With the introduction of the max CLTV limit parameter, nodes are able to
reject HTLCs that exceed it. This should also be applied to path
finding, otherwise HTLCs crafted by the same node that exceed it never
left the switch. This wasn't a big deal since the previous max CLTV
limit was ~5000 blocks. Once it was lowered to 1008, the issue became
more apparent. Therefore, all of our path finding attempts now have a
restriction of said limit in in order to properly carry out HTLCs to the
network.
This commit modifies paymentLifecycle so that it not only feeds
failures into mission control, but successes as well.
This allows for more accurate probability estimates. Previously,
the success probability for a successful pair and a pair with
no history was equal. There was no force that pushed towards
previously successful routes.
In this commit, we extend the path finding to be able to recognize when
a node needs the new TLV format, or the legacy format based on the
feature bits they expose. We also extend the `LightningPayment` struct
to allow the caller to specify an arbitrary set of TLV records which can
be used for a number of use-cases including various variants of
spontaneous payments.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
This commit adds the pubkeyIndices map to the distanceHeap to avoid
duplicate entries on the heap. This happened in the earlier iteration
of the findPath algorithm and would cause the driving loop to
evaluate already evaluated entries when there was no need.
This commit modifies the nodeWithDist struct to use a route.Vertex
instead of a *channeldb.LightningNode. This change, coupled with
the new ForEachNodeChannel function, allows the findPath Djikstra's
algorithm to cut down on database lookups since we no longer need
to call the FetchOtherNode function.
This commit exposes the three main parameters that influence mission
control and path finding to the user as command line or config file
flags. It allows for fine-tuning for optimal results.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.
This PR replaces the previously used edge and node ignore lists in path
finding by a probability based system. It modifies path finding so that
it not only compares routes on fee and time lock, but also takes route
success probability into account.
Allowing routes to be compared based on success probability is achieved
by introducing a 'virtual' cost of a payment attempt and using that to
translate probability into another cost factor.
In this commit, we make our findPath function use an edge's MaxHTLC as
its available bandwidth instead of its Capacity. We do this as it's
possible for the capacity of an edge to not exist when operating as a
light client. For channels that do not support the MaxHTLC optional
field, we'll fall back to using the edge's Capacity.
Currently public keys are represented either as a 33-byte array (Vertex) or as a
btcec.PublicKey struct. The latter isn't useable as index into maps and
cannot be used easily in compares. Therefore the 33-byte array
representation is used predominantly throughout the code base.
This commit converts the argument types of source and target nodes for
path finding to Vertex. Path finding executes no crypto operations and
using Vertex simplifies the code.
Additionally, it prepares for the path finding source parameter to be
exposed over rpc in a follow up commit without requiring conversion back
and forth between Vertex and btcec.PublicKey.
This commit allows the execution of QueryRoutes to be controlled using
lists of black-listed edges and nodes. Any path returned will not pass
through the edges and/or nodes on the list.
In this commit, we update the path finding logic to
ignore a channel if the HTLC value (including the fees
at the point) exceeds the max HTLC value (if set) of the
link.
This commit is a step to split the lnwallet package. It puts the Input
interface and implementations in a separate package along with all their
dependencies from lnwallet.
In this commit:
* we partition lnwire.ChanUpdateFlag into two (ChanUpdateChanFlags and
ChanUpdateMsgFlags), from a uint16 to a pair of uint8's
* we rename the ChannelUpdate.Flags to ChannelFlags and add an
additional MessageFlags field, which will be used to indicate the
presence of the optional field HtlcMaximumMsat within the ChannelUpdate.
* we partition ChannelEdgePolicy.Flags into message and channel flags.
This change corresponds to the partitioning of the ChannelUpdate's Flags
field into MessageFlags and ChannelFlags.
Co-authored-by: Johan T. Halseth <johanth@gmail.com>
In this commit we introduce pruning of channel edges instead of channels.
Channel failures apply to a single direction and it is unnecessarily
restricting to prune both directions.
Hop maps were used in a test to verify the population of the hop map
itself and further only in a single function (getFailedChannelID).
Rewrote that function and removed the hop maps completely.
To decouple our own path finding from the graph state, we don't consider
the disable bit when attempting to use local channels. Instead the
bandwidth hints will be zero for local inactive channels.
We alos modify the unit test to check that the disable flag is ignored
for local edges.
In this commit the dependency of unmarshallRoute on edge policies being
available is removed. Edge policies may be unknown and reported as nil.
SendToRoute does not need the policies, but it does need pubkeys of the
route hops. In this commit, unmarshallRoute is modified so that it
takes the pubkeys from edgeInfo instead of channelEdgePolicy.
In addition to this, the route structure is simplified. No more connection
to the database at that point. Fees are determined based on incoming and
outgoing amounts.
In this commit, a new weight function is introduced. This will create a
meaningful effect of time lock on route selection. Also, removes the
squaring of the fee term. This led to suboptimal routes.
Unit test added that covers the weight function and asserts that the
lowest fee route is indeed returned.
This commit fixes the logic inside the newRoute function to
address the following problems:
- Fee calculation for a hop does not include the fee that needs
to be paid to the next hop.
- The incoming channel capacity "sanity" check does not include
the fee to be paid to the current hop.