This commit redefines how the control tower handles shard and payment
level settles and failures. We now consider the payment in flight as
long it has active shards, or it has no active shards but has not
reached a terminal condition (settle of one of the shards, or a payment
level failure has been encountered).
We also make it possible to settle/fail shards regardless of the payment
level status (since we must allow late shards recording their status
even though we have already settled/failed the payment).
Finally, we make it possible to Fail the payment when it is already
failed. This is to allow multiple concurrent shards that reach terminal
errors to mark the payment failed, without havinng to synchronize.
In this commit, we migrate all the code in `channeldb` to only reference
the new `kvdb` package rather than `bbolt` directly.
In many instances, we need to add two version to fetch a bucket as both
read and write when needed. As an example, we add a new
`fetchChanBucketRw` function. This function is identical to
`fetchChanBucket`, but it will be used to fetch the main channel bucket
for all _write_ transactions. We need a new method as you can pass a
write transaction where a read is accepted, but not the other way around
due to the stronger typing of the new `kvdb` package.
This commit converts the database structure of a payment so that it can
not just store the last htlc attempt, but all attempts that have been
made. This is a preparation for mpp sending.
In addition to that, we now also persist the fail time of an htlc. In a
later commit, the full failure reason will be added as well.
A key change is made to the control tower interface. Previously the
control tower wasn't aware of individual htlc outcomes. The payment
remained in-flight with the latest attempt recorded, but an outcome was
only set when the payment finished. With this commit, the outcome of
every htlc is expected by the control tower and recorded in the
database.
Co-authored-by: Johan T. Halseth <johanth@gmail.com>
Duplicate payments is legacy that we keep alive for accounting purposes.
This commit isolates the deserialization logic for duplicate payments in
its own file, so that regular payment logic and db structure can evolve
without needing to handle/migrate the legacy data.
To better distinguish payments from HTLCs, we rename the attempt info
struct to HTLCAttemptInfo. We also embed it into the HTLCAttempt struct,
to avoid having to duplicate this information.
The paymentID term is renamed to attemptID.
This commit prepares for more manipulation of custom records. A list of
tlv.Record types is more difficult to use than the more basic
map[uint64][]byte.
Furthermore fields and variables are renamed to make them more
consistent.
This commit modifies the FetchPayment method to return MPPayment structs
converted from the legacy on-disk format. This allows us to attach the
HTLCs to the events given to clients subscribing to the outcome of an
HTLC.
This commit also bubbles up to the routerrpc/router_server, by
populating HTLCAttempts in the response and extracting the legacy route
field from the HTLCAttempts.
This commit makes the router use the ControlTower to drive the payment
life cycle state machine, to keep track of active payments across
restarts. This lets the router resume payments on startup, such that
their final results can be handled and stored when ready.
This commit changes the format used to store payments within the
DB. Previously this was serialized as one continuous struct
OutgoingPayment, which also contained an Invoice struct we where only
using a few fields of. We now split it up into two simpler sub-structs
CreationInfo, AttemptInfo and PaymentPreimage.
We also want to associate the payments more closely with payment
statuses, so we move to this hierarchy:
There's one top-level bucket "sentPaymentsBucket" which contains a set
of sub-buckets indexed by a payment's payment hash. Each such sub-bucket
contains several fields:
paymentStatusKey -> the payment's status
paymentCreationInfoKey -> the payment's CreationInfo.
paymentAttemptInfoKey -> the payment's AttemptInfo.
paymentSettleInfoKey -> the payment's preimage (or zeroes for
non-settled payments)
The CreationInfo is information that is static during the whole payment
lifcycle. The attempt info is set each time a new payment attempt
(route+paymentID) is sent on the network. The preimage is information
only known when a payment succeeds. It therefore makes sense to split
them.
We keep legacy serialization code for migration puproses.
This commit splits FetchPaymentStatus and
UpdatePaymentStatus, such that they each invoke
helper methods that can be composed into different
db txns. This enables us to improve performance on
send/receive, as we can remove the exclusive lock
from the control tower, and allow concurrent calls
to utilize Batch more effectively.
Fixes#481.
Prior to this commit, payments stored in the channel DB only kept a
record of the payment hash. This is a problem as the preimage is what
serves as proof of payment and a user should be able to look up this
value in the future (not just immediately after payment).
Instead of storing both the payment hash and the preimage, we store the
preimage only since the hash can be derrived from this using a SHA256.
In the RPC listpayments command, we now give the preimage in addition to
the payment hash.
This commit implements an easy optimization by using bolt db’s Batch
method when writing payment details to disk. The AddPaymnent method can
be concurrently called by thousands of grouting due to the way the
payment dispatch pipeline is architected. With this commit, we shave of
a significant amount of running time when users are sending thousands
of payments a second as what would’ve been thousands of writes can now
be coalesced into one or two writes!
This commit modifies the new payment module within the database to
match the coding style of the rest of the package and the project as a
hole. Additionally, a few fields have been renamed, and the extra
timestamp added to the OutgoingPayment struct has been removed as
there’s already a CreationTime field within the Invoice struct that’s
embedded within the OutgoingPayment struct.
Go-fmt files. Refactored code according to the guidelines.
Enhanced payment test: add error checking
and individual context for each API call.
Add Timestamp field to payment struct.