This commit changes the key derivation algo we use to emulate buckets
similar to bbolt. The issue with prefixing keys with either a bucket or
a value prefix is that the cursor couldn't effectively iterate trough
all keys in a bucket, as it skipped the bucket keys.
While there are multiple ways to fix that issue (eg. two pointers,
iterating value keys then bucket keys, etc), the cleanest is to instead
of prefixes in keys we use a postfix indicating whether a key is a
bucket or a value. This also simplifies all operations where we
(recursively) iterate a bucket and is equivalent with the prefixing key
derivation with the addition that bucket and value keys are now
continous.
When a remote peer claims one of our outgoing htlcs on chain, we do
not care whether they claimed with multiple stages. We simply store
the claim outgome then forget the resolver.
Incoming htlcs that are timed out or failed (invalid htlc or invoice
condition not met), save a single on chain resolution because we don't
need to take any actions on them ourselves (we don't need to worry
about 2 stage claims since this is the success path for our peer).
Add a new top level bucket which holds closed channels nested by chain
hash which contains additional information about channel closes. We add
resolver resolutions under their own key so that we can extend the
bucket with additional information if required.
This is useful when we wish to have a channel frozen for a specific
amount of blocks after its confirmation. This could also be done with an
absolute thaw height, but it does not suit cases where a strict block
delta needs to be enforced, as it's not possible to know for certain
when a channel will be included in the chain. To work around this, we
add a relative interpretation of the field, where if its value is below
500,000, then it's interpreted as a relative height. This approach
allows us to prevent further database modifications to account for a
relative thaw height.
Avoids indexing the all-zeros pay addr, since it is still in use by
legacy keysend. Without this, the pay addr index will reject all but the
first keysend since they will be detected as duplicates within the set
id index.
This was initially done as there were a few assertions throughout the
codebase requiring a channel's policy to be known. Now that these have
been addressed, we no longer need to store restored channels in the
graph, as their policies where incomplete anyway.
Use the new paginatior strcut for payments. Add some tests which will
specifically test cases on and around the missing index we force in our
test to ensure that we properly handle this case. We also add a sanity
check in the test that checks that we can query when we have no
payments.
With our new index of sequence number to index, it is possible for
more than one sequence number to point to the same hash because legacy
lnd allowed duplicate payments under the same hash. We now store these
payments in a nested bucket within the payments database. To allow
lookup of the correct payment from an index, we require matching of the
payment hash and sequence number.
We now use the same method of pagination for invoices and payments.
Rather than duplicate logic across calls, we add a pagnator struct
which can have query specific logic plugged into it. This commit also
addresses an existing issue where a reverse query for invoices with an
offset larger than our last offset would not return any invoices. We
update this behaviour to act more like c.Seek and just start from the
last entry. This behaviour change is covered by a unit test that
previously checked for the lack of invoices.
In our current invoice pagination logic, we would not return any
invoices if our offset index was more than 1 off our last index and we
were paginating backwards. This commit adds a test case for this
behaviour before fixing it in the next commit.
Add an entry to a payments index bucket which maps sequence number
to payment hash when we initiate payments. This allows for more
efficient paginated queries. We create the top level bucket in its
own migration so that we do not need to create it on the fly.
When we retry payments and provide them with a new sequence number, we
delete the index for their existing payment so that we do not have an
index that points to a non-existent payment.
If we delete a payment, we also delete its index entry. This prevents
us from looking up entries from indexes to payments that do not exist.
Update our current tests to include lookup of duplicate payments. We
do so in preparation for changing our lookup to be based on a new
payments index. We add an append duplicate function which will add a
duplicate payment with the minimum information required to successfully
read it from disk in tests.
This commit extends the etcd.BackendConfig to also provide an abort
context and integrates it with the STM retry loop in order to be able
stop LND when conflicting transactions keep the loop running.
This commit removes the retry goroutine from the STM as the retry loop
is only running when the STM transaction is encapsulated in Update/View
whereas for self-standing transactions we use a different approach.
By removing the goroutine we won't catch panics thrown that are supposed
to be catched outside of the STM.
Previously it wasn't possible to store a preimage in the invoice
database and signal that a payment should not be settled right away. The
only way to hold a payment was to insert the magic UnknownPreimage value
in the invoice database. This commit introduces a distinct flag to
signal that an invoice is a hold invoice and thereby allows the preimage
to be present in the database already.
Preparation for (key send) hodl invoices for which we already know the
preimage.
This line was incorrectly moved when the migtest package was created for
migration 12. This PR introduces a negative test for CreateTLB which
surfaced this.
This commit extends etcd db with namespaces without additional storage
space requirements. This is simply done by instead of using an all zero
root bucket id, we use the sha256 hash of the name space as our root
bucket id.
This commit separates all etcd related sources (sans a few stubs and
config) from the rest of the source tree and makes compilation conditional
depending on whether the kvdb_etcd build tag is specified.
This commit adds the ExtendedBackend interface which is an extension to
the walletdb.DB interface. This paves the way to using etcd.db.View and
etcd.db.Update in the global View and Update functions without much code
rewrite.
This commit reduces the compare set size the STM will submit in
transactions by adding only the bucket keys along the bucket path to a
specific lock set. This lock set then used to filter the read set,
effectively removing all read only keys from the transaction predicate
that are not bucket keys.
By tracking if a read-write tx actually changes something, we can also
"bump" the mod revision of the bucket keys.
With this trick we essentially implement a read-write lock for our
bucket structure greatly reducing transaction processing time.
This commit adds an extended STM, similar to what available in etcd's
clientv3 module. This incarnation of said STM supports additional
features, like positioning in key intervals while taking into account
deletes and writes as well. This is a preliminary work to support all
features of the kvdb interface.