A unified policy differs between local channels and other channels on
the network. There is more information available for local channels and
this is used in the unified policy.
Previously we used the pathfinding source pubkey to determine whether to
apply the local channel logic or not. If queryroutes is executed with a
source node that isn't the self node, this wouldn't work.
This changes TCP port selection in integration tests from being
sequential, based on the node ID to being sequential but tested before
assigment.
This should reduce the number of flaky tests that fail due to the port
already being used by another process in the CI server.
This commit gets upfront shutdown scripts from openchannel and
acceptchannel wire messages sent from our peer and sets upfront
shutdown scripts in our open and accept channel messages when
the remote peer supports option upfront shutdown and we have
the feature enabled.
This commit adds fields for upfront shutdown scripts set
by the local and remote peer to the OpenChannel struct.
These values are optional, so they are added with their
own keys in the chanBucket in the DB.
This commit sets our close addresss to the address
specified by option upfront shutdown, if specified,
and disconnects from peers that fail to provide
their upfront shutdown address for coopertaive closes
of channels that were opened with the option set.
This commit adds the feature bit and additional fields
required in `open_channel` and `accept_channel` wire
messages for `option_upfront_shutdown_script`.
In this commit, we fix a long standing bug within the newly created
`verifyFundingInputs` method. Before this commit, the method would
attempt to derive the pkScript by looking at the last items on the
witness stack, and making a p2wsh output script from that. This is
incorrect as typically non of these scripts will actually be p2wsh, and
instead will be p2wkh. We fix this by using the newly available
`txscript.ComputePkScript` method to derive the proper pkScript.
This resolves an issue w.r.t passing incorrect arguments for all
backends, but an issue still stands for the neutrino backend. As is, we
pass a height hint of zero into the `GetUtxo` method call. With the way
the current utxo scanner is set up for neutrino, this'll cause it to
never find the UTXO, as it takes the height hint as a UTXO birth height,
rather than a lower bound of the birth of the UTXO.
In this commit, we add a new method `RegisterFundingIntent` that allows
a caller to "inject" a pre-populated chanfunding.Intent into a funding
workflow. As an example, if we've already agreed upon the "shape" of the
funding output _outside_ the protocol, then we can use this to pass down
the details of the output, then leverage the normal wire protocol to
carry out the remainder of the funding flow.
In this commit, we start to thread the pending channel ID from wire
protocol all the way down into the reservation context. This change will
allow negotiation to take place _outside_ the protocol that may result
in a particular chanfunding.Assembler being dispatched.
In this commit, we make the wallet aware of the second type of funding
intent: the ShimIntent. If we have one of these, then we don't need to
construct the funding transaction, and can instead just obtain the
outpoint directly from it.
In this commit, we begin to integrate the new channel funding package
into the existing codebase. With this set of changes, we'll no longer
construct and sign the funding transaction within this package, instead
delegating it to the new chanfunding package. We use the new
chanfunding.WalletAssembler to carry out all channel funding, providing
it with an implementation of all its interfaces backed by the wallet.
In this commit, we introduce a series of new abstractions for channel
funding. The end goal is to enable uses cases that construct the funding
transaction externally, eventually handing the funding outpoint to lnd.
An example of such a use case includes channel factories and external
channel funding using a hardware wallet.
We also add a new chanfunding.Assembler meant to allow external channel
funding in contexts similar to how channel factories
can be constructed. With this channel funder, we'll only obtain the
channel point and funding output from it, as this alone is enough to
carry out a funding flow as normal.
In this commit, we make an incremental change to move the existing coin
selection code into a new chanfunding package. In later commits, this
package will grow to serve all the lower level channel funding needs in
the daemon.
In this commit, we add a new bit to the existing ChannelType bitfield.
If this bit is set, then it signals that we have the funding transaction
stored on disk. A future change will enable lnd to have the funding
transaction be constructed externally, allowing for things like funding
from a hardware wallet, or a channel created as a sub-branch within an
existing channel factory.
When the (virtual) payment attempt cost is set to zero, probabilities
are no longer a factor in determining the best route. In case of routes
with equal costs, we'd just go with the first one found. This commit
refines this behavior by picking the route with the highest probability.
So even though probability doesn't affect the route cost, it is still
used as a tie breaker.
Refresh channel memory state whenever the short channel id is refreshed.
This is to make the in-memory channel consistent with the disk data.
Fixes#3765.
This fixes an issue where the last tagged field of an invoice could get
broken due to the malleability of bech32 checksums.
The addition of a specific character in the second to last position of
the checksum could cause the previous signature field to mutate and thus
point to a different public node.