lnd_test: adds sphinx replay and switch persistence tests

This commit is contained in:
Conner Fromknecht 2018-02-22 14:29:06 -08:00
parent 58324e0d38
commit cf0ab41ce8
No known key found for this signature in database
GPG Key ID: 39DE78FBE6ACB0EF

@ -1973,6 +1973,179 @@ func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
}
}
// testSphinxReplayPersistence verifies that replayed onion packets are rejected
// by a remote peer after a restart. We use a combination of unsafe
// configuration arguments to force Carol to replay the same sphinx packet after
// reconnecting to Dave, and compare the returned failure message with what we
// expect for replayed onion packets.
func testSphinxReplayPersistence(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Carol and Dave with Carol being
// the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
// First, we'll create Dave, the receiver, and start him in hodl mode.
dave, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in both unsafe-replay and unsafe-disconnect,
// which will cause her to replay any pending Adds held in memory upon
// reconnection.
carol, err := net.NewNode([]string{"--unsafe-replay"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, 0)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
carolListChannels, err := carol.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
carolSatoshisSent := carolListChannels.Channels[0].TotalSatoshisSent
if carolSatoshisSent != int64(amt) {
t.Fatalf("Carol's satoshis sent is incorrect got %v, expected %v",
carolSatoshisSent, amt)
}
daveListChannels, err := dave.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for Dave's channel list: %v", err)
}
daveSatoshisReceived := daveListChannels.Channels[0].TotalSatoshisReceived
if daveSatoshisReceived != int64(amt) {
t.Fatalf("Dave's satoshis received is incorrect got %v, expected %v",
daveSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Dave which
// expects a payment of 1000 satoshis from Carol paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := dave.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Carol to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Dave added, send a payment from Carol paying
// to the above generated invoice.
ctx, cancel := context.WithCancel(ctxb)
defer cancel()
payStream, err := carol.SendPayment(ctx)
if err != nil {
t.Fatalf("unable to open payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{PaymentRequest: invoiceResp.PaymentRequest}
err = payStream.Send(sendReq)
if err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Dave's invoice should not be marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := dave.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if dbInvoice.Settled {
t.Fatalf("dave's invoice should not be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment sent but hedl, all balance related stats should not
// have changed.
time.Sleep(time.Millisecond * 200)
assertAmountSent(0)
// With the first payment sent, restart dave to make sure he is
// persisting the information required to detect replayed sphinx
// packets.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to restart dave: %v", err)
}
// Carol should retransmit the Add hedl in her mailbox on startup. Dave
// should not accept the replayed Add, and actually fail back the
// pending payment. Even though he still holds the original settle, if
// he does fail, it is almost certainly caused by the sphinx replay
// protection, as it is the only validation we do in hodl mode.
resp, err := payStream.Recv()
if err != nil {
t.Fatalf("unable to receive payment response: %v", err)
}
// Construct the response we expect after sending a duplicate packet
// that fails due to sphinx replay detection.
replayErr := fmt.Sprintf("unable to route payment to destination: "+
"TemporaryChannelFailure: unable to de-obfuscate onion failure, "+
"htlc with hash(%x): unable to retrieve onion failure",
invoiceResp.RHash)
if resp.PaymentError != replayErr {
t.Fatalf("received payment error: %v", resp.PaymentError)
}
// Since the payment failed, the balance should still be left unaltered.
assertAmountSent(0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPoint, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testSingleHopInvoice(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
@ -6450,6 +6623,871 @@ func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest
}
}
// testSwitchCircuitPersistence creates a multihop network to ensure the sender
// and intermediaries are persisting their open payment circuits. After
// forwarding a packet via an outgoing link, all are restarted, and expected to
// forward a response back from the receiver once back online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. X X X Bob restart sender and intermediaries
// 3. Carol <-- Dave <-- Alice <-- Bob expect settle to propagate
func testSwitchCircuitPersistence(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(time.Millisecond * 200)
// Restart the intermediaries and the sender.
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(time.Second * 5)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testSwitchOfflineDelivery constructs a set of multihop payments, and tests
// that the returning payments are not lost if a peer on the backwards path is
// offline when the settle/fails are received. We expect the payments to be
// buffered in memory, and transmitted as soon as the disconnect link comes back
// online.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol <-- Dave <-- Alice --- Bob reconnect, expect settle to propagate
func testSwitchOfflineDelivery(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode([]string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(2 * time.Second)
// First, disconnect Dave and Alice so that their link is broken.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Then, reconnect them to ensure Dave doesn't just fail back the htlc.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Now, disconnect Dave from Alice again before settling back the
// payment.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(200 * time.Millisecond)
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
time.Sleep(200 * time.Millisecond)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
// testSwitchOfflineDeliveryPersistence constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
// 1. Carol --> Dave --> Alice --> Bob forward payment
// 2. Carol --- Dave X Alice --- Bob disconnect intermediaries
// 3. Carol --- Dave X Alice <-- Bob settle last hop
// 4. Carol --- Dave X X Bob restart Alice
// 5. Carol <-- Dave <-- Alice --- Bob expect settle to propagate
func testSwitchOfflineDeliveryPersistence(net *lntest.NetworkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(1000000)
const pushAmt = btcutil.Amount(900000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 15)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointAlice)
txidHash, err := getChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 ndoe, 3 channel topology. Dave will make
// a channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice.
dave, err := net.NewNode([]string{"--unsafe-disconnect"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointDave := openChannelAndAssert(ctxt, t, net, dave,
net.Alice, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointDave)
txidHash, err = getChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in htlchodl mode so that we can disconnect the
// intermediary hops before starting the settle.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
dave, chanAmt, pushAmt)
networkChans = append(networkChans, chanPointCarol)
txidHash, err = getChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolChanTXID, err := chainhash.NewHash(txidHash)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
txid, e := chainhash.NewHash(txidHash)
if e != nil {
t.Fatalf("unable to create sha hash: %v", e)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Carol, which expect a payment from Bob for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs := make([]string, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs[i] = resp.PaymentRequest
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
time.Sleep(2 * time.Second)
// Restart the intermediaries and the sender.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
// Now restart carol without hodl mode, to settle back the outstanding
// payments.
carol.SetExtraArgs(nil)
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
time.Sleep(200 * time.Millisecond)
if err := net.RestartNode(dave, nil); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
time.Sleep(200 * time.Millisecond)
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Carol, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Bob->Alice->David->Carol, order is Carol,
// David, Alice, Bob.
var amountPaid = int64(5000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to disconnect alice from dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to reconnect alice to dave: %v", err)
}
// Lastly, we will send one more payment to ensure all channels are
// still functioning properly.
finalInvoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, finalInvoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
payReqs = []string{resp.PaymentRequest}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
amountPaid = int64(6000)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", carol,
carolFundPoint, int64(0), amountPaid)
assertAmountPaid(t, ctxb, "Dave(local) => Carol(remote)", dave,
carolFundPoint, amountPaid, int64(0))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", dave,
daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
assertAmountPaid(t, ctxb, "Alice(local) => Dave(remote)", net.Alice,
daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Alice,
aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
assertAmountPaid(t, ctxb, "Bob(local) => Alice(remote)", net.Bob,
aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the nodes we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := net.ShutdownNode(carol); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
if err := net.ShutdownNode(dave); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
type testCase struct {
name string
test func(net *lntest.NetworkHarness, t *harnessTest)
@ -6492,6 +7530,10 @@ var testsCases = []*testCase{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "sphinx replay persistence",
test: testSphinxReplayPersistence,
},
{
name: "list outgoing payments",
test: testListPayments,
@ -6589,6 +7631,18 @@ var testsCases = []*testCase{
name: "revoked uncooperative close retribution remote hodl",
test: testRevokedCloseRetributionRemoteHodl,
},
{
name: "switch circuit persistence",
test: testSwitchCircuitPersistence,
},
{
name: "switch offline delivery",
test: testSwitchOfflineDelivery,
},
{
name: "switch offline delivery persistence",
test: testSwitchOfflineDeliveryPersistence,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a