This commit modifies the path finding routines to properly use the new
channel edge related API exposed by the database. Additionally, a new
type `ChannelHop` has been introduced which couples an edges routing
policy with the capacity and origin chain of the channel.
This commit alters the return value of PrunedGraph to me a bit more
useful: the function now returns all the channels that were closed when
processing the block (slice of spent outpoints). With this information,
callers gain greater visibility into exactly which channels were
closed. This can be used in higher levels to present detailed summaries
of how blocks affect closed channels.
This commit splits the prior ChannelEdge struct into two distinct
structs: ChannelEdgeInfo and ChannelEdgePolicy. The info structs stores
the _full_ information that was used to advertise the channel, while
the policy struct contains the information that’s needed in order to
use the information for routing purposes.
With this split we can eliminate a number of hacks within the rest of
the codebase that were added as a result of data unavailability if one
or neither edge was present.
Finally a bit of field renaming has taken place (Exipiry ->
TimeLockDelta), etc.
When a pending channel is persisted and then reloaded upon system startup
it's necessary to also persist the number of confirmations that will be required
before the pending channel can be opened.
In order to facilitate persistence during the funding process, added
the isPending flag to channels so that when the daemon restarts, we can
properly re-initialize the chain notifier and update the state of
channels that were going through the funding process.
In this commit the initial implementation of revocation hash
generation 'elkrem' was replaced with 'shachain' Rusty Russel
implementation which currently enshrined in the spec. This alghoritm has
the same asymptotic characteristics but has more complex scheme
to determine wish hash we can drop and what needs to be stored
in order to be able to achive full compression.
Fix SetStateNumHint and GetStateNumHint to properly
set and get the stateNumHints using the lower 24 bits
of the locktime of the commitment transaction as the
lower 24 bits of the obfuscated state number and the
lower 24 bits of the sequence field as the higher 24
bits.
This commit fixes a bug that was introduced when we moved to using
64-bit integers for storing the revocation log state. When we made this
change, we forgot to increase the size of the buffer which stores the
key for the particular channel state from 40 to 44 bytes to account for
the 4 additional bytes in the new 64-bit integer.
This bug has been fixed by properly sizing the key buffer. We’ve also
added an additional test to ensure that we retrieve the proper state
after multiple state updates.
This commit modifies the running update count within all ChannelDelta’s
to track the number of updates using a uint64 rather than a uint32.
This change reflects the fact that the obsfucated commitment hints are
to be encoded using a 48-bit integer, rather than a 32-bit integer.
This commit fixes a bug which would previously lead to corruption of
the channel state when a node had one or more channels open and one of
them was closed either forcibly or cooperatively. The source of the bug
itself as a typo: rather than using the construed `deliveryKey`
variable to fetch/put/delete the delivery scripts, `deliveryScriptsKey`
(the key prefix itself) as used. This bug would cause the database to
be unable to read _any_ channel from the database after one was
deleted, as each channel would actually be reading/writing-to the
_exact same_ delivery script.
The fix for the bug itself is simple: eliminate the typo.
This commit addresses some lingering TODO’s which ensure that related
state to a channel is properly deleted by the CloseChannel method.
Previously the values for the respective dust-limits of either side,
the on-disk HTLC’s, and any entries the revocation log for the channel
weren’t being properly deleted.
Additionally, we now modify the checks within the unit tests to ensure
that we can still read the channel from disk w/o running into an error
(thought the slice will be blank), and also the the revocation log is
properly garbage collected.
This commit fixes a panic that would arise when the daemon attempts to
query for a channel that doesn’t currently exist. The bug was the
result of a typo which checked for the nil existence of the incorrect
variable.
This commit fixes a prior bug in the graph database due to an invalid
assumption that both channel edges would _always_ be advertised. This
assumption is invalid, as it’s up to a node’s policy if the advertise
their direction of the channel.
The fix for this assumption is straight forward: ErrEdgeNotFound is no
longer a critical error, instead a nil pointer will now be passed into
the passed callback function.
This commit makes a large number of minor changes concerning API usage
within the deamon to match the latest version on the upstream btcsuite
libraries.
The major changes are the switch from wire.ShaHash to chainhash.Hash,
and that wire.NewMsgTx() now takes a paramter indicating the version of
the transaction to be created.
This commit modifies the error propagating behavior within the
HasChannelEdge struct. Rather than exiting the function early when a
single edge isn’t found, we instead continue to also possibly retrieve
the second directional edge.
With this change, we avoid a potential infinite gossiping loop in the
routing package that would result if we’d seen one edge but not the
other. In this case the timestamps returned for *both* edges would
always be zero, causing the daemon to always accept and rebroadcast the
announcement putting all other connected lnd’s into the same loop.
This commit modifies the new payment module within the database to
match the coding style of the rest of the package and the project as a
hole. Additionally, a few fields have been renamed, and the extra
timestamp added to the OutgoingPayment struct has been removed as
there’s already a CreationTime field within the Invoice struct that’s
embedded within the OutgoingPayment struct.
This commit modifies the FetchChannelEdgesByID slightly to use a
read-only transaction rather than a write-only transaction. As a result
we’ll no longer extraneously consume a writer’s slot when we’re only
reading data from the database.
This commit modifies the HasChannelEdge function to _always_ return
true if we know of the channel edge, meaning that it was previously
added on announce.
This change fixes a minor bug present in the code which would result in
extraneous re-transmissions of updates received by the new routing
package.
This commit adds a utility method whcih utilizes the edge index bucket
and allows caller to look up the channel ID of a channel by its funding
outpoint. This can be used to populate RPC’s with additional
information and also to provide users with an additional query
interface to build channel explorers, etc.
Previously, the edge index bucket which maps a channelPoint ->
channelID wasn’t properly created one start up during the initial
creation of the database. This caused some extraneous failure as
queries would unnecessarily fail with bucket non-existence errors.
To fix this we now properly create the bucket on start up if the
database doesn’t exist, and also properly delete the bucket within the
Wipe() function.
This commit fixes a minor bug in the ForEachChannel method of the
ChannelGraph struct. Rather than ErrGraphNoEdgesFound being returned if
either of the edge related buckets hadn’t been created yet,
ErrGraphNodesNotFound was being returned.
To fix this bug, we now properly return ErrGraphNoEdgesFound.
Additionally a mental note to roasbeef has been left as the current
code currently assumes that eventually both directions of the channel
edge will be advertised. However, this may not necessarily be the case
in a live network, since a side chooses to preferentially advertise a
channel or not.
This commit adds to new functions to the ChannelGraph struct which
allow the callers to query for the existence or non-existence of a
vertex (node) or edge (channel) within the graph. In addition to
returning whether the edge exists, the functions will also return the
last time the state has been modified for the edge or vertex. This will
allow callers to ensure that only the most up to date state is
committed to disk.
This commit adds support for channel graph pruning, which is the method
used to keep the channel graph in sync with the current UTXO state. As
the channel graph is essentially simply a subset of the UTXO set, by
evaluating the channel graph with the set of outfits spent within a
block, then we’re able to prune channels that’ve been closed by
spending their funding outpoint. A new method `PruneGraph` has been
provided which implements the described functionality.
Upon start up any upper routing layers should sync forward in the chain
pruning the channel graph with each newly found block. In order to
facilitate such channel graph reconciliation a new method `PruneTip`
has been added which allows callers to query current pruning state of
the channel graph.
This commit adds an additional check within CloseChannel to ensure that
sub-systems attempting to delete the channel one after the other (in
the event of any sort of closure) doesn’t result in an extraneous
error.
To fix this, we now check if the channel exists before attempting a
deletion. If the channel doesn’t exist, then we simply exit early with
a nil error.
This commit modifies the LightningNode.ForEachChannel method to give
the caller the option of re-using an existing database transaction
instead of always creating a new db transaction with each invocation.
Internally boltdb will run into an error/dead-lock if a nested
transaction is attempted.
Such an action might be attempted if one were to use the traversal
functions in a path finding algorithm. Therefore in order to avoid
that after, we now allow the re-use of transactions to facilitate
nested calls to ForEachChannel.
Go-fmt files. Refactored code according to the guidelines.
Enhanced payment test: add error checking
and individual context for each API call.
Add Timestamp field to payment struct.
This commit introduces a new capability to the database: storage of an
on-disk directed channel graph. The on-disk representation of the graph
within boltdb is essentially a modified adjacency list which separates
the storage of the edge’s existence and the storage of the edge
information itself.
The new objects provided within he ChannelGraph carry an API which
facilitates easy graph traversal via their ForEach* methods. As a
result, path finding algorithms will be able to be expressed in a
natural way using the range methods as a for-range language extension
within Go.
Additionally caching will likely be added either at this layer or the
layer above (the RoutingManager) in order keep queries and outgoing
payments speedy. In a future commit a new set of RPC’s to query the
state of a particular edge or node will also be added.
This commit adds a new method to the `OpenChannel` struct:
CommitmentHeight(). This method allows multiple callers holding the
same instance of an OpenChannel struct tied to the same on-disk channel
to consistently query the current commitment height for a channel. Such
a modification will prove useful later as sections of the code-base are
separated in order to allow more vigilant watching of channel breaches.
This commit performs a slight refactoring of the internals (and API) of
the [Fetch|Put]Meta methods. The changes are rather minor and simply
eliminate the conditional branching structure with usage of an internal
function. This new form is much easier to follow.