// Poll alice for her list of channels.
req := &lnrpc.ListChannelsRequest{}
var predErr error
pred := func() bool {
chanInfo, err := node.ListChannels(ctxb, req)
if err != nil {
predErr = fmt.Errorf("unable to query for alice's "+
"channels: %v", err)
return false
}
// Return true if the query returned the expected number of
// channels.
return len(chanInfo.Channels) == numChannels
}
if err := lntest.WaitPredicate(pred, time.Second*15); err != nil {
t.Fatalf("node has incorrect number of channels: %v", predErr)
}
}
func testHtlcErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
// In this test we wish to exercise the daemon's correct parsing,
// handling, and propagation of errors that occur while processing a
// multi-hop payment.
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
const chanAmt = maxFundingAmount
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
commitFee := calcStaticFee(0)
assertBaseBalance := func() {
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("alice has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), aliceBal)
}
if bobBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("bob has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), bobBal)
}
}
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create a connection from Bob to Carol, and open a
// channel between them so we have the topology: Alice -> Bob -> Carol.
// The channel created will be of lower capacity that the one created
// above.
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
const bobChanAmt = maxFundingAmount
chanPointBob := openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, 0)
// Ensure that Alice has Carol in her routing table before proceeding.
nodeInfoReq := &lnrpc.NodeInfoRequest{
PubKey: carol.PubKeyStr,
}
checkTableTimeout := time.After(time.Second * 10)
checkTableTicker := time.NewTicker(100 * time.Millisecond)
defer checkTableTicker.Stop()
out:
// TODO(roasbeef): make into async hook for node announcements
for {
select {
case <-checkTableTicker.C:
_, err := net.Alice.GetNodeInfo(ctxb, nodeInfoReq)
if err != nil && strings.Contains(err.Error(),
"unable to find") {
continue
}
break out
case <-checkTableTimeout:
t.Fatalf("carol's node announcement didn't propagate within " +
"the timeout period")
}
}
// With the channels, open we can now start to test our multi-hop error
// scenarios. First, we'll generate an invoice from carol that we'll
// use to test some error cases.
const payAmt = 10000
invoiceReq := &lnrpc.Invoice{
Memo: "kek99",
Value: payAmt,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Before we send the payment, ensure that the announcement of the new
// channel has been processed by Alice.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// For the first scenario, we'll test the cancellation of an HTLC with
// an unknown payment hash.
// TODO(roasbeef): return failure response rather than failing entire
// stream on payment error.
ctxt, _ = context.WithTimeout(ctxb, timeout)
sendReq := &lnrpc.SendRequest{
PaymentHashString: hex.EncodeToString(bytes.Repeat([]byte("Z"), 32)),
DestString: hex.EncodeToString(carol.PubKey[:]),
Amt: payAmt,
}
resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should have resulted in an error since we sent it with the
// wrong payment hash.
if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to invalid " +
"payment hash")
}
expectedErrorCode := lnwire.CodeUnknownPaymentHash.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
// TODO(roasbeef): make into proper gRPC error code
t.Fatalf("payment should have failed due to unknown payment hash, "+
"instead failed due to: %v", resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next, we'll test the case of a recognized payHash but, an incorrect
// value on the extended HTLC.
sendReq = &lnrpc.SendRequest{
PaymentHashString: hex.EncodeToString(carolInvoice.RHash),
DestString: hex.EncodeToString(carol.PubKey[:]),
Amt: 1000, // 10k satoshis are expected.
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should fail with an error since we sent 1k satoshis isn't of
// 10k as was requested.
if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to wrong " +
"HTLC amount")
}
expectedErrorCode = lnwire.CodeIncorrectPaymentAmount.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
t.Fatalf("payment should have failed due to wrong amount, "+
"instead failed due to: %v", resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next we'll test an error that occurs mid-route due to an outgoing
// link having insufficient capacity. In order to do so, we'll first
// need to unbalance the link connecting Bob<->Carol.
bobPayStream, err := net.Bob.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// To do so, we'll push most of the funds in the channel over to
// Alice's side, leaving on 10k satoshis of available balance for bob.
// There's a max payment amount, so we'll have to do this
// incrementally.
chanReserve := int64(chanAmt / 100)
amtToSend := int64(chanAmt) - chanReserve - 20000
amtSent := int64(0)
for amtSent != amtToSend {
// We'll send in chunks of the max payment amount. If we're
// about to send too much, then we'll only send the amount
// remaining.
toSend := int64(maxPaymentMSat.ToSatoshis())
if toSend+amtSent > amtToSend {
toSend = amtToSend - amtSent
}
invoiceReq = &lnrpc.Invoice{
Value: toSend,
}
carolInvoice2, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := bobPayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice2.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := bobPayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("bob's payment failed: %v", resp.PaymentError)
}
amtSent += toSend
}
// At this point, Alice has 50mil satoshis on her side of the channel,
// but Bob only has 10k available on his side of the channel. So a
// payment from Alice to Carol worth 100k satoshis should fail.
invoiceReq = &lnrpc.Invoice{
Value: 100000,
}
carolInvoice3, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
sendReq = &lnrpc.SendRequest{
PaymentRequest: carolInvoice3.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError == "" {
t.Fatalf("payment should fail due to insufficient "+
"capacity: %v", err)
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeTemporaryChannelFailure.String()) {
t.Fatalf("payment should fail due to insufficient capacity, "+
"instead: %v", resp.PaymentError)
}
// For our final test, we'll ensure that if a target link isn't
// available for what ever reason then the payment fails accordingly.
//
// We'll attempt to complete the original invoice we created with Carol
// above, but before we do so, Carol will go offline, resulting in a
// failed payment.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
// TODO(roasbeef): mission control
time.Sleep(time.Second * 5)
sendReq = &lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp.PaymentError == "" {
t.Fatalf("payment should have failed")
}
expectedErrorCode = lnwire.CodeUnknownNextPeer.String()
if !strings.Contains(resp.PaymentError, expectedErrorCode) {
t.Fatalf("payment should fail due to unknown hop, instead: %v",
resp.PaymentError)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
// Force close Bob's final channel, also mining enough blocks to
// trigger a sweep of the funds by the utxoNursery.
// TODO(roasbeef): use config value for default CSV here.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
if _, err := net.Miner.Node.Generate(5); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
}
// subscribeGraphNotifications subscribes to channel graph updates and launches
// a goroutine that forwards these to the returned channel.
func subscribeGraphNotifications(t *harnessTest, ctxb context.Context,
node *lntest.HarnessNode) (chan *lnrpc.GraphTopologyUpdate, chan struct{}) {
// We'll first start by establishing a notification client which will
// send us notifications upon detected changes in the channel graph.
req := &lnrpc.GraphTopologySubscription{}
topologyClient, err := node.SubscribeChannelGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to create topology client: %v", err)
}
// We'll launch a goroutine that will be responsible for proxying all
// notifications recv'd from the client into the channel below.
quit := make(chan struct{})
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate, 20)
go func() {
for {
select {
case <-quit:
return
default:
graphUpdate, err := topologyClient.Recv()
select {
case <-quit:
return
default:
}
if err == io.EOF {
return
} else if err != nil {
t.Fatalf("unable to recv graph update: %v",
err)
}
select {
case graphUpdates <- graphUpdate:
case <-quit:
return
}
}
}
}()
return graphUpdates, quit
}
func testGraphTopologyNotifications(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = maxFundingAmount
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// Let Alice subscribe to graph notifications.
graphUpdates, quit := subscribeGraphNotifications(t, ctxb, net.Alice)
// Open a new channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// The channel opening above should have triggered a few notifications
// sent to the notification client. We'll expect two channel updates,
// and two node announcements.
const numExpectedUpdates = 4
for i := 0; i < numExpectedUpdates; i++ {
select {
// Ensure that a new update for both created edges is properly
// dispatched to our registered client.
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ChannelUpdates) > 0 {
chanUpdate := graphUpdate.ChannelUpdates[0]
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
switch chanUpdate.AdvertisingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
}
if len(graphUpdate.NodeUpdates) > 0 {
nodeUpdate := graphUpdate.NodeUpdates[0]
switch nodeUpdate.IdentityKey {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node: %v",
nodeUpdate.IdentityKey)
}
}
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notification %v", i)
}
}
_, blockHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// Now we'll test that updates are properly sent after channels are closed
// within the network.
ctxt, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Similar to the case above, we should receive another notification
// detailing the channel closure.
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ClosedChans) != 1 {
t.Fatalf("expected a single update, instead "+
"have %v", len(graphUpdate.ClosedChans))
}
closedChan := graphUpdate.ClosedChans[0]
if closedChan.ClosedHeight != uint32(blockHeight+1) {
t.Fatalf("close heights of channel mismatch: expected "+
"%v, got %v", blockHeight+1, closedChan.ClosedHeight)
}
chanPointTxid, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
closedChanTxid, err := getChanPointFundingTxid(closedChan.ChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
if !bytes.Equal(closedChanTxid, chanPointTxid) {
t.Fatalf("channel point hash mismatch: expected %v, "+
"got %v", chanPointTxid, closedChanTxid)
}
if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
t.Fatalf("output index mismatch: expected %v, got %v",
chanPoint.OutputIndex, closedChan.ChanPoint)
}
case <-time.After(time.Second * 10):
t.Fatalf("notification for channel closure not " +
"sent")
}
// For the final portion of the test, we'll ensure that once a new node
// appears in the network, the proper notification is dispatched. Note
// that a node that does not have any channels open is ignored, so first
// we disconnect Alice and Bob, open a channel between Bob and Carol,
// and finally connect Alice to Bob again.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect alice and bob: %v", err)
}
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPoint = openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, 0)
// Reconnect Alice and Bob. This should result in the nodes syncing up
// their respective graph state, with the new addition being the
// existence of Carol in the graph, and also the channel between Bob
// and Carol. Note that we will also receive a node announcement from
// Bob, since a node will update its node announcement after a new
// channel is opened.
if err := net.ConnectNodes(ctxb, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect alice to bob: %v", err)
}
// We should receive an update advertising the newly connected node,
// Bob's new node announcement, and the channel between Bob and Carol.
for i := 0; i < 3; i++ {
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.NodeUpdates) > 0 {
nodeUpdate := graphUpdate.NodeUpdates[0]
switch nodeUpdate.IdentityKey {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node update pubey: %v",
nodeUpdate.IdentityKey)
}
}
if len(graphUpdate.ChannelUpdates) > 0 {
chanUpdate := graphUpdate.ChannelUpdates[0]
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
switch chanUpdate.AdvertisingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
}
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notification %v", i)
}
}
// Close the channel between Bob and Carol.
ctxt, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
close(quit)
// Finally, shutdown carol as our test has concluded successfully.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
ipAddresses := map[string]bool{
"192.168.1.1:8333": true,
"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337": true,
}
var lndArgs []string
for address := range ipAddresses {
lndArgs = append(lndArgs, "--externalip="+address)
}
dave, err := net.NewNode(lndArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Dave have an open channel before he can send a node
// announcement, so we open a channel with Bob,
if err := net.ConnectNodes(ctxb, net.Bob, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
timeout := time.Duration(time.Second * 5)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Bob, dave,
1000000, 0)
// When Alice now connects with Dave, Alice will get his node announcement.
if err := net.ConnectNodes(ctxb, net.Alice, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
time.Sleep(time.Second * 1)
req := &lnrpc.ChannelGraphRequest{}
chanGraph, err := net.Alice.DescribeGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
for _, node := range chanGraph.Nodes {
if node.PubKey == dave.PubKeyStr {
for _, address := range node.Addresses {
addrStr := address.String()
// parse the IP address from the string
// representation of the TCPAddr
parts := strings.Split(addrStr, "\"")
if ipAddresses[parts[3]] {
delete(ipAddresses, parts[3])
} else {
if !strings.HasPrefix(parts[3],
"127.0.0.1:") {
t.Fatalf("unexpected IP: %v",
parts[3])
}
}
}
}
}
if len(ipAddresses) != 0 {
t.Fatalf("expected IP addresses not in channel "+
"graph: %v", ipAddresses)
}
// Close the channel between Bob and Dave.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testNodeSignVerify(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(100000)
// Create a channel between alice and bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
aliceBobCh := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
aliceMsg := []byte("alice msg")
// alice signs "alice msg" and sends her signature to bob.
sigReq := &lnrpc.SignMessageRequest{Msg: aliceMsg}
sigResp, err := net.Alice.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
aliceSig := sigResp.Signature
// bob verifying alice's signature should succeed since alice and bob are
// connected.
verifyReq := &lnrpc.VerifyMessageRequest{Msg: aliceMsg, Signature: aliceSig}
verifyResp, err := net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if !verifyResp.Valid {
t.Fatalf("alice's signature didn't validate")
}
if verifyResp.Pubkey != net.Alice.PubKeyStr {
t.Fatalf("alice's signature doesn't contain alice's pubkey.")
}
// carol is a new node that is unconnected to alice or bob.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
carolMsg := []byte("carol msg")
// carol signs "carol msg" and sends her signature to bob.
sigReq = &lnrpc.SignMessageRequest{Msg: carolMsg}
sigResp, err = carol.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
carolSig := sigResp.Signature
// bob verifying carol's signature should fail since they are not connected.
verifyReq = &lnrpc.VerifyMessageRequest{Msg: carolMsg, Signature: carolSig}
verifyResp, err = net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if verifyResp.Valid {
t.Fatalf("carol's signature should not be valid")
}
if verifyResp.Pubkey != carol.PubKeyStr {
t.Fatalf("carol's signature doesn't contain her pubkey")
}
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
// Close the channel between alice and bob.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceBobCh, false)
}
// testAsyncPayments tests the performance of the async payments, and also
// checks that balances of both sides can't be become negative under stress
// payment strikes.
func testAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// As we'll be querying the channels state frequently we'll
// create a closure helper function for the purpose.
getChanInfo := func(node *lntest.HarnessNode) (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
channelInfo, err := node.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(channelInfo.Channels) != 1 {
t.Fatalf("node should only have a single channel, "+
"instead he has %v",
len(channelInfo.Channels))
}
return channelInfo.Channels[0], nil
}
const (
timeout = time.Duration(time.Second * 5)
paymentAmt = 100
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
channelCapacity := btcutil.Amount(paymentAmt * 2000)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
channelCapacity, 0)
info, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices. We will deplete the channel
// all the way down to the channel reserve.
chanReserve := channelCapacity / 100
availableBalance := btcutil.Amount(info.LocalBalance) - chanReserve
numInvoices := int(availableBalance / paymentAmt)
bobAmt := int64(numInvoices * paymentAmt)
aliceAmt := info.LocalBalance - bobAmt
// Send one more payment in order to cause insufficient capacity error.
numInvoices++
// Initialize seed random in order to generate invoices.
prand.Seed(time.Now().UnixNano())
// With the channel open, we'll create a invoices for Bob that Alice
// will pay to in order to advance the state of the channel.
bobPayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPayReqs[i] = resp.PaymentRequest
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Bob. We also create a small helper function to send payments to Bob,
// consuming the payment hashes we generated above.
ctxt, _ = context.WithTimeout(ctxb, time.Minute)
alicePayStream, err := net.Alice.SendPayment(ctxt)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// Send payments from Alice to Bob using of Bob's payment hashes
// generated above.
now := time.Now()
for i := 0; i < numInvoices; i++ {
sendReq := &lnrpc.SendRequest{
PaymentRequest: bobPayReqs[i],
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: "+
"stream has been closed: %v", err)
}
}
// We should receive one insufficient capacity error, because we sent
// one more payment than we can actually handle with the current
// channel capacity.
errorReceived := false
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream have been closed: %v", err)
} else if resp.PaymentError != "" {
if errorReceived {
t.Fatalf("redundant payment error: %v",
resp.PaymentError)
}
errorReceived = true
continue
}
}
if !errorReceived {
t.Fatalf("insufficient capacity error haven't been received")
}
// All payments have been sent, mark the finish time.
timeTaken := time.Since(now)
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
aliceChan, err := getChanInfo(net.Alice)
if len(aliceChan.PendingHtlcs) != 0 {
t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
"expected %v", len(aliceChan.PendingHtlcs), 0)
}
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if aliceChan.RemoteBalance != bobAmt {
t.Fatalf("alice's remote balance is incorrect, got %v, "+
"expected %v", aliceChan.RemoteBalance, bobAmt)
}
if aliceChan.LocalBalance != aliceAmt {
t.Fatalf("alice's local balance is incorrect, got %v, "+
"expected %v", aliceChan.LocalBalance, aliceAmt)
}
// Wait for Bob to receive revocation from Alice.
time.Sleep(2 * time.Second)
bobChan, err := getChanInfo(net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if len(bobChan.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobChan.PendingHtlcs), 0)
}
if bobChan.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobChan.LocalBalance, bobAmt)
}
if bobChan.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobChan.RemoteBalance, aliceAmt)
}
t.Log("\tBenchmark info: Elapsed time: ", timeTaken)
t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/float64(timeTaken.Seconds()))
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBidirectionalAsyncPayments tests that nodes are able to send the
// payments to each other in async manner without blocking.
func testBidirectionalAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// As we'll be querying the channels state frequently we'll
// create a closure helper function for the purpose.
getChanInfo := func(node *lntest.HarnessNode) (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
channelInfo, err := node.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(channelInfo.Channels) != 1 {
t.Fatalf("node should only have a single channel, "+
"instead he has %v",
len(channelInfo.Channels))
}
return channelInfo.Channels[0], nil
}
const (
timeout = time.Duration(time.Second * 5)
paymentAmt = 1000
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
paymentAmt*2000, paymentAmt*1000)
info, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices.
numInvoices := int(info.LocalBalance / paymentAmt)
// Nodes should exchange the same amount of money and because of this
// at the end balances should remain the same.
aliceAmt := info.LocalBalance
bobAmt := info.RemoteBalance
// Initialize seed random in order to generate invoices.
prand.Seed(time.Now().UnixNano())
// With the channel open, we'll create a invoices for Bob that Alice
// will pay to in order to advance the state of the channel.
bobPayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPayReqs[i] = resp.PaymentRequest
}
// With the channel open, we'll create a invoices for Alice that Bob
// will pay to in order to advance the state of the channel.
alicePayReqs := make([]string, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Alice.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
alicePayReqs[i] = resp.PaymentRequest
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't see the bob->alice channel before "+
"timeout: %v", err)
}
// Open up a payment streams to Alice and to Bob, that we'll use to
// send payment between nodes.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
bobPayStream, err := net.Bob.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for bob: %v", err)
}
// Send payments from Alice to Bob and from Bob to Alice in async
// manner.
for i := 0; i < numInvoices; i++ {
aliceSendReq := &lnrpc.SendRequest{
PaymentRequest: bobPayReqs[i],
}
bobSendReq := &lnrpc.SendRequest{
PaymentRequest: alicePayReqs[i],
}
if err := alicePayStream.Send(aliceSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
if err := bobPayStream.Send(bobSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
}
errChan := make(chan error)
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
return
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from alice to bob: %v",
resp.PaymentError)
return
}
}
errChan <- nil
}()
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := bobPayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
return
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from bob to alice: %v",
resp.PaymentError)
return
}
}
errChan <- nil
}()
// Wait for Alice and Bob receive their payments, and throw and error
// if something goes wrong.
maxTime := 60 * time.Second
for i := 0; i < 2; i++ {
select {
case err := <-errChan:
if err != nil {
t.Fatalf(err.Error())
}
2017-08-11 00:05:04 +03:00
case <-time.After(maxTime):
t.Fatalf("waiting for payments to finish too long "+
"(%v)", maxTime)
}
}
// Wait for Alice and Bob to receive revocations messages, and update
// states, i.e. balance info.
time.Sleep(1 * time.Second)
aliceInfo, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if aliceInfo.RemoteBalance != bobAmt {
t.Fatalf("alice's remote balance is incorrect, got %v, "+
"expected %v", aliceInfo.RemoteBalance, bobAmt)
}
if aliceInfo.LocalBalance != aliceAmt {
t.Fatalf("alice's local balance is incorrect, got %v, "+
"expected %v", aliceInfo.LocalBalance, aliceAmt)
}
if len(aliceInfo.PendingHtlcs) != 0 {
t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
"expected %v", len(aliceInfo.PendingHtlcs), 0)
}
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
bobInfo, err := getChanInfo(net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bobInfo.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobInfo.LocalBalance, bobAmt)
}
if bobInfo.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobInfo.RemoteBalance, aliceAmt)
}
if len(bobInfo.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobInfo.PendingHtlcs), 0)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func assertActiveHtlcs(nodes []*lntest.HarnessNode, payHashes ...[]byte) error {
req := &lnrpc.ListChannelsRequest{}
ctxb := context.Background()
for _, node := range nodes {
nodeChans, err := node.ListChannels(ctxb, req)
if err != nil {
return fmt.Errorf("unable to get node chans: %v", err)
}
for _, channel := range nodeChans.Channels {
if len(channel.PendingHtlcs) == 0 {
return fmt.Errorf("node %x has no htlcs: %v",
node.PubKey[:], spew.Sdump(channel))
}
for _, htlc := range channel.PendingHtlcs {
var htlcIsMatch bool
for _, payHash := range payHashes {
if bytes.Equal(htlc.HashLock, payHash) {
htlcIsMatch = true
}
}
if htlcIsMatch {
continue
}
return fmt.Errorf("node %x doesn't have expected "+
"payment hashes: %v", node.PubKey[:],
spew.Sdump(channel.PendingHtlcs))
}
}
}
return nil
}
func assertNumActiveHtlcs(nodes []*lntest.HarnessNode, numHtlcs int) bool {
req := &lnrpc.ListChannelsRequest{}
ctxb := context.Background()
for _, node := range nodes {
nodeChans, err := node.ListChannels(ctxb, req)
if err != nil {
return false
}
for _, channel := range nodeChans.Channels {
if len(channel.PendingHtlcs) != numHtlcs {
return false
}
}
}
return true
}
func assertSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
timeout time.Duration, chanPoint wire.OutPoint) {
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-breakTimeout:
t.Fatalf("didn't find tx in mempool")
case <-ticker.C:
mempool, err := miner.GetRawMempool()
if err != nil {
t.Fatalf("unable to get mempool: %v", err)
}
if len(mempool) == 0 {
continue
}
for _, txid := range mempool {
tx, err := miner.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to fetch tx: %v", err)
}
for _, txIn := range tx.MsgTx().TxIn {
if txIn.PreviousOutPoint == chanPoint {
return
}
}
}
}
}
}
func createThreeHopHodlNetwork(t *harnessTest,
net *lntest.NetworkHarness) (*lnrpc.ChannelPoint, *lnrpc.ChannelPoint, *lntest.HarnessNode) {
// We'll start the test by creating a channel between Alice and Bob,
// which will act as the first leg for out multi-hop HTLC.
const chanAmt = 1000000
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
ctxt, _ := context.WithTimeout(ctxb, timeout)
aliceChanPoint := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob, chanAmt, 0,
)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
// Next, we'll create a new node "carol" and have Bob connect to her.
// In this test, we'll make carol always hold onto the HTLC, this way
// it'll force Bob to go to chain to resolve the HTLC.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
// We'll then create a channel from Bob to Carol. After this channel is
// open, our topology looks like: A -> B -> C.
ctxt, _ = context.WithTimeout(ctxb, timeout)
bobChanPoint := openChannelAndAssert(
ctxt, t, net, net.Bob, carol, chanAmt, 0,
)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = carol.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
if err != nil {
t.Fatalf("bob didn't report channel: %v", err)
}
return aliceChanPoint, bobChanPoint, carol
}
// testMultiHopHtlcLocalTimeout tests that in a multi-hop HTLC scenario, if the
// outgoing HTLC is about to time out, then we'll go to chain in order to claim
// it. Any dust HTLC's should be immediately cancelled backwards. Once the
// timeout has been reached, then we should sweep it on-chain, and cancel the
// HTLC backwards.
func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
time.Sleep(time.Second * 1)
// Now that our channels are set up, we'll send two HTLC's from Alice
// to Carol. The first HTLC will be universally considered "dust",
// while the second will be a proper fully valued HTLC.
const (
dustHtlcAmt = btcutil.Amount(100)
htlcAmt = btcutil.Amount(30000)
finalCltvDelta = 40
)
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll create two random payment hashes unknown to carol, then send
// each of them by manually specifying the HTLC details.
carolPubKey := carol.PubKey[:]
dustPayHash := bytes.Repeat([]byte{1}, 32)
payHash := bytes.Repeat([]byte{2}, 32)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(dustHtlcAmt),
PaymentHash: dustPayHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Verify that all nodes in the path now have two HTLC's with the
// proper parameters.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, dustPayHash, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", predErr)
}
// We'll now mine enough blocks to trigger Bob's broadcast of his
// commitment transaction due to the fact that the HTLC is about to
// timeout.
numBlocks := uint32(finalCltvDelta - defaultBroadcastDelta)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Bob's force close transaction should now be found in the mempool.
txidHash, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundingTxid, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertSpendingTxInMempool(
t, net.Miner.Node, time.Second*10, wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
},
)
// At this point, Bob should have cancelled backwards the dust HTLC
// that we sent earlier. This means Alice should now only have a single
// HTLC on her channel.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// TODO(roasbeef): need to fix utxn so it can accept incubation for
// timeout that has already past
//
// * remove after solved
time.Sleep(time.Second * 5)
// We'll now mine the remaining blocks to cause the HTLC itself to
// timeout.
if _, err := net.Miner.Node.Generate(defaultBroadcastDelta); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// The second layer HTLC timeout transaction should now have been
// broadcast on-chain.
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's second layer transaction")
}
// Bob's pending channel report should show that he has a commitment
// output awaiting sweeping, and also that there's an outgoing HTLC
// output pending.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := net.Bob.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("bob should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("bob should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
if len(forceCloseChan.PendingHtlcs) == 0 {
t.Fatalf("bob should have pending htlc but doesn't")
}
// Now we'll mine an additional block.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// The block should have confirmed Bob's second layer sweeping
// transaction. Therefore, at this point, there should be no active
// HTLC's on the commitment transaction from Alice -> Bob.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
return assertNumActiveHtlcs(nodes, 0)
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's")
}
// At this point, Bob should show that the pending HTLC has advanced to
// the second stage and is to be swept.
pendingChanResp, err = net.Bob.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
forceCloseChan = pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
t.Fatalf("bob's htlc should have advanced to the second stage: %v", err)
}
// We'll now mine four more blocks. After the 4th block, a transaction
// sweeping the HTLC output should be broadcast.
if _, err := net.Miner.Node.Generate(4); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// Next, we'll mine a final block that should confirm the second-layer
// sweeping transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Once this transaction has been confirmed, Bob should detect that he
// no longer has any pending channels.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err = net.Bob.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending "+
"channels but shouldn't: %v",
spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testMultiHopReceiverChainClaim tests that in the multi-hop setting, if the
// receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC
// off-chain, then it goes on chain to claim the HTLC. In this scenario, the
// node that sent the outgoing HTLC should extract the preimage from the sweep
// transaction, and finish settling the HTLC backwards into the route.
func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
defaultCSV := uint32(4)
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// With the network active, we'll now add a new invoice at Carol's end.
invoiceReq := &lnrpc.Invoice{
Value: 100000,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// At this point, all 3 nodes should now have an active channel with
// the created HTLC pending on all of them.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Now we'll mine enough blocks to prompt carol to actually go to the
// chain in order to sweep her HTLC since the value is high enough.
// TODO(roasbeef): modify once go to chain policy changes
numBlocks := uint32(defaultBitcoinTimeLockDelta - (2 * defaultBroadcastDelta))
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// At this point, Carol should broadcast her active commitment
// transaction in order to go to the chain and sweep her HTLC.
// Additionally, Carol's should have broadcast her second layer sweep
// transaction for the HTLC as well.
txids, err := waitForNTxsInMempool(net.Miner.Node, 2, time.Second*15)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
txidHash, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundingTxid, err := chainhash.NewHash(txidHash)
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
tx1, err := net.Miner.Node.GetRawTransaction(txids[0])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx1Hash := tx1.MsgTx().TxHash()
tx2, err := net.Miner.Node.GetRawTransaction(txids[1])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx2Hash := tx2.MsgTx().TxHash()
// Of the two transactions, one should be spending from the funding
// transaction, and the second transaction should then be spending from
// the commitment transaction.
var commitHash *chainhash.Hash
if tx1.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx1Hash
if tx2.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx2))
}
}
if tx2.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx2Hash
if tx1.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx1))
}
}
if commitHash == nil {
t.Fatalf("commit tx not found in mempool")
}
// We'll now mine an additional block which should confirm both the
// second layer transaction as well as the commitment transaction
// itself.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
time.Sleep(time.Second * 4)
// TODO(roasbeef): assert bob pending state as well
// Carol's pending channel report should now show two outputs under
// limbo: her commitment output, as well as the second-layer claim
// output.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := carol.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("carol should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("carol should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
// The pending HTLC carol has should also now be in stage 2.
if len(forceCloseChan.PendingHtlcs) != 1 {
t.Fatalf("carol should have pending htlc but doesn't")
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
t.Fatalf("carol's htlc should have advanced to the second "+
"stage: %v", err)
}
// Once the second-level transaction confirmed, Bob should have
// extracted the preimage from the chain, and sent it back to Alice,
// clearing the HTLC off-chain.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
return assertNumActiveHtlcs(nodes, 0)
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// If we mine 4 additional blocks, then both outputs should now be
// mature.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// We should have a new transaction in the mempool.
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// Finally, if we mine an additional block to confirm these two sweep
// transactions, Carol should not show a pending channel in her report
// afterwards.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err = carol.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
predErr = fmt.Errorf("unable to query for pending channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
2018-01-23 08:11:29 +03:00
predErr = fmt.Errorf("carol still has pending channels: %v",
spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// We'll close out the channel between Alice and Bob, then shutdown
// carol to conclude the test.
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testMultiHopLocalForceCloseOnChainHtlcTimeout tests that in a multi-hop HTLC
// scenario, if the node that extended the HTLC to the final node closes their
// commitment on-chain early, then it eventually recognizes this HTLC as one
// that's timed out. At this point, the node should timeout the HTLC, then
// cancel it backwards as normal.
func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// With our channels set up, we'll then send a single HTLC from Alice
// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
// opens up the base for out tests.
const (
finalCltvDelta = 40
htlcAmt = btcutil.Amount(30000)
)
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll now send a single HTLC across our multi-hop network.
carolPubKey := carol.PubKey[:]
payHash := bytes.Repeat([]byte{2}, 32)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Once the HTLC has cleared, all channels in our mini network should
// have the it locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Now that all parties have the HTLC locked in, we'll immediately
// force close the Bob -> Carol channel. This should trigger contract
// resolution mode for both of them.
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, bobChanPoint, true)
// At this point, Bob should have a pending force close channel as he
// just went to chain.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := net.Bob.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("bob should have pending for close chan but doesn't")
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if forceCloseChan.LimboBalance == 0 {
t.Fatalf("bob should have nonzero limbo balance instead "+
"has: %v", forceCloseChan.LimboBalance)
}
// We'll now mine enough blocks for the HTLC to expire. After this, Bob
// should hand off the now expired HTLC output to the utxo nursery.
if _, err := net.Miner.Node.Generate(finalCltvDelta); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// Bob's pending channel report should show that he has a single HTLC
// that's now in stage one.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan = pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 1 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the first stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We should also now find a transaction in the mempool, as Bob should
// have broadcast his second layer timeout transaction.
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// Next, we'll mine an additional block. This should serve to confirm
// the second layer timeout transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// With the second layer timeout transaction confirmed, Bob should have
// cancelled backwards the HTLC that carol sent.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
return assertNumActiveHtlcs(nodes, 0)
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's")
}
// Additionally, Bob should now show that HTLC as being advanced to the
// second stage.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan = pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the second stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We'll now mine 4 additional blocks. This should be enough for Bob's
// CSV timelock to expire, and the sweeping transaction to be
// confirmed.
if _, err := net.Miner.Node.Generate(4); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
time.Sleep(time.Second * 3)
// We'll then mine a final block which should confirm this second layer
// sweep transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, Bob should no longer show any channels as pending
// close.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err = net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testMultiHopRemoteForceCloseOnChainHtlcTimeout tests that if we extend a
// multi-hop HTLC, and the final destination of the HTLC force closes the
// channel, then we properly timeout the HTLC on *their* commitment transaction
// once the timeout has expired. Once we sweep the transaction, we should also
// cancel back the initial HTLC.
func testMultHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// With our channels set up, we'll then send a single HTLC from Alice
// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
// opens up the base for out tests.
const (
finalCltvDelta = 40
htlcAmt = btcutil.Amount(30000)
)
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// We'll now send a single HTLC across our multi-hop network.
carolPubKey := carol.PubKey[:]
payHash := bytes.Repeat([]byte{2}, 32)
err = alicePayStream.Send(&lnrpc.SendRequest{
Dest: carolPubKey,
Amt: int64(htlcAmt),
PaymentHash: payHash,
FinalCltvDelta: finalCltvDelta,
})
if err != nil {
t.Fatalf("unable to send alice htlc: %v", err)
}
// Once the HTLC has cleared, all the nodes n our mini network should
// show that the HTLC has been locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, payHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// At this point, we'll now instruct Carol to force close the
// transaction. This will let us exercise that Bob is able to sweep the
// expired HTLC on Carol's version of the commitment transaction.
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, bobChanPoint, true)
// At this point, Bob should have a pending force close channel as
// Carol has gone directly to chain.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
pendingChanResp, err := net.Bob.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
t.Fatalf("bob should have pending for close chan but doesn't")
}
// Next, we'll mine enough blocks for the HTLC to expire. At this
// point, Bob should hand off the output to his internal utxo nursery.
if _, err := net.Miner.Node.Generate(finalCltvDelta - 1); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
// If we check Bob's pending channel report, it should show that he has
// a single HTLC that's now in the second stage, as skip the initial
// first stage since this is a direct HTLC.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 2 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the second stage: %v", err)
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// We'll now mine an additional block to push the HTLC to full
// expiration.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Bob's sweeping transaction should now be found in the mempool at
// this point.
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// If we mine an additional block, then this should confirm Bob's
// transaction which sweeps the direct HTLC output.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Now that the sweeping transaction has been confirmed, Bob should
// cancel back that HTLC. As a result, Alice should not know of any
// active HTLC's.
nodes = []*lntest.HarnessNode{net.Alice}
err = lntest.WaitPredicate(func() bool {
return assertNumActiveHtlcs(nodes, 0)
}, time.Second*15)
if err != nil {
t.Fatalf("alice's channel still has active htlc's")
}
// Now we'll check Bob's pending channel report. Since this was Carol's
// commitment, he doesn't have to wait for any CSV delays. As a result,
// he should show no additional pending transactions.
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err = net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// We'll close out the test by closing the channel from Alice to Bob,
// and then shutting down the new node we created as its no longer
// needed.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testMultiHopHtlcLocalChainClaim tests that in a multi-hop HTLC scenario, if
// we're forced to go to chain with an incoming HTLC, then when we find out the
// preimage via the witness beacon, we properly settle the HTLC on-chain in
// order to ensure we don't lose any funds.
func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
defaultCSV := uint32(4)
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// With the network active, we'll now add a new invoice at Carol's end.
invoiceReq := &lnrpc.Invoice{
Value: 100000,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// At this point, Bob decides that he wants to exit the channel
// immediately, so he force closes his commitment transaction.
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, aliceChanPoint, true)
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
numBlocks := uint32(defaultBitcoinTimeLockDelta - (2 * defaultBroadcastDelta))
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool. She
// should also have broadcast her second level HTLC transaction.
txids, err := waitForNTxsInMempool(net.Miner.Node, 2, time.Second*15)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
txidHash, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundingTxid, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// Of the two transactions, one should be spending from the funding
// transaction, and the second transaction should then be spending from
// the commitment transaction.
var commitHash *chainhash.Hash
tx1, err := net.Miner.Node.GetRawTransaction(txids[0])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx1Hash := tx1.MsgTx().TxHash()
tx2, err := net.Miner.Node.GetRawTransaction(txids[1])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx2Hash := tx2.MsgTx().TxHash()
if tx1.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx1Hash
if tx2.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx2))
}
}
if tx2.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx2Hash
if tx1.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx1))
}
}
if commitHash == nil {
t.Fatalf("commit tx not found in mempool")
}
// We'll now mine a block which should confirm both the second layer
// transaction as well as the commitment transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// At this point, Bob should detect that Carol has revealed the
// preimage on-chain. As a result, he should now attempt to broadcast
// his second-layer claim transaction to claim the output.
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// At this point, Bob should have broadcast his second layer success
// transaction, and should have sent it to the nursery for incubation.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) == 0 {
predErr = fmt.Errorf("bob should have pending for " +
"close chan but doesn't")
return false
}
for _, forceCloseChan := range pendingChanResp.PendingForceClosingChannels {
if forceCloseChan.Channel.LocalBalance != 0 {
continue
}
if len(forceCloseChan.PendingHtlcs) != 1 {
predErr = fmt.Errorf("bob should have pending htlc " +
"but doesn't")
return false
}
if forceCloseChan.PendingHtlcs[0].Stage != 1 {
predErr = fmt.Errorf("bob's htlc should have "+
"advanced to the first stage: %v", err)
return false
}
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
}
// If we then mine 4 additional blocks, Bob should pull the output
// destined for him.
if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
_, err = waitForTxInMempool(net.Miner.Node, time.Second*10)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// At this point, Bob should detect that he has no pending channels
// anymore, as this just resolved it by the confirmation of the sweep
// transaction we detected above.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
// Clean up carol's node.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testMultiHopHtlcRemoteChainClaim tests that in the multi-hop HTLC scenario,
// if the remote party goes to chain while we have an incoming HTLC, then when
// we found out the preimage via the witness beacon, we properly settle the
// HTLC on-chain in order to ensure that we don't lose any funds.
func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 15)
ctxb := context.Background()
// First, we'll create a three hop network: Alice -> Bob -> Carol, with
// Carol refusing to actually settle or directly cancel any HTLC's
// self.
aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)
// With the network active, we'll now add a new invoice at Carol's end.
invoiceReq := &lnrpc.Invoice{
Value: 100000,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Now that we've created the invoice, we'll send a single payment from
// Alice to Carol. We won't wait for the response however, as Carol
// will not immediately settle the payment.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
err = alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
})
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// We'll now wait until all 3 nodes have the HTLC as just sent fully
// locked in.
var predErr error
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
err = lntest.WaitPredicate(func() bool {
predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
if predErr != nil {
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf("htlc mismatch: %v", err)
}
// Next, Alice decides that she wants to exit the channel, so she'll
// immediately force close the channel by broadcast her commitment
// transaction.
ctxt, _ := context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, true)
// We'll now mine enough blocks so Carol decides that she needs to go
// on-chain to claim the HTLC as Bob has been inactive.
claimDelta := uint32(2 * defaultBroadcastDelta)
numBlocks := uint32(defaultBitcoinTimeLockDelta - claimDelta)
if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks")
}
// Carol's commitment transaction should now be in the mempool. She
// should also have broadcast her second level HTLC transaction.
txids, err := waitForNTxsInMempool(net.Miner.Node, 2, time.Second*15)
if err != nil {
t.Fatalf("transactions not found in mempool: %v", err)
}
txidHash, err := getChanPointFundingTxid(bobChanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
bobFundingTxid, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundingPoint := wire.OutPoint{
Hash: *bobFundingTxid,
Index: bobChanPoint.OutputIndex,
}
// Of the two transactions, one should be spending from the funding
// transaction, and the second transaction should then be spending from
// the commitment transaction.
var commitHash *chainhash.Hash
tx1, err := net.Miner.Node.GetRawTransaction(txids[0])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx1Hash := tx1.MsgTx().TxHash()
tx2, err := net.Miner.Node.GetRawTransaction(txids[1])
if err != nil {
t.Fatalf("unable to get txn: %v", err)
}
tx2Hash := tx2.MsgTx().TxHash()
if tx1.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx1Hash
if tx2.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx2))
}
}
if tx2.MsgTx().TxIn[0].PreviousOutPoint == carolFundingPoint {
commitHash = &tx2Hash
if tx1.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
t.Fatalf("second transaction not spending commit tx: %v",
spew.Sdump(tx1))
}
}
if commitHash == nil {
t.Fatalf("commit tx not found in mempool")
}
// We'll now mine a block which should confirm both the second layer
// transaction as well as the commitment transaction.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// With the block mined above, Bob should detect that Carol is
// attempting to sweep the HTLC on-chain, and should obtain the
// preimage.
_, err = waitForNTxsInMempool(net.Miner.Node, 2, time.Second*15)
if err != nil {
t.Fatalf("unable to find bob's sweeping transaction")
}
// We'll now mine another block, this should confirm the sweep
// transaction that Bob broadcast in the prior stage.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// Now that the sweeping transaction has been confirmed, Bob should now
// recognize that all contracts have been fully resolved, and show no
// pending close channels.
pendingChansRequest := &lnrpc.PendingChannelsRequest{}
err = lntest.WaitPredicate(func() bool {
pendingChanResp, err := net.Bob.PendingChannels(
ctxb, pendingChansRequest,
)
if err != nil {
predErr = fmt.Errorf("unable to query for pending "+
"channels: %v", err)
return false
}
if len(pendingChanResp.PendingForceClosingChannels) != 0 {
predErr = fmt.Errorf("bob still has pending channels "+
"but shouldn't: %v", spew.Sdump(pendingChanResp))
return false
}
return true
}, time.Second*15)
if err != nil {
t.Fatalf(predErr.Error())
}
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testSwitchCircuitPersistence creates a multihop network to ensure the sender
// and intermediaries are persisting their open payment circuits. After
// forwarding a packet via an outgoing link, all are restarted, and expected to
// forward a response back from the receiver once back online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. X X X Bob restart sender and intermediaries
// 3. Carol <-- Dave <-- Alice <-- Bob expect settle to propagate
func testSwitchCircuitPersistence(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(time.Millisecond * 200)
// Restart the intermediaries and the sender.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(time.Second * 5)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testSwitchOfflineDelivery constructs a set of multihop payments, and tests
// that the returning payments are not lost if a peer on the backwards path is
// offline when the settle/fails are received. We expect the payments to be
// buffered in memory, and transmitted as soon as the disconnect link comes back
// online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol <-- Dave <-- Alice --- Bob reconnect, expect settle to propagate
func testSwitchOfflineDelivery(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode([]string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(2 * time.Second)
// First, disconnect Dave and Alice so that their link is broken.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Then, reconnect them to ensure Dave doesn't just fail back the htlc.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Now, disconnect Dave from Alice again before settling back the
// payment.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(200 * time.Millisecond)
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
time.Sleep(200 * time.Millisecond)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testSwitchOfflineDeliveryPersistence constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol --- Dave X X Bob restart Alice
// 5. Carol <-- Dave <-- Alice --- Bob expect settle to propagate
func testSwitchOfflineDeliveryPersistence(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode([]string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(2 * time.Second)
// Restart the intermediaries and the sender.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(200 * time.Millisecond)
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
time.Sleep(200 * time.Millisecond)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testSwitchOfflineDeliveryOutgoingOffline constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol --- Dave X X shutdown Bob, restart Alice
// 5. Carol <-- Dave <-- Alice X expect settle to propagate
func testSwitchOfflineDeliveryOutgoingOffline(
net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode([]string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(2 * time.Second)
// Restart the intermediaries and the sender.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(200 * time.Millisecond)
const amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
time.Sleep(200 * time.Millisecond)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
type testCase struct {
name string
test func(net *lntest.NetworkHarness, t *harnessTest)
}
var testsCases = []*testCase{
{
name: "basic funding flow",
test: testBasicChannelFunding,
},
{
name: "update channel policy",
test: testUpdateChannelPolicy,
},
{
name: "open channel reorg test",
test: testOpenChannelAfterReorg,
},
{
name: "disconnecting target peer",
test: testDisconnectingTargetPeer,
},
{
name: "graph topology notifications",
test: testGraphTopologyNotifications,
},
{
name: "funding flow persistence",
test: testChannelFundingPersistence,
},
{
name: "channel force closure",
test: testChannelForceClosure,
},
{
name: "channel balance",
test: testChannelBalance,
},
{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "sphinx replay persistence",
test: testSphinxReplayPersistence,
},
{
name: "list outgoing payments",
test: testListPayments,
},
{
name: "max pending channel",
test: testMaxPendingChannels,
},
{
name: "multi-hop payments",
test: testMultiHopPayments,
},
{
name: "private channels",
test: testPrivateChannels,
},
{
name: "multiple channel creation",
test: testBasicChannelCreation,
},
{
name: "invoice update subscription",
test: testInvoiceSubscriptions,
},
{
name: "multi-hop htlc error propagation",
test: testHtlcErrorPropagation,
},
// TODO(roasbeef): multi-path integration test
{
name: "node announcement",
test: testNodeAnnouncement,
},
{
name: "node sign verify",
test: testNodeSignVerify,
},
{
name: "async payments benchmark",
test: testAsyncPayments,
},
{
name: "async bidirectional payments",
test: testBidirectionalAsyncPayments,
},
{
// bob: outgoing our commit timeout
// carol: incoming their commit watch and see timeout
name: "test multi-hop htlc local force close immediate expiry",
test: testMultiHopHtlcLocalTimeout,
},
{
// bob: outgoing watch and see, they sweep on chain
// carol: incoming our commit, know preimage
name: "test multi-hop htlc receiver chain claim",
test: testMultiHopReceiverChainClaim,
},
{
// bob: outgoing our commit watch and see timeout
// carol: incoming their commit watch and see timeout
name: "test multi-hop local force close on-chain htlc timeout",
test: testMultiHopLocalForceCloseOnChainHtlcTimeout,
},
{
// bob: outgoing their commit watch and see timeout
// carol: incoming our commit watch and see timeout
name: "test multi-hop remote force close on-chain htlc timeout",
test: testMultHopRemoteForceCloseOnChainHtlcTimeout,
},
{
// bob: outgoing our commit watch and see, they sweep on chain
// bob: incoming our commit watch and learn preimage
// carol: incoming their commit know preimage
name: "test multi-hop htlc local chain claim",
test: testMultiHopHtlcLocalChainClaim,
},
{
// bob: outgoing their commit watch and see, they sweep on chain
// bob: incoming their commit watch and learn preimage
// carol: incoming our commit know preimage
name: "test multi-hop htlc remote chain claim",
test: testMultiHopHtlcRemoteChainClaim,
},
{
name: "switch circuit persistence",
test: testSwitchCircuitPersistence,
},
{
name: "switch offline delivery",
test: testSwitchOfflineDelivery,
},
{
name: "switch offline delivery persistence",
test: testSwitchOfflineDeliveryPersistence,
},
{
name: "switch offline delivery outgoing offline",
test: testSwitchOfflineDeliveryOutgoingOffline,
},
{
// TODO(roasbeef): test always needs to be last as Bob's state
// is borked since we trick him into attempting to cheat Alice?
name: "revoked uncooperative close retribution",
test: testRevokedCloseRetribution,
},
{
name: "revoked uncooperative close retribution zero value remote output",
test: testRevokedCloseRetributionZeroValueRemoteOutput,
},
{
name: "revoked uncooperative close retribution remote hodl",
test: testRevokedCloseRetributionRemoteHodl,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ht := newHarnessTest(t)
var lndHarness *lntest.NetworkHarness
// First create an instance of the btcd's rpctest.Harness. This will be
// used to fund the wallets of the nodes within the test network and to
// drive blockchain related events within the network. Revert the default
// setting of accepting non-standard transactions on simnet to reject them.
// Transactions on the lightning network should always be standard to get
// better guarantees of getting included in to blocks.
args := []string{"--rejectnonstd"}
handlers := &rpcclient.NotificationHandlers{
OnTxAccepted: func(hash *chainhash.Hash, amt btcutil.Amount) {
lndHarness.OnTxAccepted(hash)
},
}
btcdHarness, err := rpctest.New(harnessNetParams, handlers, args)
if err != nil {
ht.Fatalf("unable to create mining node: %v", err)
}
defer btcdHarness.TearDown()
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lndHarness, err = lntest.NewNetworkHarness(btcdHarness)
if err != nil {
ht.Fatalf("unable to create lightning network harness: %v", err)
}
defer lndHarness.TearDownAll()
// Spawn a new goroutine to watch for any fatal errors that any of the
// running lnd processes encounter. If an error occurs, then the test
// case should naturally as a result and we log the server error here to
// help debug.
go func() {
for {
select {
case err, more := <-lndHarness.ProcessErrors():
if !more {
return
}
ht.Logf("lnd finished with error (stderr):\n%v", err)
}
}
}()
// Turn off the btcd rpc logging, otherwise it will lead to panic.
// TODO(andrew.shvv|roasbeef) Remove the hack after re-work the way the log
// rotator os work.
rpcclient.UseLogger(btclog.Disabled)
if err := btcdHarness.SetUp(true, 50); err != nil {
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on SimNet.
numBlocks := chaincfg.SimNetParams.MinerConfirmationWindow * 2
if _, err := btcdHarness.Node.Generate(numBlocks); err != nil {
ht.Fatalf("unable to generate blocks: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err = lndHarness.SetUp(nil); err != nil {
ht.Fatalf("unable to set up test lightning network: %v", err)
}
t.Logf("Running %v integration tests", len(testsCases))
for _, testCase := range testsCases {
logLine := fmt.Sprintf("STARTING ============ %v ============\n",
testCase.name)
if err := lndHarness.Alice.AddToLog(logLine); err != nil {
t.Fatalf("unable to add to log: %v", err)
}
if err := lndHarness.Bob.AddToLog(logLine); err != nil {
t.Fatalf("unable to add to log: %v", err)
}
success := t.Run(testCase.name, func(t1 *testing.T) {
ht := newHarnessTest(t1)
ht.RunTestCase(testCase, lndHarness)
})
// Stop at the first failure. Mimic behavior of original test
// framework.
if !success {
break
}
}
}