Previously we used the a priori probability also for our own untried
channels. This led to local channels that had seen a success already
being prioritized over untried local channels. In some cases, depending
on the configured payment attempt cost, this could lead to the payment
taking a two hop route while a direct payment was also possible.
This commit changes mission control to partially base the estimated
probability for untried connections on historical results obtained in
previous payment attempts. This incentivizes routing nodes to keep all
of their channels in good shape.
Probability estimates are amount dependent. Previously we assumed an
amount, but that starts to make less sense when we make probability more
dependent on amounts in the future.
This commit modifies the interpretation of node-level failures.
Previously only the failing node was marked. With this commit, also the
incoming and outgoing connections involved in the route are marked as
failed.
The change prepares for the removal of node-level failures in mission
control probability estimation.
This commit modifies paymentLifecycle so that it not only feeds
failures into mission control, but successes as well.
This allows for more accurate probability estimates. Previously,
the success probability for a successful pair and a pair with
no history was equal. There was no force that pushed towards
previously successful routes.
In this commit, we extend the path finding to be able to recognize when
a node needs the new TLV format, or the legacy format based on the
feature bits they expose. We also extend the `LightningPayment` struct
to allow the caller to specify an arbitrary set of TLV records which can
be used for a number of use-cases including various variants of
spontaneous payments.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
If nodes return a channel policy related failure, they may get a second
chance. Our graph may not be up to date. Previously this logic was
contained in the payment session.
This commit moves that into global mission control and thereby removes
the last mission control state that was kept on the payment level.
Because mission control is not aware of the relation between payment
attempts and payments, the second chance logic is no longer based
tracking second chances given per payment.
Instead a time based approach is used. If a node reports a policy
failure that prevents forwarding to its peer, it will get a second
chance. But it will get it only if the previous second chance was
long enough ago.
Also those second chances are no longer dependent on whether an
associated channel update is valid. It will get the second chance
regardless, to prevent creating a dependency between mission control and
the graph. This would interfer with (future) replay of history, because
the graph may not be the same anymore at that point.
This commit exposes the three main parameters that influence mission
control and path finding to the user as command line or config file
flags. It allows for fine-tuning for optimal results.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.