In this commit, we fix an existing flake within the set of revocation
integration tests. Right after Bob's restart, we attempt to force close
the channel. However, it may be the case that the chain arbitrator
hasn't yet been created. As a result, the request to force close the
channel will fail. We easily fix this by wrapping the force close
attempt in a WaitPredicate.
In this commit, we fix a race in the set of TestChannelLinkTrimCircuits*
tests. Before this commit, we would trim the circuits in the htlcManager
goroutine. However, this was problematic as the scheduling order of
goroutines isn't predictable. Instead, we'll now trim the circuits in
the Start method.
Additionally, we fix a series of off-by-2 bugs in the tests themselves.
In this commit, we fix a bug that could at times cause a deadlock when a
peer is attempting to disconnect. The issue was that when a peer goes to
disconnect, it needs to stop any active msgStream instances. The Stop()
method of the msgStream would block until an atomic variable was set to
indicate that the stream had fully exited. However, in the case that we
disconnected lower in the msgConsumer loop, we would never set the
streamShutdown variable, meaning that msgStream.Stop() would never
unblock.
The fix for this is simple: set the streamShutdown variable within the
quit case of the second select statement in the msgConsumer goroutine.
This commit inserts an initial set of HodlFlags into
their correct places within the switch. In lieu of the
existing HtlcHodl mode, it is been replaced with a
configurable HodlMask, which is a bitvector representing
the desired breakpoints. This will allow for fine grained
testing of the switch's internals, since we can create
arbitrary delays inside a otherwise asynchronous system.
This commit make the server populate the ChainArbitrator's
ContractBreach method, by a method that will reliably handoff the breach
event ot the breachArbiter. The server will now forward the breach event
to the breachArbiter, and only let the closure return a non-nil error
when the breachArbiter ACKs this event.
This commit adds the new function closure option ContractBreach to the
ChainArbitrator config, a closure that is again used by the ChainWatcher
to reliably handoff a breach event to the breachArbiter.
This commit changes how the ChainWatcher notifies the breachArbiter
about a channel breach. Instead of assuming the breachArbiter is among
the clients subscibing to channel events, it will call a new method
contractBreach(), and assume the breachArbiter has reliably gotten the
breach info when this method returns with a non-nil error.
Since the breachArbiter was the only sybsystem having a sync chain
subsciption, we also remove the (now) unused syncDispatch option.
This commit changes how the breachArbiter gets notified about channel
breaches. Previously it would need to SubscribeToChannelEvents to get
get notified if any breach happened, now we send all seen breaches on a
new channel ContractBreaches.
By having the breachArbiter subscribe to channel events, we risked
events getting lost when we were either starting up or shutting down,
since events could happen before we had been able to subscribe, or right
after we had cancelled our subscription.
Now it is the server's responsibility to reliably forward events from
the ChainArbitrator to the breachArbiter, and forward the ACK the
breachArbiter responds with. This makes sure that the messages aren't
lost in the event of starting up or shutting down, since the connection
between the subsystems now are static.
A result of this change is that the internals of the breachArbiter can
be simplified significantly, as we will get all channel breaches
forwarded on one channel. This lets us get rid of the observer
goroutines, and we spin up goroutines handling the channel breaches only
when they happen.
This move the log message "channel marked pending-closed" to the point
where the channel actually has been marked pending closed, instead of
before the database transaction has been done.
This commit removes the for loop in the closeObserver, as it wasn't
serving any purpose. After receiving a spend notification we would
return, breaking out of the loop. When getting a quit signal we would
also return, making the loop only do one iteration in any case.