In this commit, we add a new `checkLocalChainActions` method. This
method differs from the existing `checkChainActions` method in that it's
only concerned with actions we should take on chain for our local state
based on the local _and_ remote state. This change ensures that we'll
now to go to chain order to cancel an HTLC that was on the remote
party's commitment transaction, but not our own.
In this commit, we fix a lingering TOOD statement in the channel arb.
Before this commitment, we would simply wipe our our local HTLC set of
the HTLC set that was on the remote commitment transaction on force
close. This was incorrect as if our commitment transaction had an HTLC
that the remote commitment didn't, then we would fail to cancel that
back, and cause both channels to time out on chain.
In order to remedy this, we introduce a new `HtlcSetKey` struct to track
all 3 possible in-flight set of HTLCs: ours, theirs, and their pending.
We also we start to tack on additional data to all the unilateral close
messages we send to subscribers. This new data is the CommitSet, or the
set of valid commitments at channel closure time. This new information
will be used by the channel arb in an upcoming commit to ensure it will
cancel back HTLCs in the case of split commitment state.
Finally, we start to thread through an optional *CommitSet to the
advanceState method. This additional information will give the channel
arb addition information it needs to ensure it properly cancels back
HTLCs that are about to time out or may time out depending on which
commitment is played.
Within the htlcswitch pakage, we modify the `SignNextCommitment` method
to return the new set of pending HTLCs for the remote party's commitment
transaction and `ReceiveRevocation` to return the latest set of
commitment transactions on the remote party's commitment as well. This
is a preparatory change which is part of a larger change to address a
lingering TODO in the cnct.
Additionally, rather than just send of the set of HTLCs after the we
revoke, we'll also send of the set of HTLCs after the remote party
revokes, and we create a pending commitment state for it.
TestRouterPaymentStateMachine tests that the router interacts as
expected with the ControlTower during a payment lifecycle, such that it
payment attempts are not sent twice to the switch, and results are
handled after a restart.
This commit makes the router use the ControlTower to drive the payment
life cycle state machine, to keep track of active payments across
restarts. This lets the router resume payments on startup, such that
their final results can be handled and stored when ready.
This encapsulates all state needed to resume a payment from any point of
the payment flow, and that must be shared between the different stages
of the execution. This is done to prepare for breaking the send loop
into smaller parts, and being able to resume the payment from any point
from persistent state.
This commit gives a new responsibility to the control tower, letting it
populate the payment bucket structure as the payment goes through
its different stages.
The payment will transition states Grounded->InFlight->Success/Failed,
where the CreationInfo/AttemptInfo/Preimage must be set accordingly.
This will be the main driver for the router state machine.
migrateOutgoingPayments moves the OutgoingPayments into a new bucket format
where they all reside in a top-level bucket indexed by the payment hash. In
this sub-bucket we store information relevant to this payment, such as the
payment status.
To avoid that the router resend payments that have the status InFlight (we
cannot resume these payments for pre-migration payments) we delete those
statuses, so only Completed payments remain in the new bucket structure.
This commit changes the format used to store payments within the
DB. Previously this was serialized as one continuous struct
OutgoingPayment, which also contained an Invoice struct we where only
using a few fields of. We now split it up into two simpler sub-structs
CreationInfo, AttemptInfo and PaymentPreimage.
We also want to associate the payments more closely with payment
statuses, so we move to this hierarchy:
There's one top-level bucket "sentPaymentsBucket" which contains a set
of sub-buckets indexed by a payment's payment hash. Each such sub-bucket
contains several fields:
paymentStatusKey -> the payment's status
paymentCreationInfoKey -> the payment's CreationInfo.
paymentAttemptInfoKey -> the payment's AttemptInfo.
paymentSettleInfoKey -> the payment's preimage (or zeroes for
non-settled payments)
The CreationInfo is information that is static during the whole payment
lifcycle. The attempt info is set each time a new payment attempt
(route+paymentID) is sent on the network. The preimage is information
only known when a payment succeeds. It therefore makes sense to split
them.
We keep legacy serialization code for migration puproses.
We slightly alter testUnconfirmedChannelFunding to instead of using an
external deposit to test unconfirmed channel funding, we use one of our
own unconfirmed change outputs.
This is done since Neutrino currently has now way of knowing about
incoming unconfirmed outputs.
This commit gives the current chainbackend the ability to connect and
disconnect the chain backend at will. We do this to let the chain
backend initiate the connection to the miner, not the other way around.
This is a preparation for using Neutrino as a backend, as it only allows
making outbound connections.
We must also move the setup of the chainbackend to after to miner, to
know the address to connect to.
This commit adds persisted status bit-field to ClientSessions, that can
be used to modify behavior of their handling in the client. Currently,
only a default CSessionActive status is defined. However, the intention
is that this could later be used to signal that a session is abandoned
without needing to perform a db migration to add the field. As we move
forward with testing, this will likely be useful if a session gets
borked and we need a simple method of the client to temporarily ignore
certain sessions.
The field may be useful in signaling other types of status changes,
though this was the primary motivation that warranted the addition.
Now that the committed and acked updates are persisted across restarts,
we will use them to filter out duplicate commit heights presented by the
client.
This commit adds the full bbolt-backed client database as well as a set
of unit tests to assert that it exactly implements the same behavior as
the mock ClientDB.