lnd.xprv/lnd_test.go

2565 lines
84 KiB
Go
Raw Normal View History

package main
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"path/filepath"
"strings"
"sync"
"testing"
"time"
"sync/atomic"
"encoding/hex"
"reflect"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/rpctest"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcrpcclient"
"github.com/roasbeef/btcutil"
"golang.org/x/net/context"
"google.golang.org/grpc"
)
// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aid in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
t *testing.T
// testCase is populated during test execution and represents the
// current test case.
testCase *testCase
}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
return &harnessTest{t, nil}
}
// Fatalf causes the current active test case to fail with a fatal error. All
// integration tests should mark test failures solely with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
if h.testCase != nil {
h.t.Fatalf("Failed: (%v): exited with error: \n"+
"%v", h.testCase.name, stacktrace)
} else {
h.t.Fatalf("Error outside of test: %v", stacktrace)
}
}
// RunTestCase executes a harness test case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase, net *networkHarness) {
h.testCase = testCase
defer func() {
h.testCase = nil
}()
defer func() {
if err := recover(); err != nil {
description := errors.Wrap(err, 2).ErrorStack()
h.t.Fatalf("Failed: (%v) paniced with: \n%v",
h.testCase.name, description)
}
}()
testCase.test(net, h)
h.t.Logf("Passed: (%v)", h.testCase.name)
return
}
func (h *harnessTest) Logf(format string, args ...interface{}) {
h.t.Logf(format, args...)
}
func (h *harnessTest) Log(args ...interface{}) {
h.t.Log(args...)
}
func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
for _, tx := range block.Transactions {
sha := tx.TxHash()
if bytes.Equal(txid[:], sha[:]) {
return
}
}
t.Fatalf("funding tx was not included in block")
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain.
func mineBlocks(t *harnessTest, net *networkHarness, num uint32) []*wire.MsgBlock {
blocks := make([]*wire.MsgBlock, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
}
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
alice, bob *lightningNode, fundingAmt btcutil.Amount,
pushAmt btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, fundingAmt,
pushAmt, 1)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed lighting node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
node *lightningNode, fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
txid, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to convert to chainhash: %v", err)
}
chanPointStr := fmt.Sprintf("%v:%v", txid, fundingChanPoint.OutputIndex)
// If we didn't force close the transaction, at this point, the channel
// should now be marked as being in the state of "pending close".
if !force {
pendingChansRequest := &lnrpc.PendingChannelRequest{}
pendingChanResp, err := node.PendingChannels(ctx, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
for _, pendingClose := range pendingChanResp.PendingClosingChannels {
if pendingClose.Channel.ChannelPoint == chanPointStr {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as pending close")
}
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, closingTxid)
return closingTxid
}
// numOpenChannelsPending sends an RPC request to a node to get a count of the
// node's channels that are currently in a pending state (with a broadcast, but
// not confirmed funding transaction).
func numOpenChannelsPending(ctxt context.Context, node *lightningNode) (int, error) {
pendingChansRequest := &lnrpc.PendingChannelRequest{}
resp, err := node.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
return 0, err
}
return len(resp.PendingOpenChannels), nil
}
// assertNumOpenChannelsPending asserts that a pair of nodes have the expected
// number of pending channels between them.
func assertNumOpenChannelsPending(ctxt context.Context, t *harnessTest,
alice, bob *lightningNode, expected int) {
aliceNumChans, err := numOpenChannelsPending(ctxt, alice)
if err != nil {
t.Fatalf("error fetching alice's node (%v) pending channels %v",
alice.nodeID, err)
}
bobNumChans, err := numOpenChannelsPending(ctxt, bob)
if err != nil {
t.Fatalf("error fetching bob's node (%v) pending channels %v",
bob.nodeID, err)
}
if aliceNumChans != expected {
t.Fatalf("number of pending channels for alice incorrect. "+
"expected %v, got %v", expected, aliceNumChans)
}
if bobNumChans != expected {
t.Fatalf("number of pending channels for bob incorrect. "+
"expected %v, got %v",
expected, bobNumChans)
}
}
//assertNumConnections asserts number current connections between two peers
func assertNumConnections(ctxt context.Context, t *harnessTest,
alice, bob *lightningNode, expected int) {
aliceNumPeers, err := alice.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch alice's node (%v) list peers %v",
alice.nodeID, err)
}
bobNumPeers, err := bob.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch bob's node (%v) list peers %v",
bob.nodeID, err)
}
if len(aliceNumPeers.Peers) != expected {
t.Fatalf("number of peers connected to alice is incorrect: expected %v, got %v",
expected, len(aliceNumPeers.Peers))
}
if len(bobNumPeers.Peers) != expected {
t.Fatalf("number of peers connected to bob is incorrect: expected %v, got %v",
expected, len(bobNumPeers.Peers))
}
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
pushAmt := btcutil.Amount(100000)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob with Alice pushing 100k satoshis to Bob's side during
// funding. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
// With then channel open, ensure that the amount specified above has
// properly been pushed to Bob.
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get bobs's balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-pushAmt) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
chanAmt-pushAmt, aliceBal)
}
if bobBal.Balance != int64(pushAmt) {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
pushAmt, bobBal.Balance)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testDisconnectingTargetPeer performs a test which
// disconnects Alice-peer from Bob-peer and then re-connects them again
func testDisconnectingTargetPeer(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
ctxt, _ := context.WithTimeout(ctxb, timeout)
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 1
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt, numConfs)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have
// been broadcast, but not confirmed. Alice and Bob's nodes
// should reflect this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Disconnect Alice-peer from Bob-peer and get error
// causes by one pending channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one pending channel is existing: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Millisecond * 3000)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: pendingUpdate.Txid,
OutputIndex: pendingUpdate.OutputIndex,
}
// Disconnect Alice-peer from Bob-peer and get error
// causes by one active channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one active channel is existing: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, true)
// Disconnect Alice-peer from Bob-peer without getting error
// about existing channels.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect Bob's peer from Alice's: err %v", err)
}
// Check zero peer connections.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 0)
// Finally, re-connect both nodes.
if err := net.ConnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect Alice's peer to Bob's: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
}
// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
ctxt, _ := context.WithTimeout(ctxb, timeout)
// Create a new channel that requires 5 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 5
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt, numConfs)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have
// been broadcast, but not confirmed. Alice and Bob's nodes
// should reflect this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(net.Bob, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// The following block ensures that after both nodes have restarted,
// they have reconnected before the execution of the next test.
peersTimeout := time.After(15 * time.Second)
checkPeersTick := time.NewTicker(100 * time.Millisecond)
defer checkPeersTick.Stop()
peersPoll:
for {
select {
case <-peersTimeout:
t.Fatalf("peers unable to reconnect after restart")
case <-checkPeersTick.C:
peers, err := net.Bob.ListPeers(ctxb,
&lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("ListPeers error: %v\n", err)
}
if len(peers.Peers) > 0 {
break peersPoll
}
}
}
// Next, mine enough blocks s.t the channel will open with a single
// additional block mined.
if _, err := net.Miner.Node.Generate(3); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Both nodes should still show a single channel as pending.
time.Sleep(time.Millisecond * 300)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Finally, mine the last block which should mark the channel as open.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Millisecond * 300)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: pendingUpdate.Txid,
OutputIndex: pendingUpdate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
// Open a channel with 0.5 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient,
amount btcutil.Amount) {
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
chanPoint := openChannelAndAssert(ctx, t, net, net.Alice, net.Bob,
amount, 0)
// Wait for both Alice and Bob to recognize this new channel.
ctxt, _ := context.WithTimeout(context.Background(), timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount)
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Bob, then
// force closes the channel after some cursory assertions. Within the test, two
// transactions should be broadcast on-chain, the commitment transaction itself
// (which closes the channel), and the sweep transaction a few blocks later
// once the output(s) become mature. This test also includes several restarts
// to ensure that the transaction output states are persisted throughout
// the forced closure process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 10)
ctxb := context.Background()
// Before we start, obtain Bob's current wallet balance, we'll check to
// ensure that at the end of the force closure by Alice, Bob recognizes
// his new on-chain output.
bobBalReq := &lnrpc.WalletBalanceRequest{}
bobBalResp, err := net.Bob.WalletBalance(ctxb, bobBalReq)
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
}
bobStartingBalance := btcutil.Amount(bobBalResp.Balance * 1e8)
// First establish a channel with a capacity of 100k satoshis between
// Alice and Bob. We also push 50k satoshis of the initial amount
// towards Bob.
numFundingConfs := uint32(1)
chanAmt := btcutil.Amount(10e4)
pushAmt := btcutil.Amount(5e4)
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, pushAmt, numFundingConfs)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel to open: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
// the channel. This will also assert that the commitment transaction
// was immediately broadcast in order to fulfill the force closure
// request.
_, closingTxID, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the force close section.
2017-05-11 03:58:42 +03:00
time.Sleep(time.Millisecond * 300)
pendingChansRequest := &lnrpc.PendingChannelRequest{}
pendingChanResp, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
txid, _ := chainhash.NewHash(chanPoint.FundingTxid[:])
op := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
for _, forceClose := range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as force close for alice")
}
// TODO(roasbeef): should check default value in config here instead,
// or make delay a param
const defaultCSV = 4
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
// the channel in the closure process and will recover the correct state
// when the system comes back on line. This restart tests state
// persistence at the beginning of the process, when the commitment
// transaction has been broadcast but not yet confirmed in a block.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// The following sleep provides time for the UTXO nursery to move the
// output from the preschool to the kindergarten database buckets
// prior to RestartNode() being triggered. Without this sleep, the
// database update may fail, causing the UTXO nursery to retry the move
// operation upon restart. This will change the blockheights from what
// is expected by the test.
// TODO(bvu): refactor out this sleep.
duration := time.Millisecond * 300
time.Sleep(duration)
// Now that the channel has been force closed, it should now have the
// height and number of blocks to confirm populated.
pendingChan, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChan.PendingForceClosingChannels) == 0 {
t.Fatalf("channel not marked as force close for alice")
}
forceClosedChan := pendingChan.PendingForceClosingChannels[0]
if forceClosedChan.MaturityHeight == 0 {
t.Fatalf("force close channel marked as not confirmed")
}
if forceClosedChan.BlocksTilMaturity != defaultCSV {
t.Fatalf("force closed channel has incorrect maturity time: "+
"expected %v, got %v", forceClosedChan.BlocksTilMaturity,
defaultCSV)
}
// The following restart is intended to ensure that outputs from the
// force close commitment transaction have been persisted once the
// transaction has been confirmed, but before the outputs are spendable
// (the "kindergarten" bucket.)
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// For the persistence test, we generate three blocks, then trigger
// a restart and then generate the final block that should trigger
// the creation of the sweep transaction.
if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// The following restart checks to ensure that outputs in the kindergarten
// bucket are persisted while waiting for the required number of
// confirmations to be reported.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
var sweepingTXID *chainhash.Hash
var mempool []*chainhash.Hash
mempoolTimeout := time.After(3 * time.Second)
checkMempoolTick := time.NewTicker(100 * time.Millisecond)
defer checkMempoolTick.Stop()
mempoolPoll:
for {
select {
case <-mempoolTimeout:
t.Fatalf("sweep tx not found in mempool")
case <-checkMempoolTick.C:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) != 0 {
break mempoolPoll
}
}
}
// There should be exactly one transaction within the mempool at this
// point.
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Finally, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(t, block, sweepTx.Hash())
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
time.Sleep(time.Millisecond * 300)
pendingChans, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChans.PendingForceClosingChannels) != 0 {
t.Fatalf("no channels should be shown as force closed")
}
// At this point, Bob should now be aware of his new immediately
// spendable on-chain balance, as it was Alice who broadcast the
// commitment transaction.
bobBalResp, err = net.Bob.WalletBalance(ctxb, bobBalReq)
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
}
bobExpectedBalance := bobStartingBalance + pushAmt
if btcutil.Amount(bobBalResp.Balance*1e8) < bobExpectedBalance {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
bobExpectedBalance, btcutil.Amount(bobBalResp.Balance*1e8))
}
}
func testSingleHopInvoice(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice being
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
assertPaymentBalance := func(amt btcutil.Amount) {
balReq := &lnrpc.ChannelBalanceRequest{}
// The balances of Alice and Bob should be updated accordingly.
aliceBalance, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to query for alice's balance: %v", err)
}
bobBalance, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to query for bob's balance: %v", err)
}
if aliceBalance.Balance != int64(chanAmt-amt) {
t.Fatalf("Alice's balance is incorrect got %v, expected %v",
aliceBalance, int64(chanAmt-amt))
}
if bobBalance.Balance != int64(amt) {
t.Fatalf("Bob's balance is incorrect got %v, expected %v",
bobBalance, amt)
}
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
aliceListChannels, err := net.Alice.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
if aliceSatoshisSent != int64(amt) {
t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
aliceSatoshisSent, amt)
}
bobListChannels, err := net.Bob.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for bob's channel list: %v", err)
}
bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
if bobSatoshisReceived != int64(amt) {
t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
bobSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Ensure we obtain the proper preimage in the response.
resp, err := sendStream.Recv()
if err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
if !bytes.Equal(preimage, resp.PaymentPreimage) {
t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
resp.PaymentPreimage)
}
// Bob's invoice should now be found and marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment completed all balance related stats should be
// properly updated.
time.Sleep(time.Millisecond * 200)
assertPaymentBalance(paymentAmt)
// Create another invoice for Bob, this time leaving off the preimage
// to one will be randomly generated. We'll test the proper
// encoding/decoding of the zpay32 payment requests.
invoice = &lnrpc.Invoice{
Memo: "test3",
Value: paymentAmt,
}
invoiceResp, err = net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Next send another payment, but this time using a zpay32 encoded
// invoice rather than manually specifying the payment details.
if err := sendStream.Send(&lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
// The second payment should also have succeeded, with the balances
// being update accordingly.
time.Sleep(time.Millisecond * 200)
assertPaymentBalance(paymentAmt * 2)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testListPayments(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// First start by deleting all payments that Alice knows of. This will
// allow us to execute the test with a clean state for Alice.
delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
if _, err := net.Alice.DeleteAllPayments(ctxb, delPaymentsReq); err != nil {
t.Fatalf("unable to delete payments: %v", err)
}
// Check that there are no payments before test.
reqInit := &lnrpc.ListPaymentsRequest{}
paymentsRespInit, err := net.Alice.ListPayments(ctxb, reqInit)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsRespInit.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("B"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
addInvoiceCtxt, _ := context.WithTimeout(ctxb, timeout)
invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
// Grab Alice's list of payments, she should show the existence of
// exactly one payment.
req := &lnrpc.ListPaymentsRequest{}
paymentsResp, err := net.Alice.ListPayments(ctxb, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 1 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), 1)
}
p := paymentsResp.Payments[0]
// Ensure that the stored path shows a direct payment to Bob with no
// other nodes in-between.
expectedPath := []string{
net.Bob.PubKeyStr,
}
if !reflect.DeepEqual(p.Path, expectedPath) {
t.Fatalf("incorrect path, got %v, want %v",
p.Path, expectedPath)
}
// The payment amount should also match our previous payment directly.
if p.Value != paymentAmt {
t.Fatalf("incorrect amount, got %v, want %v",
p.Value, paymentAmt)
}
// The payment hash (or r-hash) should have been stored correctly.
correctRHash := hex.EncodeToString(invoiceResp.RHash)
if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
t.Fatalf("incorrect RHash, got %v, want %v",
p.PaymentHash, correctRHash)
}
// Finally, as we made a single-hop direct payment, there should have
// been no fee applied.
if p.Fee != 0 {
t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
}
// Delete all payments from Alice. DB should have no payments.
delReq := &lnrpc.DeleteAllPaymentsRequest{}
_, err = net.Alice.DeleteAllPayments(ctxb, delReq)
if err != nil {
t.Fatalf("Can't delete payments at the end: %v", err)
}
// Check that there are no payments before test.
listReq := &lnrpc.ListPaymentsRequest{}
paymentsResp, err = net.Alice.ListPayments(ctxb, listReq)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testMultiHopPayments(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, 0)
aliceChanTXID, err := chainhash.NewHash(chanPointAlice.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create a new node (Carol), load her with some funds, then establish
// a connection between Carol and Alice with a channel that has
// identical capacity to the one created above.
//
// The network topology should now look like: Carol -> Alice -> Bob
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
net.Alice, chanAmt, 0)
carolChanTXID, err := chainhash.NewHash(chanPointCarol.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
rHashes := make([][]byte, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHashes[i] = resp.RHash
}
// Wait for carol to recognize both the Channel from herself to Carol,
// and also the channel from Alice to Bob.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("carol didn't see the alice->bob channel before timeout: %v", err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created above.
carolPayStream, err := carol.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for carol: %v", err)
}
// Concurrently pay off all 5 of Bob's invoices. Each of the goroutines
// will unblock on the recv once the HTLC it sent has been fully
// settled.
var wg sync.WaitGroup
for _, rHash := range rHashes {
sendReq := &lnrpc.SendRequest{
PaymentHash: rHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := carolPayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := carolPayStream.Recv(); err != nil {
t.Fatalf("unable to recv pay resp: %v", err)
}
}
finClear := make(chan struct{})
go func() {
wg.Wait()
close(finClear)
}()
select {
case <-time.After(time.Second * 10):
t.Fatalf("HTLCs not cleared after 10 seconds")
case <-finClear:
}
assertAsymmetricBalance := func(node *lightningNode,
2016-10-30 17:55:25 +03:00
chanPoint wire.OutPoint, localBalance,
remoteBalance int64) {
2016-10-30 17:55:25 +03:00
channelName := ""
switch chanPoint {
case carolFundPoint:
channelName = "Carol(local) => Alice(remote)"
case aliceFundPoint:
channelName = "Alice(local) => Bob(remote)"
}
2016-10-30 17:55:25 +03:00
checkBalance := func() error {
listReq := &lnrpc.ListChannelsRequest{}
resp, err := node.ListChannels(ctxb, listReq)
if err != nil {
return fmt.Errorf("unable to for node's "+
"channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if channel.LocalBalance != localBalance {
return fmt.Errorf("%v: incorrect local "+
"balances: %v != %v", channelName,
channel.LocalBalance, localBalance)
}
if channel.RemoteBalance != remoteBalance {
return fmt.Errorf("%v: incorrect remote "+
"balances: %v != %v", channelName,
channel.RemoteBalance, remoteBalance)
}
return nil
}
2016-10-30 17:55:25 +03:00
return fmt.Errorf("channel not found")
}
2016-10-30 17:55:25 +03:00
// As far as HTLC inclusion in commitment transaction might be
// postponed we will try to check the balance couple of
// times, and then if after some period of time we receive wrong
// balance return the error.
// TODO(roasbeef): remove sleep after invoice notification hooks
// are in place
var timeover uint32
go func() {
<-time.After(time.Second * 20)
atomic.StoreUint32(&timeover, 1)
}()
for {
isTimeover := atomic.LoadUint32(&timeover) == 1
if err := checkBalance(); err != nil {
if isTimeover {
t.Fatalf("Check balance failed: %v", err)
}
} else {
break
}
}
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
2016-10-30 17:55:25 +03:00
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->Alice->Bob, order is Bob,Alice,Carol.
const sourceBal = int64(95000)
const sinkBal = int64(5000)
2016-10-30 17:55:25 +03:00
assertAsymmetricBalance(net.Bob, aliceFundPoint, sinkBal, sourceBal)
assertAsymmetricBalance(net.Alice, aliceFundPoint, sourceBal, sinkBal)
assertAsymmetricBalance(net.Alice, carolFundPoint, sinkBal, sourceBal)
assertAsymmetricBalance(carol, carolFundPoint, sourceBal, sinkBal)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the node we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
func testInvoiceSubscriptions(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(500000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Next create a new invoice for Bob requesting 1k satoshis.
// TODO(roasbeef): make global list of invoices for each node to re-use
// and avoid collisions
const paymentAmt = 1000
preimage := bytes.Repeat([]byte{byte(90)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Create a new invoice subscription client for Bob, the notification
// should be dispatched shortly below.
req := &lnrpc.InvoiceSubscription{}
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled.
if !invoiceUpdate.Settled {
t.Fatalf("invoice not settled but shoudl be")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
close(updateSent)
}()
// Wait for the channel to be recognized by both Alice and Bob before
// continuing the rest of the test.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
// TODO(roasbeef): will need to make num blocks to advertise a
// node param
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// With the assertion above set up, send a payment from Alice to Bob
// which should finalize and settle the invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := sendStream.Recv(); err != nil {
t.Fatalf("error when attempting recv: %v", err)
}
select {
case <-time.After(time.Second * 5):
t.Fatalf("update not sent after 5 seconds")
case <-updateSent: // Fall through on success
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBasicChannelCreation test multiple channel opening and closing.
func testBasicChannelCreation(net *networkHarness, t *harnessTest) {
const (
numChannels = 2
timeout = time.Duration(time.Second * 5)
amount = btcutil.Amount(btcutil.SatoshiPerBitcoin)
)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctx, _ := context.WithTimeout(context.Background(), timeout)
chanPoints[i] = openChannelAndAssert(ctx, t, net, net.Alice,
net.Bob, amount, 0)
}
// Close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctx, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *networkHarness, t *harnessTest) {
maxPendingChannels := defaultMaxPendingChannels + 1
amount := btcutil.Amount(btcutil.SatoshiPerBitcoin)
timeout := time.Duration(time.Second * 10)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode(args)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't open
// the channel if the number of pending channels exceed max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctx, _ = context.WithTimeout(context.Background(), timeout)
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount,
0, 1)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctx, _ = context.WithTimeout(context.Background(), timeout)
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 0, 1)
if err == nil {
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
t.Fatalf("not expected error was received: %v", err)
}
// For now our channels are in pending state, in order to not interfere
// with other tests we should clean up - complete opening of the
// channel and then close it.
// Mine a block, then wait for node's to notify us that the channel has
// been opened. The funding transactions should be found within the
// newly mined block.
block := mineBlocks(t, net, 1)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
// Ensure that the funding transaction enters a block, and is
// properly advertised by Alice.
assertTxInBlock(t, block, fundingTxID)
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, fundingChanPoint)
if err != nil {
t.Fatalf("channel not seen on network before "+
"timeout: %v", err)
}
// The channel should be listed in the peer information
// returned by both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
}
// Next, close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// Finally, shutdown the node we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
func copyFile(dest, src string) error {
s, err := os.Open(src)
if err != nil {
return err
}
defer s.Close()
d, err := os.Create(dest)
if err != nil {
return err
}
if _, err := io.Copy(d, s); err != nil {
d.Close()
return err
}
return d.Close()
}
func testRevokedCloseRetribution(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 5)
chanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
paymentAmt = 10000
numInvoices = 6
)
// In order to test Alice's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// With the channel open, we'll create a few invoices for Bob that
// Alice will pay to in order to advance the state of the channel.
bobPaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(255 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPaymentHashes[i] = resp.RHash
}
// As we'll be querying the state of bob's channels frequently we'll
// create a closure helper function for the purpose.
getBobChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
bobChannelInfo, err := net.Bob.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(bobChannelInfo.Channels) != 1 {
t.Fatalf("bob should only have a single channel, instead he has %v",
len(bobChannelInfo.Channels))
}
return bobChannelInfo.Channels[0], nil
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Bob. We also create a small helper function to send payments to Bob,
// consuming the payment hashes we generated above.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendPayments := func(start, stop int) error {
for i := start; i < stop; i++ {
sendReq := &lnrpc.SendRequest{
PaymentHash: bobPaymentHashes[i],
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
return err
}
if _, err := alicePayStream.Recv(); err != nil {
return err
}
}
return nil
}
// Send payments from Alice to Bob using 3 of Bob's payment hashes
// generated above.
if err := sendPayments(0, numInvoices/2); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
time.Sleep(time.Millisecond * 200)
bobChan, err := getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bobChan.LocalBalance != 30000 {
t.Fatalf("bob's balance is incorrect, got %v, expected %v",
bobChan.LocalBalance, 30000)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// Create a temporary file to house Bob's database state at this
// particular point in history.
bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
defer os.Remove(bobTempDbPath)
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
bobDbPath := filepath.Join(net.Bob.cfg.DataDir, "simnet/bitcoin/channel.db")
if err := copyFile(bobTempDbFile, bobDbPath); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Bob, consuming Bob's remaining
// payment hashes.
if err := sendPayments(numInvoices/2, numInvoices); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return os.Rename(bobTempDbFile, bobDbPath)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Alice's retribution.
breachTXID := closeChannelAndAssert(ctxb, t, net, net.Bob, chanPoint,
true)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
var justiceTXID *chainhash.Hash
breakTimeout := time.After(time.Second * 5)
poll:
for {
select {
case <-breakTimeout:
t.Fatalf("justice tx not found in mempool")
default:
}
mempool, err := net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to get mempool: %v", err)
}
if len(mempool) == 0 {
continue
}
justiceTXID = mempool[0]
break poll
}
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block := mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Finally, obtain Alice's channel state, she shouldn't report any
// channel as she just successfully brought Bob to justice by sweeping
// all the channel funds.
req := &lnrpc.ListChannelsRequest{}
aliceChanInfo, err := net.Alice.ListChannels(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's channels: %v", err)
}
if len(aliceChanInfo.Channels) != 0 {
t.Fatalf("alice shouldn't have a channel: %v",
spew.Sdump(aliceChanInfo.Channels))
}
}
func testHtlcErrorPropagation(net *networkHarness, t *harnessTest) {
// In this test we wish to exercise the daemon's correct parsing,
// handling, and propagation of errors that occur while processing a
// multi-hop payment.
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
const chanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
assertBaseBalance := func() {
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt) {
t.Fatalf("alice has an incorrect balance: expected %v got %v",
int64(chanAmt), aliceBal)
}
if bobBal.Balance != int64(chanAmt) {
t.Fatalf("bob has an incorrect balance: expected %v got %v",
int64(chanAmt), bobBal)
}
}
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create a connection from Bob to Carol, and open a
// channel between them so we have the topology: Alice -> Bob -> Carol.
// The channel created will be of lower capacity that the one created
// above.
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
const bobChanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
chanPointBob := openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, 0)
// Ensure that Alice has Carol in her routing table before proceeding.
nodeInfoReq := &lnrpc.NodeInfoRequest{
PubKey: carol.PubKeyStr,
}
checkTableTimeout := time.After(time.Second * 10)
checkTableTicker := time.NewTicker(100 * time.Millisecond)
defer checkTableTicker.Stop()
out:
// TODO(roasbeef): make into async hook for node announcements
for {
select {
case <-checkTableTicker.C:
_, err := net.Alice.GetNodeInfo(ctxb, nodeInfoReq)
if err != nil && strings.Contains(err.Error(),
"unable to find") {
continue
}
break out
case <-checkTableTimeout:
t.Fatalf("carol's node announcement didn't propagate within " +
"the timeout period")
}
}
// With the channels, open we can now start to test our multi-hop error
// scenarios. First, we'll generate an invoice from carol that we'll
// use to test some error cases.
const payAmt = 10000
invoiceReq := &lnrpc.Invoice{
Memo: "kek99",
Value: payAmt,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Before we send the payment, ensure that the announcement of the new
// channel has been processed by Alice.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// TODO(roasbeef): return failure response rather than failing entire
// stream on payment error.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// For the first scenario, we'll test the cancellation of an HTLC with
// an unknown payment hash.
sendReq := &lnrpc.SendRequest{
PaymentHash: bytes.Repeat([]byte("Z"), 32), // Wrong hash.
Dest: carol.PubKey[:],
Amt: payAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should've resulted in an error since we went it with the
// wrong payment hash.
_, err = alicePayStream.Recv()
if err == nil {
t.Fatalf("payment should have been rejected due to invalid " +
"payment hash")
} else if !strings.Contains(err.Error(), "preimage") {
// TODO(roasbeef): make into proper gRPC error code
t.Fatalf("payment should have failed due to unknown preimage, "+
"instead failed due to : %v", err)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// We need to create another payment stream since the first one was
// closed due to an error.
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// Next, we'll test the case of a recognized payHash but, an incorrect
// value on the extended HTLC.
sendReq = &lnrpc.SendRequest{
PaymentHash: carolInvoice.RHash,
Dest: carol.PubKey[:],
Amt: 1000, // 10k satoshis are expected.
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should fail with an error since we sent 1k satoshis
// isn't of 10k as was requested.
_, err = alicePayStream.Recv()
if err == nil {
t.Fatalf("payment should have been rejected due to wrong " +
"HTLC amount")
} else if !strings.Contains(err.Error(), "htlc value") {
t.Fatalf("payment should have failed due to wrong amount, "+
"instead failed due to: %v", err)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next we'll test an error that occurs mid-route due to an outgoing
// link having insufficient capacity. In order to do so, we'll first
// need to unbalance the link connecting Bob<->Carol.
bobPayStream, err := net.Bob.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// To do so, we'll push most of the funds in the channel over to
// Alice's side, leaving on 10k satoshis of available balance for bob.
invoiceReq = &lnrpc.Invoice{
Value: int64(chanAmt) - 10000,
}
carolInvoice2, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := bobPayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice2.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if _, err := bobPayStream.Recv(); err != nil {
t.Fatalf("bob's payment failed: %v", err)
}
// At this point, Alice has 50mil satoshis on her side of the channel,
// but Bob only has 10k available on his side of the channel. So a
// payment from Alice to Carol worth 100k satoshis should fail.
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
invoiceReq = &lnrpc.Invoice{
Value: 100000,
}
carolInvoice3, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice3.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
_, err = alicePayStream.Recv()
if err == nil {
t.Fatalf("payment should fail due to insufficient "+
"capacity: %v", err)
} else if !strings.Contains(err.Error(), "capacity") {
t.Fatalf("payment should fail due to insufficient capacity, "+
"instead: %v", err)
}
// For our final test, we'll ensure that if a target link isn't
// available for what ever reason then the payment fails accordingly.
//
// We'll attempt to complete the original invoice we created with Carol
// above, but before we do so, Carol will go offline, resulting in a
// failed payment.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
time.Sleep(time.Second * 2)
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
if err := alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
_, err = alicePayStream.Recv()
if err == nil {
t.Fatalf("payment should have failed")
} else if !strings.Contains(err.Error(), "hop unknown") {
t.Fatalf("payment should fail due to unknown hop, instead: %v",
err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
// Force close Bob's final channel, also mining enough blocks to
// trigger a sweep of the funds by the utxoNursery.
// TODO(roasbeef): use config value for default CSV here.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
if _, err := net.Miner.Node.Generate(5); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
}
func testGraphTopologyNotifications(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(btcutil.SatoshiPerBitcoin / 2)
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// We'll first start by establishing a notification client to Alice
// which'll send us notifications upon detected changes in the channel
// graph.
req := &lnrpc.GraphTopologySubscription{}
topologyClient, err := net.Alice.SubscribeChannelGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to create topology client: %v", err)
}
// Open a new channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// We'll launch a goroutine that'll be responsible for proxying all
// notifications recv'd from the client into the channel below.
quit := make(chan struct{})
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate, 3)
go func() {
for {
select {
case <-quit:
return
default:
graphUpdate, err := topologyClient.Recv()
if err == io.EOF {
return
} else if err != nil {
t.Fatalf("unable to recv graph update: %v", err)
}
graphUpdates <- graphUpdate
}
}
}()
// The channel opening above should've triggered a new notification
// sent to the notification client.
const numExpectedUpdates = 2
for i := 0; i < numExpectedUpdates; i++ {
select {
// Ensure that a new update for both created edges is properly
// dispatched to our registered client.
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ChannelUpdates) != 1 {
t.Fatalf("expected a single update, instead "+
"have %v", len(graphUpdate.ChannelUpdates))
}
chanUpdate := graphUpdate.ChannelUpdates[0]
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch: expected %v, "+
"got %v", chanAmt, chanUpdate.Capacity)
}
switch chanUpdate.AdvertisingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
case <-time.After(time.Second * 10):
t.Fatalf("notification for new channel not sent")
}
}
_, blockHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// Now we'll test that updates upon a channel closure are properly sent
// when channels are closed within the network.
ctxt, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Similar to the case above, we should receive another notification
// detailing the channel closure.
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ClosedChans) != 1 {
t.Fatalf("expected a single update, instead "+
"have %v", len(graphUpdate.ClosedChans))
}
closedChan := graphUpdate.ClosedChans[0]
if closedChan.ClosedHeight != uint32(blockHeight+1) {
t.Fatalf("close heights of channel mismatch: expected "+
"%v, got %v", blockHeight+1, closedChan.ClosedHeight)
}
if !bytes.Equal(closedChan.ChanPoint.FundingTxid,
chanPoint.FundingTxid) {
t.Fatalf("channel point hash mismatch: expected %v, "+
"got %v", chanPoint.FundingTxid,
closedChan.ChanPoint.FundingTxid)
}
if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
t.Fatalf("output index mismatch: expected %v, got %v",
chanPoint.OutputIndex, closedChan.ChanPoint)
}
case <-time.After(time.Second * 10):
t.Fatalf("notification for channel closure not " +
"sent")
}
// For the final portion of the test, we'll ensure that once a new node
// appears in the network, the proper notification is dispatched.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Connect the new node above to Alice. This should result in the nodes
// syncing up their respective graph state, with the new addition being
// the existence of Carol in the graph.
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// We should receive an update advertising the newly connected node.
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.NodeUpdates) != 1 {
t.Fatalf("expected a single update, instead "+
"have %v", len(graphUpdate.NodeUpdates))
}
nodeUpdate := graphUpdate.NodeUpdates[0]
if nodeUpdate.IdentityKey != carol.PubKeyStr {
t.Fatalf("node update pubkey mismatch: expected %v, got %v",
carol.PubKeyStr, nodeUpdate.IdentityKey)
}
case <-time.After(time.Second * 10):
t.Fatalf("node update ntfn not sent")
}
close(quit)
// Finally, shutdown carol as our test has concluded successfully.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
ipAddresses := map[string]bool{
"192.168.1.1:8333": true,
"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337": true,
}
var lndArgs []string
for address := range ipAddresses {
lndArgs = append(lndArgs, "--externalip="+address)
}
dave, err := net.NewNode(lndArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, net.Alice, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
time.Sleep(time.Millisecond * 200)
req := &lnrpc.ChannelGraphRequest{}
chanGraph, err := net.Alice.DescribeGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
for _, node := range chanGraph.Nodes {
if node.PubKey == dave.PubKeyStr {
for _, address := range node.Addresses {
addrStr := address.String()
// parse the IP address from the string
// representation of the TCPAddr
parts := strings.Split(addrStr, "\"")
if ipAddresses[parts[3]] {
delete(ipAddresses, parts[3])
} else {
if !strings.HasPrefix(parts[3],
"127.0.0.1:") {
t.Fatalf("unexpected IP: %v",
parts[3])
}
}
}
}
}
if len(ipAddresses) != 0 {
t.Fatalf("expected IP addresses not in channel "+
"graph: %v", ipAddresses)
}
if err := dave.Shutdown(); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testNodeSignVerify(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
// bob should be able to verify alice's signature
aliceMsg := []byte("alice msg")
// alice: sign "alice msg"
sigReq := &lnrpc.SignMessageRequest{Msg: aliceMsg}
sigResp, err := net.Alice.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
aliceSig := sigResp.Signature
// bob: verify alice's signature -> should succeed
verifyReq := &lnrpc.VerifyMessageRequest{
Msg: aliceMsg, Signature: aliceSig}
verifyResp, err := net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if !verifyResp.Valid {
t.Fatalf("alice's signature didn't validate")
}
// carol is a new node that is unconnected to alice or bob
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
carolMsg := []byte("carol msg")
// carol: sign "carol msg"
sigReq = &lnrpc.SignMessageRequest{Msg: carolMsg}
sigResp, err = carol.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
carolSig := sigResp.Signature
// bob: verify carol's signature -> should fail
verifyReq = &lnrpc.VerifyMessageRequest{
Msg: carolMsg, Signature: carolSig}
verifyResp, err = net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if verifyResp.Valid {
t.Fatalf("carol's signature should not be valid")
}
}
type testCase struct {
name string
test func(net *networkHarness, t *harnessTest)
}
var testsCases = []*testCase{
{
name: "basic funding flow",
test: testBasicChannelFunding,
},
{
name: "disconnecting target peer",
test: testDisconnectingTargetPeer,
},
{
name: "graph topology notifications",
test: testGraphTopologyNotifications,
},
{
name: "funding flow persistence",
test: testChannelFundingPersistence,
},
{
name: "channel force closure",
test: testChannelForceClosure,
},
{
name: "channel balance",
test: testChannelBalance,
},
{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "list outgoing payments",
test: testListPayments,
},
{
name: "max pending channel",
test: testMaxPendingChannels,
},
{
name: "multi-hop payments",
test: testMultiHopPayments,
},
{
name: "multiple channel creation",
test: testBasicChannelCreation,
},
{
name: "invoice update subscription",
test: testInvoiceSubscriptions,
},
{
name: "multi-hop htlc error propagation",
test: testHtlcErrorPropagation,
},
// TODO(roasbeef): multi-path integration test
{
name: "node announcement",
test: testNodeAnnouncement,
},
{
// TODO(roasbeef): test always needs to be last as Bob's state
// is borked since we trick him into attempting to cheat Alice?
name: "revoked uncooperative close retribution",
test: testRevokedCloseRetribution,
},
{
name: "node sign verify",
test: testNodeSignVerify,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ht := newHarnessTest(t)
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lndHarness, err := newNetworkHarness()
if err != nil {
ht.Fatalf("unable to create lightning network harness: %v", err)
}
defer lndHarness.TearDownAll()
handlers := &btcrpcclient.NotificationHandlers{
OnTxAccepted: lndHarness.OnTxAccepted,
}
// Spawn a new goroutine to watch for any fatal errors that any of the
// running lnd processes encounter. If an error occurs, then the test
// fails immediately with a fatal error, as far as fatal is happening
// inside goroutine main goroutine would not be finished at the same
// time as we receive fatal error from lnd process.
testsFin := make(chan struct{})
go func() {
select {
case err := <-lndHarness.ProcessErrors():
ht.Fatalf("lnd finished with error (stderr): "+
"\n%v", err)
case <-testsFin:
return
}
}()
// First create an instance of the btcd's rpctest.Harness. This will be
// used to fund the wallets of the nodes within the test network and to
// drive blockchain related events within the network. Revert the default
// setting of accepting non-standard transactions on simnet to reject them.
// Transactions on the lightning network should always be standard to get
// better guarantees of getting included in to blocks.
args := []string{"--rejectnonstd"}
btcdHarness, err := rpctest.New(harnessNetParams, handlers, args)
if err != nil {
ht.Fatalf("unable to create mining node: %v", err)
}
defer btcdHarness.TearDown()
if err := btcdHarness.SetUp(true, 50); err != nil {
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on SimNet.
numBlocks := chaincfg.SimNetParams.MinerConfirmationWindow * 2
if _, err := btcdHarness.Node.Generate(numBlocks); err != nil {
ht.Fatalf("unable to generate blocks: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err := lndHarness.InitializeSeedNodes(btcdHarness, nil); err != nil {
ht.Fatalf("unable to initialize seed nodes: %v", err)
}
if err = lndHarness.SetUp(); err != nil {
ht.Fatalf("unable to set up test lightning network: %v", err)
}
t.Logf("Running %v integration tests", len(testsCases))
for _, testCase := range testsCases {
ht.RunTestCase(testCase, lndHarness)
}
close(testsFin)
}