This commit modifies the FetchPayment method to return MPPayment structs
converted from the legacy on-disk format. This allows us to attach the
HTLCs to the events given to clients subscribing to the outcome of an
HTLC.
This commit also bubbles up to the routerrpc/router_server, by
populating HTLCAttempts in the response and extracting the legacy route
field from the HTLCAttempts.
This commit parses mpp_total_amt_msat and mpp_payment_addr from the
SendToRoute rpc and populates an MPP record on the internal hop
reprsentation. When the router goes to encode the onion packet, these
fields will be serialized for the destination. We also populate the mpp
fields when marshalling routes in rpc responses.
Probabilities are no longer returned for querymc calls. To still provide
some insight into the mission control internals, this commit adds a new
rpc that calculates a success probability estimate for a specific node
pair and amount.
With a separate proto message, it becomes possible to also return the
pair data for a single pair. This prepares for the new mc probability
querying rpc.
This commit changes mission control to partially base the estimated
probability for untried connections on historical results obtained in
previous payment attempts. This incentivizes routing nodes to keep all
of their channels in good shape.
Probability estimates are amount dependent. Previously we assumed an
amount, but that starts to make less sense when we make probability more
dependent on amounts in the future.
This sets the `jstype` option to `JS_STRING` for all `chan_id` fields
in the proto rpc definition. `chan_id` is a 64 bit integer, which is
not natively supported by javascript's floating-point `number` with
only 52 bit precision. Nevertheless, by default protobuf will use the
`number` type for 64 bit integer fields in javascript, which can cause
loss of precision problems with `chan_id`. Explicitly setting the type
for javascript as a string will prevent these issues, and should not
interfere with its use as an identifier.
With the introduction of the max CLTV limit parameter, nodes are able to
reject HTLCs that exceed it. This should also be applied to path
finding, otherwise HTLCs crafted by the same node that exceed it never
left the switch. This wasn't a big deal since the previous max CLTV
limit was ~5000 blocks. Once it was lowered to 1008, the issue became
more apparent. Therefore, all of our path finding attempts now have a
restriction of said limit in in order to properly carry out HTLCs to the
network.
In order to prevent future unforeseen issues, we are temporarily
disabling the ability to send custom tlv records to the receiver of a
payment. Currently the receiver does not process or expose these
additional fields via rpc or internally, so they are being disabled
until the end-to-end flow is finished and fully validated.
Extends the invalid payment details failure with the new accept height
field. This allows sender to distinguish between a genuine invalid
details situation and a delay caused by intermediate nodes.
This commit modifies paymentLifecycle so that it not only feeds
failures into mission control, but successes as well.
This allows for more accurate probability estimates. Previously,
the success probability for a successful pair and a pair with
no history was equal. There was no force that pushed towards
previously successful routes.
In this commit, we add a new field to the Hop proto to allow callers to
be able to specify TLV records for the SendToRoute call, and also to be
able to display TLV records that were used during regular path finding.
We also update SendPayment to support dest TLV records.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
Align naming better with the lightning spec. Not the full name of the
failure (FailIncorrectOrUnknownPaymentDetails) is used, because this
would cause too many long lines in the code.