In this commit, we account for the additional case wherein the
announcement hasn't yet been written with the extra zero byte to
indicate that there aren't any remaining bytes to be read. Before this
commit, we accounted for the case where the announcement was written
with the extra byte, but now we ensure that legacy nodes that upgrade
will be able to boot properly.
In this commit, we add a new limit on the largest number of extra opaque
bytes that we'll allow to be written per vertex/edge. We do this in
order to limit the amount of disk space that we expose, as it's possible
that nodes may start to pad their announcements adding an additional
externalized cost as nodes may need to continue to store and relay these
large announcements.
In this commit, we add a mirror set of fields to the ones we recently
added to the set of gossip wire messages. With these set of fields in
place, we ensure that we'll be able to properly store and re-validate
gossip messages that contain a set of extra/optional fields.
In this commit, we ensure that we de-duplicate the set of channel edges
returned from ChanUpdatesInHorizon. Other subsystems within lnd use this
method to retrieve and send all the channels with updates within a time
series to network peers. However, since the method looks at the edge
update index, which can include up to two entries per edge for each
policy, it's possible that we'd send channel announcements and updates
twice, causing extra bandwidth.
timestamps
In this commit, we ensure policies for edges we create in
TestChanUpdatesInHorizon have different update timestamps. This ensures
that there are two entries per edge in the edge update index. Because of
this, the test will fail because ChanUpdatesInHorizon will return
duplicate channel edges due to looking at all the entries within the
edge update index. This will be addressed in a future commit to allow
the set of tests to pass once again.
In this commit, we introduce a migration to fix some of the recent
issues found w.r.t. the edge update index. The migration attempts to fix
two things:
1) Edge policies include an extra byte at the end due to reading an
extra byte for the node's public key from the serialized node info.
2) Properly prune all stale entries within the edge update index.
As a result of this migration, nodes will have a slightly smaller in
size channeldb. We will also no longer send stale edges to our peers in
response to their gossip queries, which should also fix the fetching
channel announcement for closed channels issue.
In this commit, we extend TestChannelEdgePruningUpdateIndexDeletion test
to include one more update for each edge. By doing this, we can
correctly determine whether old entries were properly pruned from the
index once a new update has arrived.
Due to entries within the edge update index having a nil value, the
tests need to be modified to account for this. Previously, we'd assume
that if we were unable to retrieve a value for a certain key that the
entry was non-existent, which is why the improper pruning bug was not
caught. Instead, we'll assert the number of entries to be the expected
value and populate a lookup map to determine whether the correct entries
exist within it.
In this commit, we fix a lingering issue within the edge update index
where entries were not being properly pruned due to an incorrect
calculation of the offset of an edge's last update time. Since the
offset is being determined from the end to the start, we need to
subtract all the fields after an edge policy's last update time from the
total amount of bytes of the serialized edge policy to determine the
correct offset. This was also slightly off as the edge policy included
an extra byte, which has been fixed in the previous commit.
Instead of continuing the slicing approach however, we'll switch to
deserializing the raw bytes of an edge's policy to ensure this doesn't
happen in the future when/if the serialization methods change or extra
data is included.
In this commit, we fix an off-by-one error when slicing the public key
from the serialized node info byte slice. This would cause us to write
an extra byte to all edge policies. Even though the values were read
correctly, when attempting to calculate the offset of an edge's update
time going backwards, we'd always be incorrect, causing us to not
properly prune the edge update index.
This commit splits FetchPaymentStatus and
UpdatePaymentStatus, such that they each invoke
helper methods that can be composed into different
db txns. This enables us to improve performance on
send/receive, as we can remove the exclusive lock
from the control tower, and allow concurrent calls
to utilize Batch more effectively.
In this commit, we introduce support for querying the database for invoices
that occurred within a specific add index range. The query format includes an
index to start with and a limit on the number of returned results.
Co-authored-by: Valentine Wallace <valentine.m.wallace@gmail.com>
This commit loosens the fwdpkg reference acking to be more tolerant
of prior deletions. Specifically, we won't fail if certain channels
are not found or fwdpkgs do not exist. This will make us more
tolerant to future changes where we:
- remove fwdpkgs on channel close
- defensively cleanup stray responses
In this commit, we add a new test to expose a lurking bug within the
graph database code. As is, when we go to delete a node from the
database, we don't also remove the entries within the update index. As a
result, if a user attempted to call NodeUpdatesInHorizon (or typically
as part of the p2p handshake), we would error out, as we would try to
read a node that no longer existed in the graph, as it was pruned.
In this commit we fix a minor logging artifact. After the switch to
EdgePoint, the FilteredChainView implementations will try to log the
struct directly, as prior they would have an outpoint object. We restore
this behavior by adding a String() method to EdgePoint which will simply
proxy through to the outpoint so we can log that directly.
In this commit, we add a new method to the ChannelEdgeInfo that will
allow the path finding logic to get the node opposite the pivot node
without first creating a new db transaction. The new method is able to
use an existing db transaction, or create a new one if needed.
The commit ensures that for every channel, there will always
be two entries in the edges bucket. If the policy from one or
both ends of the channel is unknown, it is marked as such.
This allows efficient lookup of incoming edges. This is
required for backwards payment path finding.