In this commit, we fix a very old, lingering bug within the link. When
accepting an HTLC we are meant to validate the fee against the
constraints of the *outgoing* link. This is due to the fact that we're
offering a payment transit service on our outgoing link. Before this
commit, we would use the policies of the *incoming* link. This would at
times lead to odd routing errors as we would go to route, get an error
update and then route again, repeating the process.
With this commit, we'll properly use the incoming link for timelock
related constraints, and the outgoing link for fee related constraints.
We do this by introducing a new HtlcSatisfiesPolicy method in the link.
This method should return a non-nil error if the link can carry the HTLC
as it satisfies its current forwarding policy. We'll use this method now
at *forwarding* time to ensure that we only forward to links that
actually accept the policy. This fixes a number of bugs that existed
before that could result in a link accepting an HTLC that actually
violated its policy. In the case that the policy is violated for *all*
links, we take care to return the error returned by the *target* link so
the caller can update their sending accordingly.
In this commit, we also remove the prior linkControl channel in the
channelLink. Instead, of sending a message to update the internal link
policy, we'll use a mutex in place. This simplifies the code, and also
adds some necessary refactoring in anticipation of the next follow up
commit.
In this commit, we fix a slight bug in lnd. Before this commit, we would
send the error to the remote peer, but in an async manner. As a result,
it was possible for the connections to be closed _before_ the error
actually reached the remote party. The fix is simple: wait for the error
to be returned when sending the message. This ensures that the error
reaches the remote party before we kill the connection.
In this commit, add a new argument to the SendMessage method to allow
callers to request that the method block until the message has been sent
on the socket to the remote peer.
In this commit, we fix an issue where users would be displayed negative
amounts of satoshis either as sent or received. This can happen if the
total amount of channel updates decreases due to channels being closed.
To fix this, we properly handle a negative difference of channel
updates by updating the stats logged to only include active
channels/links to the switch.
In this commit, we relax the constraints on accepting an exit hop
payment a bit. We'll now accept any incoming payment that _at least_
pays the invoice amount. This puts us further inline with the
specification, which recommends that nodes accept overpayment by a
certain margin.
Fixes#1002.
In this commit, we remove a ton of unnecessary indentation in the
processRemoteAdds method. Before this commit, we had a switch statement
on the type of the entry. This was required before when the method was
generic, but now since we already know that it’s an Add, we no longer
require such a statement.
In this commit, we remove the DecodeHopIterator method from the
ChannelLinkConfig struct. We do this as we no longer use this method,
since we only ever use the DecodeHopIterators method now.
In this commit, we fix a bug that was uncovered by the recent change to
lnwire.MilliSatoshi. Rather than manually compute the diff in fees,
we’ll directly compare the fee that is given against the fee that we
expect.
In this commit, we extend the switch as is, to record details
concerning settled payment circuits. To do this, we introduce a new
interface to the package: the ForwardingLog. This is a tiny interface
that simply lets us abstract away the details of the storage backing of
the forwarding log.
Each time we receive a successful HTLC settle, we’ll log the full
details (chans, fees, time) as a pending forwarding log entry. Every 15
seconds, we’ll then batch flush out these entries to disk. When we’re
exiting, we’ll try to flush out all entries to ensure everything gets
recorded to disk.
We’ll need this value within the link+switch in order to fully populate
the forwarding event that will be generated if this HTLC circuit is
successfully completed.
In this commit, we add the incoming+outgoing amounts if the HTLC’s that
the payment circuit consists of. With these new fields, we’ll be able
to populate the forwarding event log once the payment circuit has been
successfully completed.
This commit fixes a deadlock scenario caused when some
switch methods are waiting for a response on the
command's done/err chan. However, no such response will
be delivered if the main event loop has already exited.
This is resolved by selecting on the command's done/err chan
and the server's quit chan simultaneously.
In this commit, we fix an existing bug that would result in some
payments getting “stuck”. This would happen if one side restarted
before the channel was fully locked in. In this case, since upon
re-connection, the link will get added to the switch with a *short
channel ID of zero*. If A then tries to make a multi-hop payment
through B, B will fail to forward the payment, as it’ll mistakenly
think that the payment originated from a local-subsystem as the channel
ID is zero. A short channel ID of zero is used to map local payments
back to their caller.
With fix this by allowing the funding manager to dynamically update the
short channel ID of a link after it discovers the short channel ID.
In this commit, we fix a second instance of reported “stuck” payments
by users.
This commit updates the tests for checking a links Bandwidth()
calculation, after the change that made us use the remoteACKedIndex
instead of the logIndex when calculating it. The main result of this
change is that we never consider incoming updates before they are
acked, when calculating the bandwidth. This is because this was
inconsistent with the state we actually end up signing later on.
This commit introduces a new Ticker interface, that can be used
to control when the batch timer should tick. This is done to be
able to more easily control the ticker during tests. The batch
timer is wrapped in the new BatchTicker struct, and made part
of the config together with BatchSize.
In this commit, we add 6 new integration tests to test the various
actions that may need to be performed when either side goes on-chain to
fully resolve HTLC’s. Many of the tests are mirrors of each other as
they test sweeping/resolving HTLC’s from both commitment transactions.
In this commit, we update the failure case within handleLocalDispatch
to handle locally sourced resolutions. This is the case that we send a
payment out, but before it can even get past the first hop, we need to
go to chain (may have been a cascading failure). Once the HTLC is fully
resolved, we’ll send back a resolution message, however, that message
doesn’t have a failure reason populated. To properly handle this, we’ll
send back a permanent channel failure to the router.
In this commit, we address a lingering TODO: before this if we had a
set of HTLC’s that we knew the pre-image to on our commitment
transaction after a restart, then we wouldn’t attempt to settle them.
With this new change, we’ll check that we didn’t already retransmit the
settles for them, and check the preimage cache to see if we already
know the preimage. If we do, then we’ll immediately settle them.
In this commit, we add some additional logic to the case when we
receive a pre-image from an upstream peer. We’ll immediately add it to
the witness cache, as an incoming HTLC might be waiting on-chain to
fully resolve the HTLC with knowledge of the newly discovered
pre-image.
In this commit, we add a new method: ProcessContractResolution. This
will be used by entities of the contract court package to notify us
whenever they discover that we can resolve an incoming contract
off-chain after the outgoing contract was fully resolved on-chain.
We’ll take a contractcourt.ResolutionMsg and map it to the proper
internal package so we can fully resolve an active circuit.
Before this commit, if the htlcManager unexpectedly exited (due to a
protocol error, etc), the underlying block epoch notification intent
that was created for it would never be cancelled. This would result in
tens, or hundreds of goroutine leaks as the client would never consume
those notifications.
To fix this, we move cancellation of the block epoch intent from the
Stop() method of the channel link, to the defer statement at the top of
the htlcManager.