The wallet unlocker service also requires the TLS certificates to be
added, but this was not set. This commit sets the options similar to
what is done for the regular RPC server.
Before this commit, both writing and reading an encoded empty set of
short channel IDs from the wire would fail. Prior to this commit, we
treated decoding an empty set as a caller error, and failed to write out
the zlib encoding of an empty set in a way that us and the other
implementations were able to read.
To fix this, rather than giving zlib an empty buffer to write out (which
results in an encoding with the zlib header data and the rest), we just
write a blank slice. When decoding, if we have an empty query body, then
we'll return a `nil` slice.
With the above changes, we'll now always write out an empty short
channel ID set as:
```
0001 (1 byte follows) || <encoding_type>
```
A new test has also been added to exercise this case for both known
encoding types.
Modifies TestMissingFeatureDep and TestDestPaymentAddr to use the test
ctx directly instead of generating a closure and using local state to
modify restrictions.
This commit removes the unknown required feature bit check from the
invoice decoding logic. This allows greater utility to users of the
decodepayreq rpc since it can provide inspection of otherwise invalid
invoices. In the prior commit, this check moved into our path finding
logic, so invalid features taken from an invoice will instead cause a
failure when attempting to pay.
This commit brings us inline with recent modifications to the spec, that
say we shouldn't pay nodes whose feature vectors signal unknown required
features, and also that we shouldn't route through nodes signaling
unknown required features.
Currently we assert that invoices don't have such features during
decoding, but now that users can specify feature vectors via the rpc
interface, it makes sense to perform this check deeper in call stack.
This will also allow us to remove the check from decoding entirely,
making decodepayreq more useful for debugging.
This commit removes channeldb.FetchAllInvoices and changes tests such
that expectation sets are prepared in the test case instead of selected
from the DB.
In this commit, we update the routing package to use the new
`sphinx.NewOnionPacket` method. The new version of this method allows us
to specify _how_ the packet should be filled before it's used to create
a mix-header. This isn't a fundamental change (totally backwards
compatible), instead it plugs a privacy leak that may have revealed to
the destination how long the true route was.
This commit adds an initial peer online event for channels
that have peers that are online when they are created. This
addresses a race between the peer coming online and an
existing channel being added to the event store; if the
peer comes online first, the existing channel will not have
its initial online event added.
We move from our legacy way of interpreting ReplyChannelRange messages
which was incorrect. Previously, we'd rely on the Complete field of the
ReplyChannelRange message to determine when our peer had sent all of
their replies. Now, we properly adhere to the specification by
interpreting the block ranges of these messages as intended.
Due to the large number of nodes deployed with the previous method, we
still maintain and detect when we are communicating with them, such that
we are still able to sync with them for backwards compatibility.
It's not possible to send another reply once all replies have been sent
without another request. The purpose of the check is also done within
another test, TestGossipSyncerReplyChanRangeQueryNoNewChans, so it can
be removed from here.
In order to properly adhere to the spec, when handling a
QueryChannelRange message, we must reply with a series of
ReplyChannelRange messages, that when consumed together cover the
entirety of the block range requested.
With this commit we add the ability to create a shared DH key by using
a custom node private key instead of the node's identity private key.
If no key locator is specified the node's identity private key will be
used as a fallback.
When creating the keyring, the tweak is already calculated in the remote
commitment case. We add the calculation also for our own commitment, so
we can use it in all cases without deriving the tweak.
Based on the current channel type, we derive the script used for the
to_remote output. Currently only the unencumbered p2wkh type is used,
but that will change with upcoming channel types.
To make the channel state machine less concerned about the type of
commitment, we nil the local tweak when creating the keyring, depending
on the commitment type.
We abstract away how keys are generated for the different channel types
types (currently tweak(less)).
Intention is that more of the logic that is unique for each commitment
type lives in commitment.go, making the channel state machine oblivious
to the keys and outputs being created on the commitment tx for a given
channel state.