This commit fixes an existing bug within the ChannelRouter. Prior to
this commit, if the chain view skipped blocks or for some reason we had
a gap in blocks delivered, then we would simply accept them. This had
the potential to cause us to miss on-chain channel closure events. To
remedy this, we won’t process any blocks whose heights aren’t
*strictly* increasing.
A longer term fix would be to have the ChainView take a block height,
and re-dispatch any notifications from that height to the current
height.
In this commit, we modify the high value passed into UpdateFilter upon
restart. Before this commit, we would pass in the prune height, which
would cause a full rescan within the FilteredChainView if the best
height as > than the prune height. This was redundant as we would
shortly carry out a manual rescan in the method below. To fix this, we
now pass in the bestHeight, this isn’t an issue as the
syncGraphWithChain method will manually scan up to that best height.
In this commit we ensure that if this is the first time that the
ChannelRouter is starting, then we set the pruned height+hash to the
current best height. Otherwise, it’s possible that we attempt to update
the filter with a 0 prune height, which will restart a historical
rescan unnecessarily.
In this commit we ensure that we only update the filter, if we have a
non-zero chain view. Otherwise, a mini rescan may be kicked off
unnecessarily if we don’t yet know of any channels yet in the greater
graph.
For Part 1 of Issue #275. Create isolated private struct in
networkHandler goroutine that will de-duplicate
announcements added to the batch. The struct contains maps
for each of channel announcements, channel updates, and
node announcements to keep track of unique announcements.
The struct has a Reset method to reset stored announcements, an
AddMsg(lnwire.Message) method to add a new message to the current
batch, and a Batch method to return the set of de-duplicated
announcements.
Also fix a few minor typos.
This commit alters the behavior of the router's logic on
startup, ensuring that the chain view is filtered using
the router's latest prune height. Before, the chain was
filtered using the bestHeight variable, which was
uninitialized, benignly forcing a rescan from genesis.
In tracking down this, we realized that we should
actually be using the prune height, as this is
representative of the channel view loaded from disk.
The best height/hash are now only used during
startup to determine if we are out of sync.
In this commit we fix an existing bug within the ChannelRouter. Before
this commit, we would sync our graph prune state, *then* update the
cain filter. This is incorrect as the blocks we manually pruned may
have included channel closing transactions. As a result, we would miss
the pruning of a set of channels, and assume that they were still
active.
In this commit, we fix this by reversing the order: we first update the
chain filter and THEN sync the channel graph.
In this commit we fix a slight bug within the existing SendPayment loop
which would cause the wrong error to be returned to users. Prior to
this commit, if we received an update identical to what we were already
aware of, then that error would be returned rather than the
ForwardingError that encapsulated this update.
In this commit with remedy this by properly returning the exact error.
Partially fixes#391.
In this commit we restore the in memory ChannelRouter as we’ll no
dynamically set the ChannelRouter’s pointer within he spec path finding
test example.
In this commit, we’ll now optionally allow the user to pass in the CLTV
delta value specified by the recipient a payment. If the value isn’t
specified, then we’ll use the current global default for the payment.
In this commit, we modify the FindRoutes method to pass in the CLTV
expiry for the final hop. If the value isn’t passed in, then we’ll use
the current global default value in place.
In this commit, we’ve removed the selfNode attribute from memory, as
the set of new tests we’ll write, will depend on us being able to
switch the source node dynamically from the database itself.
In this commit, from the PoV of the SendPayment method we now delegate
all path finding+verification to missionControl. This change doesn’t
materially affect anything, it simply expands the abstraction to make
way for future features that more heavily utilize mission control.
In this commit we modify the SendPayment loop to optimize for
time-to-first-payment-success-or-failure. The prior logic would first
attempt to find at least 100 routes to the destination, then
iteratively prune them away as errors were encountered. In this commit,
we modify this approach to instead take a lazy approach: we first find
the current “best” path, attempt to send to that, and if an error
occurs we prune a section of the graph by reporting to missionControl,
then continue.
With this new approach, if the first known path has sufficient
capacity, and is available, then the payment speed is greatly improved
from the PoV of users. Additionally, we avoid the excessive computation
of crawling most of the graph in the k-shortest paths loop. With the
decay on missionControl, all routes will now feed information into the
central knowledge hung, allowing all payments to iteratively find out
the inactive portions of the payment graph.
This commit modifies the path finding logic such that all path finding
is done inside a _single_ database transaction. With this change, we
ensure that we don’t end up possibly creating hundreds of database
transactions slowing down the path finding and payment sending process
all together.
This commit adds basic route pruning in response to HTLC onion errors.
With this new change, the router will now prune routes in response to
HTLC errors, which will reduce the time to payment success, and also
avoid a bunch of unnecessary network traffic.
We now respond to two errors lnwire.FailTemporaryChannelFailure and
lnwire.FailUnknownNextPeer. In response to the first error, we’ll prune
all routes that contain the channel which was unable to be routed over.
In response to the second error we’ll prune all routes that contain the
node which couldn’t be found.
In this commit we modify the newRoute function to also add the source
node to the nextHopMap index. With this addition the indexes will now
allow the router to react based on failures that occur during the
_first_ hop, meaning the channel directly attached to the source node.
This commit implements 2-week zombie channel pruning. This means that
every GraphPruneInterval (currently set to one hour), we’ll scan the
channel graph, marking any channels which haven’t had *both* edges
updated in 2 weeks as a “zombie”. During the second pass, all “zombie”
channel are removed from the channel graph all together.
Adding this functionality means we’ll ensure that we maintain a
“healthy” network view, which will cut down on the number of failed
HTLC routing attempts, and also reflect an active portion of the graph.
Use binary.Read/Write in functions to serialize and deserialize
channel close summary and HTLC boolean data, as well as in
methods to put and fetch channel funding info. Remove lnd
implementations of readBool and writeBool as they are no
longer needed. Also fix a few minor typos.
Use sort.Slice in FindRoutes function in routing/router.go, as part
of the move to use new language features. Remove sortableRoutes type
wrapper for slice of Routes since it is no longer needed to sort routes.
This commit modifies the way we currently interpret errors when sending
payments via the SendToSwitch method. We split the errors into two
broad sections: critical errors which cause us to abandon the payment
dispatch all together, and errors which are transient meaning we should
continue trying to remainder of the returned routes.
Note that we haven’t yet properly implemented all the necessary
measures such as filtering edges that are detected as being temporarily
inactive, etc.
This change should correct erroneous behavior such as continuing to try
all available routes in the face of an invalid payment hash error and
the like.
This commit modifies the way we do path caching. Rather than only
caching within SendPayment, we now cache routes within FindRoutes. This
is more natural as SendPayment eventually calls FindRoute. As a result
of this commit, queries to FindRoute are now properly cached, speeding
up applications which are focused on graph visualization or querying
rather than sending payments.
This commit fixes an oversight in the path finding code when converting
a path into a route. Currently, for the last hop, we’d emplace the
expiry delta of the last hop within the per-hop payload. This was left
over from a prior version of the specification.
To fix this, we’ll now emplace the _absolute_ final HTLC expiry with
the payload, such that, the final hop that verify that the HTLC has not
been tampered with in flight.
This commit makes the routing cache invalidation a bit more aggressive.
We now invalidate the cache on each new block as the routes in the
cache are based on the current block height. Using the cached items may
cause our routes to fail due to them having time locks which have
already expired.
This commit introduces the requirement specified in BOLT#7,
where we ignore any node announcements for a specific node
if we yet haven't seen any channel announcements where this
node takes part. This is to prevent someone DoS-ing the
network with cheap node announcements. In the router this
is enforced by requiring a call to AddNode(node_id) to
be preceded by an AddEdge(edge_id) call, where node_id is
one of the nodes in edge_id.
Within the network, it's important that when an HTLC forwarding failure
occurs, the recipient is notified in a timely manner in order to ensure
that errors are graceful and not unknown. For that reason with
accordance to BOLT №4 onion failure obfuscation have been added.
This commit fixes a send on closed channel panic by adding additional
synchronization when cancelling the notifications for a particular
topology client. We now ensure that all goroutines belonging to a
particular topology client exit fully before we close the notification
channel in order to avoid a panic.
This commit replaces the hard-coded 5000 satoshi fees with calls to the
FeeEstimator interface. This should provide a way to cleanly plug in
additional fee calculation algorithms in the future. This change
affected quite a few tests. When possible, the tests were changed to
assert amounts sent rather than balances so that fees wouldn't need to
be taken into account. There were several tests for which this wasn't
possible, so calls to the static fee calculator were made.