lnd version, "hacked" to enable seedless restore from xprv + scb
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

742 lines
26 KiB

package routing
import (
"container/heap"
"fmt"
"math"
"github.com/coreos/bbolt"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/tlv"
)
const (
// HopLimit is the maximum number hops that is permissible as a route.
// Any potential paths found that lie above this limit will be rejected
// with an error. This value is computed using the current fixed-size
// packet length of the Sphinx construction.
HopLimit = 20
// infinity is used as a starting distance in our shortest path search.
infinity = math.MaxInt64
// RiskFactorBillionths controls the influence of time lock delta
// of a channel on route selection. It is expressed as billionths
// of msat per msat sent through the channel per time lock delta
// block. See edgeWeight function below for more details.
// The chosen value is based on the previous incorrect weight function
// 1 + timelock + fee * fee. In this function, the fee penalty
// diminishes the time lock penalty for all but the smallest amounts.
// To not change the behaviour of path finding too drastically, a
// relatively small value is chosen which is still big enough to give
// some effect with smaller time lock values. The value may need
// tweaking and/or be made configurable in the future.
RiskFactorBillionths = 15
)
// pathFinder defines the interface of a path finding algorithm.
type pathFinder = func(g *graphParams, r *RestrictParams,
cfg *PathFindingConfig, source, target route.Vertex,
amt lnwire.MilliSatoshi) ([]*channeldb.ChannelEdgePolicy, error)
var (
// DefaultPaymentAttemptPenalty is the virtual cost in path finding weight
// units of executing a payment attempt that fails. It is used to trade
// off potentially better routes against their probability of
// succeeding.
DefaultPaymentAttemptPenalty = lnwire.NewMSatFromSatoshis(100)
// DefaultMinRouteProbability is the default minimum probability for routes
// returned from findPath.
DefaultMinRouteProbability = float64(0.01)
// DefaultAprioriHopProbability is the default a priori probability for
// a hop.
DefaultAprioriHopProbability = float64(0.6)
)
// edgePolicyWithSource is a helper struct to keep track of the source node
// of a channel edge. ChannelEdgePolicy only contains to destination node
// of the edge.
type edgePolicyWithSource struct {
sourceNode route.Vertex
edge *channeldb.ChannelEdgePolicy
}
// computeFee computes the fee to forward an HTLC of `amt` milli-satoshis over
// the passed active payment channel. This value is currently computed as
// specified in BOLT07, but will likely change in the near future.
func computeFee(amt lnwire.MilliSatoshi,
edge *channeldb.ChannelEdgePolicy) lnwire.MilliSatoshi {
return edge.FeeBaseMSat + (amt*edge.FeeProportionalMillionths)/1000000
}
// newRoute returns a fully valid route between the source and target that's
// capable of supporting a payment of `amtToSend` after fees are fully
// computed. If the route is too long, or the selected path cannot support the
// fully payment including fees, then a non-nil error is returned.
//
// NOTE: The passed slice of ChannelHops MUST be sorted in forward order: from
// the source to the target node of the path finding attempt.
func newRoute(amtToSend lnwire.MilliSatoshi, sourceVertex route.Vertex,
pathEdges []*channeldb.ChannelEdgePolicy, currentHeight uint32,
finalCLTVDelta uint16,
finalDestRecords []tlv.Record) (*route.Route, error) {
var (
hops []*route.Hop
// totalTimeLock will accumulate the cumulative time lock
// across the entire route. This value represents how long the
// sender will need to wait in the *worst* case.
totalTimeLock = currentHeight
// nextIncomingAmount is the amount that will need to flow into
// the *next* hop. Since we're going to be walking the route
// backwards below, this next hop gets closer and closer to the
// sender of the payment.
nextIncomingAmount lnwire.MilliSatoshi
)
pathLength := len(pathEdges)
for i := pathLength - 1; i >= 0; i-- {
// Now we'll start to calculate the items within the per-hop
// payload for the hop this edge is leading to.
edge := pathEdges[i]
// If this is the last hop, then the hop payload will contain
// the exact amount. In BOLT #4: Onion Routing
// Protocol / "Payload for the Last Node", this is detailed.
amtToForward := amtToSend
// Fee is not part of the hop payload, but only used for
// reporting through RPC. Set to zero for the final hop.
fee := lnwire.MilliSatoshi(0)
// If the current hop isn't the last hop, then add enough funds
// to pay for transit over the next link.
if i != len(pathEdges)-1 {
// The amount that the current hop needs to forward is
// equal to the incoming amount of the next hop.
amtToForward = nextIncomingAmount
// The fee that needs to be paid to the current hop is
// based on the amount that this hop needs to forward
// and its policy for the outgoing channel. This policy
// is stored as part of the incoming channel of
// the next hop.
fee = computeFee(amtToForward, pathEdges[i+1])
}
// If this is the last hop, then for verification purposes, the
// value of the outgoing time-lock should be _exactly_ the
// absolute time out they'd expect in the HTLC.
var outgoingTimeLock uint32
if i == len(pathEdges)-1 {
// As this is the last hop, we'll use the specified
// final CLTV delta value instead of the value from the
// last link in the route.
totalTimeLock += uint32(finalCLTVDelta)
outgoingTimeLock = currentHeight + uint32(finalCLTVDelta)
} else {
// Next, increment the total timelock of the entire
// route such that each hops time lock increases as we
// walk backwards in the route, using the delta of the
// previous hop.
delta := uint32(pathEdges[i+1].TimeLockDelta)
totalTimeLock += delta
// Otherwise, the value of the outgoing time-lock will
// be the value of the time-lock for the _outgoing_
// HTLC, so we factor in their specified grace period
// (time lock delta).
outgoingTimeLock = totalTimeLock - delta
}
// Since we're traversing the path backwards atm, we prepend
// each new hop such that, the final slice of hops will be in
// the forwards order.
currentHop := &route.Hop{
PubKeyBytes: edge.Node.PubKeyBytes,
ChannelID: edge.ChannelID,
AmtToForward: amtToForward,
OutgoingTimeLock: outgoingTimeLock,
LegacyPayload: true,
}
// We start out above by assuming that this node needs the
// legacy payload, as if we don't have the full
// NodeAnnouncement information for this node, then we can't
// assume it knows the latest features. If we do have a feature
// vector for this node, then we'll update the info now.
if edge.Node.Features != nil {
features := edge.Node.Features
currentHop.LegacyPayload = !features.HasFeature(
lnwire.TLVOnionPayloadOptional,
)
}
// If this is the last hop, then we'll populate any TLV records
// destined for it.
if i == len(pathEdges)-1 && len(finalDestRecords) != 0 {
currentHop.TLVRecords = finalDestRecords
}
hops = append([]*route.Hop{currentHop}, hops...)
// Finally, we update the amount that needs to flow into the
// *next* hop, which is the amount this hop needs to forward,
// accounting for the fee that it takes.
nextIncomingAmount = amtToForward + fee
}
// With the base routing data expressed as hops, build the full route
newRoute, err := route.NewRouteFromHops(
nextIncomingAmount, totalTimeLock, route.Vertex(sourceVertex),
hops,
)
if err != nil {
return nil, err
}
return newRoute, nil
}
// edgeWeight computes the weight of an edge. This value is used when searching
// for the shortest path within the channel graph between two nodes. Weight is
// is the fee itself plus a time lock penalty added to it. This benefits
// channels with shorter time lock deltas and shorter (hops) routes in general.
// RiskFactor controls the influence of time lock on route selection. This is
// currently a fixed value, but might be configurable in the future.
func edgeWeight(lockedAmt lnwire.MilliSatoshi, fee lnwire.MilliSatoshi,
timeLockDelta uint16) int64 {
// timeLockPenalty is the penalty for the time lock delta of this channel.
// It is controlled by RiskFactorBillionths and scales proportional
// to the amount that will pass through channel. Rationale is that it if
// a twice as large amount gets locked up, it is twice as bad.
timeLockPenalty := int64(lockedAmt) * int64(timeLockDelta) *
RiskFactorBillionths / 1000000000
return int64(fee) + timeLockPenalty
}
// graphParams wraps the set of graph parameters passed to findPath.
type graphParams struct {
// tx can be set to an existing db transaction. If not set, a new
// transaction will be started.
tx *bbolt.Tx
// graph is the ChannelGraph to be used during path finding.
graph *channeldb.ChannelGraph
// additionalEdges is an optional set of edges that should be
// considered during path finding, that is not already found in the
// channel graph.
additionalEdges map[route.Vertex][]*channeldb.ChannelEdgePolicy
// bandwidthHints is an optional map from channels to bandwidths that
// can be populated if the caller has a better estimate of the current
// channel bandwidth than what is found in the graph. If set, it will
// override the capacities and disabled flags found in the graph for
// local channels when doing path finding. In particular, it should be
// set to the current available sending bandwidth for active local
// channels, and 0 for inactive channels.
bandwidthHints map[uint64]lnwire.MilliSatoshi
}
// RestrictParams wraps the set of restrictions passed to findPath that the
// found path must adhere to.
type RestrictParams struct {
// ProbabilitySource is a callback that is expected to return the
// success probability of traversing the channel from the node.
ProbabilitySource func(route.Vertex, route.Vertex,
lnwire.MilliSatoshi) float64
// FeeLimit is a maximum fee amount allowed to be used on the path from
// the source to the target.
FeeLimit lnwire.MilliSatoshi
// OutgoingChannelID is the channel that needs to be taken to the first
// hop. If nil, any channel may be used.
OutgoingChannelID *uint64
// CltvLimit is the maximum time lock of the route excluding the final
// ctlv. After path finding is complete, the caller needs to increase
// all cltv expiry heights with the required final cltv delta.
CltvLimit *uint32
// DestPayloadTLV should be set to true if we need to drop off a TLV
// payload at the final hop in order to properly complete this payment
// attempt.
DestPayloadTLV bool
}
// PathFindingConfig defines global parameters that control the trade-off in
// path finding between fees and probabiity.
type PathFindingConfig struct {
// PaymentAttemptPenalty is the virtual cost in path finding weight
// units of executing a payment attempt that fails. It is used to trade
// off potentially better routes against their probability of
// succeeding.
PaymentAttemptPenalty lnwire.MilliSatoshi
// MinProbability defines the minimum success probability of the
// returned route.
MinProbability float64
}
// findPath attempts to find a path from the source node within the
// ChannelGraph to the target node that's capable of supporting a payment of
// `amt` value. The current approach implemented is modified version of
// Dijkstra's algorithm to find a single shortest path between the source node
// and the destination. The distance metric used for edges is related to the
// time-lock+fee costs along a particular edge. If a path is found, this
// function returns a slice of ChannelHop structs which encoded the chosen path
// from the target to the source. The search is performed backwards from
// destination node back to source. This is to properly accumulate fees
// that need to be paid along the path and accurately check the amount
// to forward at every node against the available bandwidth.
func findPath(g *graphParams, r *RestrictParams, cfg *PathFindingConfig,
source, target route.Vertex, amt lnwire.MilliSatoshi) (
[]*channeldb.ChannelEdgePolicy, error) {
var err error
tx := g.tx
if tx == nil {
tx, err = g.graph.Database().Begin(false)
if err != nil {
return nil, err
}
defer tx.Rollback()
}
// First we'll initialize an empty heap which'll help us to quickly
// locate the next edge we should visit next during our graph
// traversal.
nodeHeap := newDistanceHeap()
// For each node in the graph, we create an entry in the distance map
// for the node set with a distance of "infinity". graph.ForEachNode
// also returns the source node, so there is no need to add the source
// node explicitly.
distance := make(map[route.Vertex]nodeWithDist)
if err := g.graph.ForEachNode(tx, func(_ *bbolt.Tx,
node *channeldb.LightningNode) error {
// TODO(roasbeef): with larger graph can just use disk seeks
// with a visited map
vertex := route.Vertex(node.PubKeyBytes)
distance[vertex] = nodeWithDist{
dist: infinity,
node: route.Vertex(node.PubKeyBytes),
}
// If we don't have any features for this node, then we can
// stop here.
if node.Features == nil || !r.DestPayloadTLV {
return nil
}
// We only need to perform this check for the final node, so we
// can exit here if this isn't them.
if vertex != target {
return nil
}
// If we have any records for the final hop, then we'll check
// not to ensure that they are actually able to interpret them.
supportsTLV := node.Features.HasFeature(
lnwire.TLVOnionPayloadOptional,
)
if !supportsTLV {
return fmt.Errorf("destination hop doesn't " +
"understand new TLV paylods")
}
return nil
}); err != nil {
return nil, err
}
additionalEdgesWithSrc := make(map[route.Vertex][]*edgePolicyWithSource)
for vertex, outgoingEdgePolicies := range g.additionalEdges {
// We'll also include all the nodes found within the additional
// edges that are not known to us yet in the distance map.
distance[vertex] = nodeWithDist{
dist: infinity,
node: vertex,
}
// Build reverse lookup to find incoming edges. Needed because
// search is taken place from target to source.
for _, outgoingEdgePolicy := range outgoingEdgePolicies {
toVertex := outgoingEdgePolicy.Node.PubKeyBytes
incomingEdgePolicy := &edgePolicyWithSource{
sourceNode: vertex,
edge: outgoingEdgePolicy,
}
additionalEdgesWithSrc[toVertex] =
append(additionalEdgesWithSrc[toVertex],
incomingEdgePolicy)
}
}
// We can't always assume that the end destination is publicly
// advertised to the network and included in the graph.ForEachNode call
// above, so we'll manually include the target node. The target node
// charges no fee. Distance is set to 0, because this is the starting
// point of the graph traversal. We are searching backwards to get the
// fees first time right and correctly match channel bandwidth.
distance[target] = nodeWithDist{
dist: 0,
weight: 0,
node: target,
amountToReceive: amt,
incomingCltv: 0,
probability: 1,
}
// We'll use this map as a series of "next" hop pointers. So to get
// from `Vertex` to the target node, we'll take the edge that it's
// mapped to within `next`.
next := make(map[route.Vertex]*channeldb.ChannelEdgePolicy)
// processEdge is a helper closure that will be used to make sure edges
// satisfy our specific requirements.
processEdge := func(fromVertex route.Vertex, bandwidth lnwire.MilliSatoshi,
edge *channeldb.ChannelEdgePolicy, toNode route.Vertex) {
// If this is not a local channel and it is disabled, we will
// skip it.
// TODO(halseth): also ignore disable flags for non-local
// channels if bandwidth hint is set?
isSourceChan := fromVertex == source
edgeFlags := edge.ChannelFlags
isDisabled := edgeFlags&lnwire.ChanUpdateDisabled != 0
if !isSourceChan && isDisabled {
return
}
// If we have an outgoing channel restriction and this is not
// the specified channel, skip it.
if isSourceChan && r.OutgoingChannelID != nil &&
*r.OutgoingChannelID != edge.ChannelID {
return
}
// Calculate amount that the candidate node would have to sent
// out.
toNodeDist := distance[toNode]
amountToSend := toNodeDist.amountToReceive
// Request the success probability for this edge.
edgeProbability := r.ProbabilitySource(
fromVertex, toNode, amountToSend,
)
log.Tracef("path finding probability: fromnode=%v, tonode=%v, "+
"probability=%v", fromVertex, toNode, edgeProbability)
// If the probability is zero, there is no point in trying.
if edgeProbability == 0 {
return
}
// If the estimated bandwidth of the channel edge is not able
// to carry the amount that needs to be send, return.
if bandwidth < amountToSend {
return
}
// If the amountToSend is less than the minimum required
// amount, return.
if amountToSend < edge.MinHTLC {
return
}
// If this edge was constructed from a hop hint, we won't have access to
// its max HTLC. Therefore, only consider discarding this edge here if
// the field is set.
if edge.MaxHTLC != 0 && edge.MaxHTLC < amountToSend {
return
}
// Compute fee that fromVertex is charging. It is based on the
// amount that needs to be sent to the next node in the route.
//
// Source node has no predecessor to pay a fee. Therefore set
// fee to zero, because it should not be included in the fee
// limit check and edge weight.
//
// Also determine the time lock delta that will be added to the
// route if fromVertex is selected. If fromVertex is the source
// node, no additional timelock is required.
var fee lnwire.MilliSatoshi
var timeLockDelta uint16
if fromVertex != source {
fee = computeFee(amountToSend, edge)
timeLockDelta = edge.TimeLockDelta
}
incomingCltv := toNodeDist.incomingCltv +
uint32(timeLockDelta)
// Check that we have cltv limit and that we are within it.
if r.CltvLimit != nil && incomingCltv > *r.CltvLimit {
return
}
// amountToReceive is the amount that the node that is added to
// the distance map needs to receive from a (to be found)
// previous node in the route. That previous node will need to
// pay the amount that this node forwards plus the fee it
// charges.
amountToReceive := amountToSend + fee
// Check if accumulated fees would exceed fee limit when this
// node would be added to the path.
totalFee := amountToReceive - amt
if totalFee > r.FeeLimit {
return
}
// Calculate total probability of successfully reaching target
// by multiplying the probabilities. Both this edge and the rest
// of the route must succeed.
probability := toNodeDist.probability * edgeProbability
// If the probability is below the specified lower bound, we can
// abandon this direction. Adding further nodes can only lower
// the probability more.
if probability < cfg.MinProbability {
return
}
// By adding fromVertex in the route, there will be an extra
// weight composed of the fee that this node will charge and
// the amount that will be locked for timeLockDelta blocks in
// the HTLC that is handed out to fromVertex.
weight := edgeWeight(amountToReceive, fee, timeLockDelta)
// Compute the tentative weight to this new channel/edge
// which is the weight from our toNode to the target node
// plus the weight of this edge.
tempWeight := toNodeDist.weight + weight
// Add an extra factor to the weight to take into account the
// probability.
tempDist := getProbabilityBasedDist(
tempWeight, probability,
int64(cfg.PaymentAttemptPenalty),
)
// If the current best route is better than this candidate
// route, return. It is important to also return if the distance
// is equal, because otherwise the algorithm could run into an
// endless loop.
if tempDist >= distance[fromVertex].dist {
return
}
// Every edge should have a positive time lock delta. If we
// encounter a zero delta, log a warning line.
if edge.TimeLockDelta == 0 {
log.Warnf("Channel %v has zero cltv delta",
edge.ChannelID)
}
// All conditions are met and this new tentative distance is
// better than the current best known distance to this node.
// The new better distance is recorded, and also our "next hop"
// map is populated with this edge.
distance[fromVertex] = nodeWithDist{
dist: tempDist,
weight: tempWeight,
node: fromVertex,
amountToReceive: amountToReceive,
incomingCltv: incomingCltv,
probability: probability,
}
next[fromVertex] = edge
// Either push distance[fromVertex] onto the heap if the node
// represented by fromVertex is not already on the heap OR adjust
// its position within the heap via heap.Fix.
nodeHeap.PushOrFix(distance[fromVertex])
}
// TODO(roasbeef): also add path caching
// * similar to route caching, but doesn't factor in the amount
// To start, our target node will the sole item within our distance
// heap.
heap.Push(&nodeHeap, distance[target])
for nodeHeap.Len() != 0 {
// Fetch the node within the smallest distance from our source
// from the heap.
partialPath := heap.Pop(&nodeHeap).(nodeWithDist)
pivot := partialPath.node
// If we've reached our source (or we don't have any incoming
// edges), then we're done here and can exit the graph
// traversal early.
if pivot == source {
break
}
cb := func(_ *bbolt.Tx, edgeInfo *channeldb.ChannelEdgeInfo, _,
inEdge *channeldb.ChannelEdgePolicy) error {
// If there is no edge policy for this candidate
// node, skip. Note that we are searching backwards
// so this node would have come prior to the pivot
// node in the route.
if inEdge == nil {
return nil
}
// We'll query the lower layer to see if we can obtain
// any more up to date information concerning the
// bandwidth of this edge.
edgeBandwidth, ok := g.bandwidthHints[edgeInfo.ChannelID]
if !ok {
// If we don't have a hint for this edge, then
// we'll just use the known Capacity/MaxHTLC as
// the available bandwidth. It's possible for
// the capacity to be unknown when operating
// under a light client.
edgeBandwidth = inEdge.MaxHTLC
if edgeBandwidth == 0 {
edgeBandwidth = lnwire.NewMSatFromSatoshis(
edgeInfo.Capacity,
)
}
}
// Before we can process the edge, we'll need to fetch
// the node on the _other_ end of this channel as we
// may later need to iterate over the incoming edges of
// this node if we explore it further.
chanSource, err := edgeInfo.OtherNodeKeyBytes(pivot[:])
if err != nil {
return err
}
// Check if this candidate node is better than what we
// already have.
processEdge(route.Vertex(chanSource), edgeBandwidth, inEdge, pivot)
return nil
}
// Now that we've found the next potential step to take we'll
// examine all the incoming edges (channels) from this node to
// further our graph traversal.
err := g.graph.ForEachNodeChannel(tx, pivot[:], cb)
if err != nil {
return nil, err
}
// Then, we'll examine all the additional edges from the node
// we're currently visiting. Since we don't know the capacity
// of the private channel, we'll assume it was selected as a
// routing hint due to having enough capacity for the payment
// and use the payment amount as its capacity.
bandWidth := partialPath.amountToReceive
for _, reverseEdge := range additionalEdgesWithSrc[pivot] {
processEdge(reverseEdge.sourceNode, bandWidth,
reverseEdge.edge, pivot)
}
}
// If the source node isn't found in the next hop map, then a path
// doesn't exist, so we terminate in an error.
if _, ok := next[source]; !ok {
return nil, newErrf(ErrNoPathFound, "unable to find a path to "+
"destination")
}
// Use the nextHop map to unravel the forward path from source to
// target.
pathEdges := make([]*channeldb.ChannelEdgePolicy, 0, len(next))
currentNode := source
for currentNode != target { // TODO(roasbeef): assumes no cycles
// Determine the next hop forward using the next map.
nextNode := next[currentNode]
// Add the next hop to the list of path edges.
pathEdges = append(pathEdges, nextNode)
// Advance current node.
currentNode = route.Vertex(nextNode.Node.PubKeyBytes)
}
// The route is invalid if it spans more than 20 hops. The current
// Sphinx (onion routing) implementation can only encode up to 20 hops
// as the entire packet is fixed size. If this route is more than 20
// hops, then it's invalid.
numEdges := len(pathEdges)
if numEdges > HopLimit {
return nil, newErr(ErrMaxHopsExceeded, "potential path has "+
"too many hops")
}
log.Debugf("Found route: probability=%v, hops=%v, fee=%v\n",
distance[source].probability, numEdges,
distance[source].amountToReceive-amt)
return pathEdges, nil
}
// getProbabilityBasedDist converts a weight into a distance that takes into
// account the success probability and the (virtual) cost of a failed payment
// attempt.
//
// Derivation:
//
// Suppose there are two routes A and B with fees Fa and Fb and success
// probabilities Pa and Pb.
//
// Is the expected cost of trying route A first and then B lower than trying the
// other way around?
//
// The expected cost of A-then-B is: Pa*Fa + (1-Pa)*Pb*(c+Fb)
//
// The expected cost of B-then-A is: Pb*Fb + (1-Pb)*Pa*(c+Fa)
//
// In these equations, the term representing the case where both A and B fail is
// left out because its value would be the same in both cases.
//
// Pa*Fa + (1-Pa)*Pb*(c+Fb) < Pb*Fb + (1-Pb)*Pa*(c+Fa)
//
// Pa*Fa + Pb*c + Pb*Fb - Pa*Pb*c - Pa*Pb*Fb < Pb*Fb + Pa*c + Pa*Fa - Pa*Pb*c - Pa*Pb*Fa
//
// Removing terms that cancel out:
// Pb*c - Pa*Pb*Fb < Pa*c - Pa*Pb*Fa
//
// Divide by Pa*Pb:
// c/Pa - Fb < c/Pb - Fa
//
// Move terms around:
// Fa + c/Pa < Fb + c/Pb
//
// So the value of F + c/P can be used to compare routes.
func getProbabilityBasedDist(weight int64, probability float64, penalty int64) int64 {
// Clamp probability to prevent overflow.
const minProbability = 0.00001
if probability < minProbability {
return infinity
}
return weight + int64(float64(penalty)/probability)
}