This commit replaces the simplistic rate limiting
technique added in 557cb6e2, to use the
golang.org/x/time's rate limiter. This has the
benefit of performing traffic shaping to meet a
target maximum rate, and yet tolerate bursts. Bursts
are expected during initial sync, though should become
more rare afterwards. Performing traffic shaping with
this mechanism should improve the ability of the gossip
syncer to detect sustained bursts from the remote peer,
and penalize them appropriately.
This commit also modifies the default parameters to
accept bursts of 10 queries, with a target rate of 1
reply every 5 seconds.
In this commit, we restrict the persistent connection logic on startup
to only attempt to establish connections to Tor addresses if Tor
outbound support is enabled. Otherwise, we'll continually attempt to
reach the address even though we never will.
In this commit, we fix a flake in the link node garbage collection test
by ensuring the channels have been fully closed on both sides before we
attempt to restart and ensure that they don't actually establish
connections. Without this check, it's possible that either side hasn't
yet processed all the blocks, so they'll still reconnect to each other on
start up.
In this commit, we fix an existing but that would cause the daemon to at
times crash. Before this commit, we access the wrong edge, which would
possibly actually be nil, leading to a panic. In this commit we fix this
by ensuring we access the proper edge which is known to be non-nil at
this point in the control flow.
This commit ensures that the mock attachment
directives use unique keys, ensuring that they
aren't skipped due to already having pending
connection requests. The tests fail when
they're all the same since they collide
in the pendingConns map.
This commit modifies the autopilot agent to track
all pending connection requests, and forgo further
attempts if a connection is already present.
Previously, the agent would try and establish
hundreds of requests to a node, especially if the
connections were timing out and not returning.
This resulted in an OOM OMM when cranking up
maxchannels to 200, since there would be close
to 10k pending connections before the program was
terminated. The issue was compounded by periodic
batch timeouts, causing autopilot to try and
process thousands of triggers for failing
connections to the same peer.
With these fixes, autopilot will skip nodes that we
are trying to connect to during heuristic selection.
The CPU and memory utilization have been significantly
reduced as a result.
In this commit, we ensure that we always set the wallet birthday. If the
user has provided a seed, or is creating a new one, then it will be
overwritten below. However, before this commit, if a user started with
the --noencryptwallet flag, then we would _always_ start to rescan from
genesis with the recent bug fix to ensure that we always start after the
birthday.
This commit adds the required feature name to our
set of local known features. This will allow other
peers connecting to us to set the required gossip
queries feature bit. This is required for the
subsequent commits, which instruct the server to
set the bit depending on user configured preferences.
In this commit, we fix a small bug with regards to the persistent peer
connection pruning logic. Before this commit, it'd be the case that we'd
prune a persistent connection to a peer if all links happen to be
inactive. This isn't ideal, as the channels are still open, so we should
always be atttempting to connect to them. We fix this by looking at the
set of channels on-disk instead and prune the persistent connection if
there aren't any.
In this commit, we account for the additional case wherein the
announcement hasn't yet been written with the extra zero byte to
indicate that there aren't any remaining bytes to be read. Before this
commit, we accounted for the case where the announcement was written
with the extra byte, but now we ensure that legacy nodes that upgrade
will be able to boot properly.
In this commit, we add a new limit on the largest number of extra opaque
bytes that we'll allow to be written per vertex/edge. We do this in
order to limit the amount of disk space that we expose, as it's possible
that nodes may start to pad their announcements adding an additional
externalized cost as nodes may need to continue to store and relay these
large announcements.