This enforces the _actualized_ fee rate of the commitment transaction,
rather than the fee floor used for estimation. The new value of 250
sat/kw corresponds to 1 sat/byte, rather than 253 which is only rounded
up during estimation to account for the fact that BOLT 3 rounds down to
the nearest satoshi and that the vbyte fee estimation is lossy.
Previously we would incorrectly fail to sign the next commitment even
though the fee was technically high enough. Restarting with this commit
should solve the issue as long as the channel hasn't already gone to
chain.
This commit introduces the Signature interface which will be used by our
witness construction methods instead of passing in raw byte slices. This
will be used later to inject various kinds of mock signatures, e.g.
73-byte signatures for simulating worst-case witness weight.
This commit adds an additional santity check that rejects zero-value
HTLCs, preventing them from being added to the channel state even if the
channel config's minhtlc value is zero.
This commit adds a test to exercise that HTLC signatures are sent in the
correct order, i.e. they match the sorting of the HTLC outputs on the
commitment after applying BOLT 3's BIP69+CLTV sort.
This commit fixes#4118 by properly sorting the HTLC signatures sent
over the wire to match the BOLT3 BIP69+CLTV sorting of the commitment
outputs.
To do so, we expose the slice of cltv deltas for HTLCs on the unsigned
commitment after applying the commitment sorting. This will be used to
locate the proper output index, as the CLTV serves as a tie breaker
between HTLCs that otherwise have the same payment hash and amount.
Note that #3412 fixed the issue partially by ensuring the commitment was
constructed properly (and the second-level prev outpoint's txid was
correct), but failed to address that the HTLC signatures were still sent
out in the incorrect order. With this, we pass the test case introduce
in the next commit.
We currently write each HTLCs OutputIndex to disk, but we don't use it
when restoring. The restoration is modified to use these directly, since
we will have lost access to the sorting of CLTVs after the initial
signing process.
In case the funding manager detects that a funding flow is requested
to be executed with the help of a PsbtIntent, the normal channel
negotiation with the remote peer is interrupted, as soon as the
accept_channel message was received. With the remote peer's funding
multisig key and our local key, we can derive the funding output
script and its address. This is enough to start the PSBT funding
and signing process which the user will do externally to the daemon.
We add a new funding assembler and intent type that handle channel
funding through the use of a PSBT. The PsbtIntent is in itself a
simple state machine that can be stepped through the process of
assembling the required information for the funding output, verifying
a user supplied PSBT for correctness, accepting a fully signed PSBT
and then assembling the funding wire message.
In this commit, we make the internal channel funding flow aware of
frozen channels. We also update the testSingleFunderReservationWorkflow
method to ensure that the created channels have the proper type bit set.
As frozen channels can only be created via the non-default channel
assembler, we extend both the ShimIntent and CannedAssembler to also
accept and expose this new channel status along with the thaw height.
If we are the initiator, we check that our starting balance after
subtracting fees are not less than two times the default dust limit.
This commit adds a similar check for the non-initiator case, checking
that the remote party has a starting balance of reasonable size.
We also increase the witness size for these types to account for the 3
extra bytes. The size won't be correct in all cases, but it is just an
upper bound in any case.
This commit modifies the NP2WKH and NP2WSH input tests to ensure the
input count is properly incremented and accounted for in the size
estimate. 253 is chosen because it is the lowest value that, when
serialized, occupies more than one byte on the wire.
This commit adds two new channel statuses which indicate the party that
initatited closing the channel. These statuses are set in conjunction
with the existing commit broadcast status so that we do not need to
migrate existing logic to handle multiple types of closes. This status
is set for locally initiated force closes in this commit because they
follow a similar pattern to cooparative closes, marking the commitment
broadcast then proceeding with tx broadcast. Remote force closes are
added in the following commit, as they are handled differently.