This commit fixes a race condition in the notifyBlockEpochs detected by
the race condition detector. Previously the notifyBlockEpochs function
could cause a race condition when a new caller was either cancelling an
existing notification intent or creating a new one.
We fix this issue by making the call to notifyBlockEpochs synchronous
rather than asynchronous. An alternative would be to add a mutex
guarding the map state. The channel itself is buffered with a good
margin, so there shouldn’t be a huge impact.
This commit fixes a bug in the wallet’s internal reservation manager
that prevented it from cleaning up the resources used by a reservation
after it was finished running through the workflow.
We fix this issue by ensuring the reservations context is deleted from
the funding limbo.
It is the callers responsibility to properly .Cancel() a reservation in
the case of an error during the funding workflow.
Previously, during the channel funding process, peers sent wire
messages using peer.queueMsg. By switching to server.sendToPeer, the
fundingManager is more resilient to network connection issues or system
restarts during the funding process. With server.sendToPeer, if a peer
gets disconnected, the daemon can attempt to reconnect and continue the
process using the peer’s public key ID.
This commit adds a feature bit for the recently implemented state
machine as defined within the specification. With this commit, older
non-upgraded lnd nodes will fail a bit more gracefully when connecting
to updated nodes.
In this commit we modify the testSingleHopInvoice test to ensure that
we obtain the proper preimage from the SendPayment RPC upon successful
payment completion.
This commit creates a distint type for the opaque failure reason within
the UpdateFailHTLC message. This new type is needed as this is the only
variable length byte slice within the protocol and therefore requires a
length prefix in order to serialize/deserialize properly.
This commit fixes a bug that was introduced when we moved to using
64-bit integers for storing the revocation log state. When we made this
change, we forgot to increase the size of the buffer which stores the
key for the particular channel state from 40 to 44 bytes to account for
the 4 additional bytes in the new 64-bit integer.
This bug has been fixed by properly sizing the key buffer. We’ve also
added an additional test to ensure that we retrieve the proper state
after multiple state updates.
This commit adds an additional case of the closeObserver that will
properly handle the case of a channel being closed by a de-sync’d
commitment transaction from the PoV of the local node. In the case of a
minor 1-state divergence, the commitment transaction broadcast by the
remote node will be 1 state ahead of the commitment transaction we have
locally. This should be seen as a regular unilateral close as they
remote peer didn’t violate the channel contract in any way.
We address this case by changing the `==` to a `>=`.
This commit addresses an edge case which has been discovered by testers
of lnd of testnet. When/if channels get out of sync the unilateral
channel closure of a remote node may go undetected, which causes the
local node to lose their ability to purge the now closed channel from
their database state.
With this commit, if we try to force close a channel but detect it as
double-spent due to a prior commitment transaction being broadcast,
then we simply forget the channel as it has already been closed.
This commit modifies a peer’s htlcManager goroutine in order to
properly implement the new state machine defined by the specification.
The major change to this new state machine is that we can no longer
have a limited number of unrevoked commitment states. As a result, we
no longer need to track how many outsanding changes we have, and only
need to track if we have a pending change or not. This simplifies the
logic a bit.
Additionally, when receive a new signature we FIRST send an
RevokeAndAck, THEN we if we need to send a signature in response or
not. This is the major change to the state machine from the PoV of the
htlcManager. Previously, the order was flipped.
This commit updates the set of channel state machine tests to properly
compile and execute with the latest set of changes to the state
machine.
Most of the changes within this commit are just renaming and field
changes as a result of the new wire messages.
The more substantial change is due to the change in semantics of the
new state machine w.r.t what has and has not been ACK’d when a new
state transition is implemented. In the case of a concurrent update
(both sides add to the log before a state transition), both sides need
to trigger a state update in order to ensure their updates have been
included.
This commit updates the internal channel state machine to the one as
described within the spec and currently implemented within the rest of
the other Lightning implementations.
At a high level the following modifications have been made:
* When signing we no loner include the index of the remote party’s
log
that our signature covers. Instead we include ALL of our current
updates, but only the updates of the remote party that we’ve
ACK’d.
* A pending change is considered ACK’d once a revocation message
has been received, locking in the changes in the remote party’s
commitment transaction.
* When sending a new commitment, we remember the index of our
log at that point so we can mark that portion of the log as ACK’d
once we receive a revocation message from the remote party.
* When receiving a new commitment signature, we include ALL of
the remote party’s changes that we’ve received but only our set
of changes that’ve been ACK’d by the remote party.
* Implicitly a revocation message now also implicitly serves to ACK
all the changes that were included in the CommitSig message
received before it.
The resulting change is a rather minor diff. However, with this state
machine it’s important to note that the order to sig/revoke messages
has been swapped. A proper exchange now looks like the following:
* Alice -> Add, Add, Add
* Alice -> Sig
* Revoke <- Bob
* Sig <- Bob
* Alice -> Revoke
One other thing that’s worth noting is that with this state machine,
since what’s included in an update is implicit, both side may need to
at times send a new commitment update in the case of a concurrent state
transition initiated by both sides.
Finally, all counters/indexes have been made 64-bit integers in order
to properly match the spec.
This commit adds a new struct to the channel state machine: updateLog.
updateLog encapsulates the update log linked list itself, a series of
new counters we’ll need in order to switch to the spec’s state machine
and also the index into the log itself. This new struct serves to
simplify much of the logic surrounding the update log and also
elminates a bit of code duplication within the current state machine.
This commit only adds the new struct. The rest of the state machine
will be updated in a later commit to use the new log and its new
counters.
This commit fixes a bug in the LightingChannel commitment state machine
which could occasionally result in the total number of satoshis sent or
received being counted twice if a redundant state transition were
initiated.
To fix this bug, we now only increment the number of satoshi
sent/recv’d iff it’s the first time the HTLC has been processed.
This commit ensures that when a channel’s closeObserver is signaled to
exit before a channel closure has been detected, then the resources
dedicated to the pending spend notification can be freed up.
This commit minifies the BtcdNotifier concrete implementation of the
ChainNotifier interface to allow callers to optionally cancel an
outstanding block epoch or spend notificaiton intent.
To do this efficiently, we now give each notification intent a unique
ID based on if it’s an epoch intent or a spend intent. We then use this
ID to reference back to the original un-dispatched notification intent
when the caller wishes to cancel the intent.
When iterating with the ChainNotifier, it currently isn’t possible to
cancel a non-dispatched yet active notificaiton intent. As a result,
this can be rather wasteful in many parts of lnd which my repeatedly
create a new spend notification depending on if/when a peer is
connected or not.
In order to fix this, we add a new `Cancel func()` field to both the
`BlockEpochEvent` and `SpendEvent` structs. This new closure attribute
allows the caller to cancel the yet-to-be-dispathed event, allowing the
ChainNotifier to free up resources.
This commit modifies the running update count within all ChannelDelta’s
to track the number of updates using a uint64 rather than a uint32.
This change reflects the fact that the obsfucated commitment hints are
to be encoded using a 48-bit integer, rather than a 32-bit integer.
This commit modifies the prior HTLCSettleRequest to more closely match
the UpdateFufillHTLC defined within the specification. The only
semantic change is the move from a slice of pre-images (for “multi-sig”
LN) to a single payment preimage.
This commit morphs the prior CancelHTLC into the new UpdateFailHTLC
message and also gets rid of the obsolete HLTCAddReject message while
we’re at it.
The primary change from the CancelHTLC message to the UpdateFailHTLC
message is that the CancelReason is now simply called Reason and that
it’s now an opaque encrypted set of bytes. With this update the failure
messages are now more flexible (they can even carry new
ChannelUpdate’s) and also don’t reveal the exact cause of failure to
intermediate nodes.
This commit renames and modifies the CommitSignature message to more
closely match the CommitSig message defined within the current set of
draft specifications.
The major change within the new message is that we now longer
explicitly specify the update log index of the remote node that this
signature covers. This is due to the fact the revocation message now
also double as acknowledgements of the remote parties recevied
commitment update messages.
This commit renames the prior CommitRevocation message to RevokeAndAck
in order to better align the set of wire messages implemented by the
`lnwire` message with those currently defined within the specification.
This commit prevent unnecessary connection flapping by ensure we don’t
attempt to auto-connect to a peer that we’re unable to create or start
the goroutines of. With this commit, we won’t attempt to auto-connect
to a peer that has incompatible feature sets to that of ours.
Sticking with our tradition of tracking the two latest go releases,
we'll now build against Go 1.8 (which was recently released and Go
1.7.5).
The release of Go 1.8 is very attractive to the project as it includes
performance and GC improvements as well as the addition of more
profiling and race condition detection capabilities within the runtime.
In this commit the support for global and local feature vectors were
added in 'server' and 'peer' structures respectively. Also with commit
additional logic was added and now node waits to receive 'init'
lnwire.Message before sending/responding on any other messages.
In this commit the feature maps were added which which binds the name
of the global feature with it index in feature vector. The index is
just an order of the feature and the final binary representation of
feature vector is determined by decode function. This maps helps to
operate with feature by their names rather than their indexes.
'init' message is the first message reveals the features supported or required
by this node. Nodes wait for receipt of the other's features to simplify error
diagnosis where features are incompatible. This message will help negotioate the
the features which are supported by both sides.
This commit fixes a panic that can result when a zpay32 payment request
that is too short (and possibly invalid) is attempted to be decoded.
To fix this bug, we now simply ensure that that after we decode the
zbase32 encoding, the resulting set of bytes is _exactly_ the length we
expect. A new error has been introduced to handle this case, and a
simple test has been added which ensures proper handling of short
payment requests.
Fixes#127.