chanfunding: add PSBT assembler and intent

We add a new funding assembler and intent type that handle channel
funding through the use of a PSBT. The PsbtIntent is in itself a
simple state machine that can be stepped through the process of
assembling the required information for the funding output, verifying
a user supplied PSBT for correctness, accepting a fully signed PSBT
and then assembling the funding wire message.
This commit is contained in:
Oliver Gugger 2020-03-31 09:13:15 +02:00
parent 357f5978ad
commit 126f79dbb1
No known key found for this signature in database
GPG Key ID: 8E4256593F177720
3 changed files with 1102 additions and 1 deletions

View File

@ -126,7 +126,7 @@ type Assembler interface {
// FundingTxAssembler is a super-set of the regular Assembler interface that's
// also able to provide a fully populated funding transaction via the intents
// that it produuces.
// that it produces.
type FundingTxAssembler interface {
Assembler

View File

@ -0,0 +1,524 @@
package chanfunding
import (
"bytes"
"crypto/sha256"
"errors"
"fmt"
"sync"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/psbt"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
)
// PsbtState is a type for the state of the PSBT intent state machine.
type PsbtState uint8
const (
// PsbtShimRegistered denotes a channel funding process has started with
// a PSBT shim attached. This is the default state for a PsbtIntent. We
// don't use iota here because the values have to be in sync with the
// RPC constants.
PsbtShimRegistered PsbtState = 1
// PsbtOutputKnown denotes that the local and remote peer have
// negotiated the multisig keys to be used as the channel funding output
// and therefore the PSBT funding process can now start.
PsbtOutputKnown PsbtState = 2
// PsbtVerified denotes that a potential PSBT has been presented to the
// intent and passed all checks. The verified PSBT can be given to a/the
// signer(s).
PsbtVerified PsbtState = 3
// PsbtFinalized denotes that a fully signed PSBT has been given to the
// intent that looks identical to the previously verified transaction
// but has all witness data added and is therefore completely signed.
PsbtFinalized PsbtState = 4
// PsbtFundingTxCompiled denotes that the PSBT processed by this intent
// has been successfully converted into a protocol transaction. It is
// not yet completely certain that the resulting transaction will be
// published because the commitment transactions between the channel
// peers first need to be counter signed. But the job of the intent is
// hereby completed.
PsbtFundingTxCompiled PsbtState = 5
// PsbtInitiatorCanceled denotes that the user has canceled the intent.
PsbtInitiatorCanceled PsbtState = 6
// PsbtResponderCanceled denotes that the remote peer has canceled the
// funding, likely due to a timeout.
PsbtResponderCanceled PsbtState = 7
)
// String returns a string representation of the PsbtState.
func (s PsbtState) String() string {
switch s {
case PsbtShimRegistered:
return "shim_registered"
case PsbtOutputKnown:
return "output_known"
case PsbtVerified:
return "verified"
case PsbtFinalized:
return "finalized"
case PsbtFundingTxCompiled:
return "funding_tx_compiled"
case PsbtInitiatorCanceled:
return "user_canceled"
case PsbtResponderCanceled:
return "remote_canceled"
default:
return fmt.Sprintf("<unknown(%d)>", s)
}
}
var (
// ErrRemoteCanceled is the error that is returned to the user if the
// funding flow was canceled by the remote peer.
ErrRemoteCanceled = errors.New("remote canceled funding, possibly " +
"timed out")
// ErrUserCanceled is the error that is returned through the PsbtReady
// channel if the user canceled the funding flow.
ErrUserCanceled = errors.New("user canceled funding")
)
// PsbtIntent is an intent created by the PsbtAssembler which represents a
// funding output to be created by a PSBT. This might be used when a hardware
// wallet, or a channel factory is the entity crafting the funding transaction,
// and not lnd.
type PsbtIntent struct {
// ShimIntent is the wrapped basic intent that contains common fields
// we also use in the PSBT funding case.
ShimIntent
// State is the current state the intent state machine is in.
State PsbtState
// BasePsbt is the user-supplied base PSBT the channel output should be
// added to. If this is nil we will create a new, empty PSBT as the base
// for the funding transaction.
BasePsbt *psbt.Packet
// PendingPsbt is the parsed version of the current PSBT. This can be
// in two stages: If the user has not yet provided any PSBT, this is
// nil. Once the user sends us an unsigned funded PSBT, we verify that
// we have a valid transaction that sends to the channel output PK
// script and has an input large enough to pay for it. We keep this
// verified but not yet signed version around until the fully signed
// transaction is submitted by the user. At that point we make sure the
// inputs and outputs haven't changed to what was previously verified.
// Only witness data should be added after the verification process.
PendingPsbt *psbt.Packet
// PsbtReady is an error channel the funding manager will listen for
// a signal about the PSBT being ready to continue the funding flow. In
// the normal, happy flow, this channel is only ever closed. If a
// non-nil error is sent through the channel, the funding flow will be
// canceled.
//
// NOTE: This channel must always be buffered.
PsbtReady chan error
// signalPsbtReady is a Once guard to make sure the PsbtReady channel is
// only closed exactly once.
signalPsbtReady sync.Once
// netParams are the network parameters used to encode the P2WSH funding
// address.
netParams *chaincfg.Params
}
// BindKeys sets both the remote and local node's keys that will be used for the
// channel funding multisig output.
func (i *PsbtIntent) BindKeys(localKey *keychain.KeyDescriptor,
remoteKey *btcec.PublicKey) {
i.localKey = localKey
i.remoteKey = remoteKey
i.State = PsbtOutputKnown
}
// FundingParams returns the parameters that are necessary to start funding the
// channel output this intent was created for. It returns the P2WSH funding
// address, the exact funding amount and a PSBT packet that contains exactly one
// output that encodes the previous two parameters.
func (i *PsbtIntent) FundingParams() (btcutil.Address, int64, *psbt.Packet,
error) {
if i.State != PsbtOutputKnown {
return nil, 0, nil, fmt.Errorf("invalid state, got %v "+
"expected %v", i.State, PsbtOutputKnown)
}
// The funding output needs to be known already at this point, which
// means we need to have the local and remote multisig keys bound
// already.
witnessScript, out, err := i.FundingOutput()
if err != nil {
return nil, 0, nil, fmt.Errorf("unable to create funding "+
"output: %v", err)
}
witnessScriptHash := sha256.Sum256(witnessScript)
// Encode the address in the human readable bech32 format.
addr, err := btcutil.NewAddressWitnessScriptHash(
witnessScriptHash[:], i.netParams,
)
if err != nil {
return nil, 0, nil, fmt.Errorf("unable to encode address: %v",
err)
}
// We'll also encode the address/amount in a machine readable raw PSBT
// format. If the user supplied a base PSBT, we'll add the output to
// that one, otherwise we'll create a new one.
packet := i.BasePsbt
if packet == nil {
packet, err = psbt.New(nil, nil, 2, 0, nil)
if err != nil {
return nil, 0, nil, fmt.Errorf("unable to create "+
"PSBT: %v", err)
}
}
packet.UnsignedTx.TxOut = append(packet.UnsignedTx.TxOut, out)
packet.Outputs = append(packet.Outputs, psbt.POutput{})
return addr, out.Value, packet, nil
}
// Verify makes sure the PSBT that is given to the intent has an output that
// sends to the channel funding multisig address with the correct amount. A
// simple check that at least a single input has been specified is performed.
func (i *PsbtIntent) Verify(packet *psbt.Packet) error {
if packet == nil {
return fmt.Errorf("PSBT is nil")
}
if i.State != PsbtOutputKnown {
return fmt.Errorf("invalid state. got %v expected %v", i.State,
PsbtOutputKnown)
}
// Try to locate the channel funding multisig output.
_, expectedOutput, err := i.FundingOutput()
if err != nil {
return fmt.Errorf("funding output cannot be created: %v", err)
}
outputFound := false
outputSum := int64(0)
for _, out := range packet.UnsignedTx.TxOut {
outputSum += out.Value
if txOutsEqual(out, expectedOutput) {
outputFound = true
}
}
if !outputFound {
return fmt.Errorf("funding output not found in PSBT")
}
// At least one input needs to be specified and it must be large enough
// to pay for all outputs. We don't want to dive into fee estimation
// here so we just assume that if the input amount exceeds the output
// amount, the chosen fee is sufficient.
if len(packet.UnsignedTx.TxIn) == 0 {
return fmt.Errorf("PSBT has no inputs")
}
sum, err := sumUtxoInputValues(packet)
if err != nil {
return fmt.Errorf("error determining input sum: %v", err)
}
if sum <= outputSum {
return fmt.Errorf("input amount sum must be larger than " +
"output amount sum")
}
i.PendingPsbt = packet
i.State = PsbtVerified
return nil
}
// Finalize makes sure the final PSBT that is given to the intent is fully valid
// and signed but still contains the same UTXOs and outputs as the pending
// transaction we previously verified. If everything checks out, the funding
// manager is informed that the channel can now be opened and the funding
// transaction be broadcast.
func (i *PsbtIntent) Finalize(packet *psbt.Packet) error {
if packet == nil {
return fmt.Errorf("PSBT is nil")
}
if i.State != PsbtVerified {
return fmt.Errorf("invalid state. got %v expected %v", i.State,
PsbtVerified)
}
// Make sure the PSBT itself thinks it's finalized and ready to be
// broadcast.
err := psbt.MaybeFinalizeAll(packet)
if err != nil {
return fmt.Errorf("error finalizing PSBT: %v", err)
}
_, err = psbt.Extract(packet)
if err != nil {
return fmt.Errorf("unable to extract funding TX: %v", err)
}
// Do a basic check that this is still the same PSBT that we verified in
// the previous step. This is to protect the user from unwanted
// modifications. We only check the outputs and previous outpoints of
// the inputs of the wire transaction because the fields in the PSBT
// part are allowed to change.
if i.PendingPsbt == nil {
return fmt.Errorf("PSBT was not verified first")
}
err = verifyOutputsEqual(
packet.UnsignedTx.TxOut, i.PendingPsbt.UnsignedTx.TxOut,
)
if err != nil {
return fmt.Errorf("outputs differ from verified PSBT: %v", err)
}
err = verifyInputPrevOutpointsEqual(
packet.UnsignedTx.TxIn, i.PendingPsbt.UnsignedTx.TxIn,
)
if err != nil {
return fmt.Errorf("inputs differ from verified PSBT: %v", err)
}
// As far as we can tell, this PSBT is ok to be used as a funding
// transaction.
i.PendingPsbt = packet
i.State = PsbtFinalized
// Signal the funding manager that it can now finally continue with its
// funding flow as the PSBT is now ready to be converted into a real
// transaction and be published.
i.signalPsbtReady.Do(func() {
close(i.PsbtReady)
})
return nil
}
// CompileFundingTx finalizes the previously verified PSBT and returns the
// extracted binary serialized transaction from it. It also prepares the channel
// point for which this funding intent was initiated for.
func (i *PsbtIntent) CompileFundingTx() (*wire.MsgTx, error) {
if i.State != PsbtFinalized {
return nil, fmt.Errorf("invalid state. got %v expected %v",
i.State, PsbtFinalized)
}
// Make sure the PSBT can be finalized and extracted.
err := psbt.MaybeFinalizeAll(i.PendingPsbt)
if err != nil {
return nil, fmt.Errorf("error finalizing PSBT: %v", err)
}
fundingTx, err := psbt.Extract(i.PendingPsbt)
if err != nil {
return nil, fmt.Errorf("unable to extract funding TX: %v", err)
}
// Identify our funding outpoint now that we know everything's ready.
_, txOut, err := i.FundingOutput()
if err != nil {
return nil, fmt.Errorf("cannot get funding output: %v", err)
}
ok, idx := input.FindScriptOutputIndex(fundingTx, txOut.PkScript)
if !ok {
return nil, fmt.Errorf("funding output not found in PSBT")
}
i.chanPoint = &wire.OutPoint{
Hash: fundingTx.TxHash(),
Index: idx,
}
i.State = PsbtFundingTxCompiled
return fundingTx, nil
}
// RemoteCanceled informs the listener of the PSBT ready channel that the
// funding has been canceled by the remote peer and that we can no longer
// continue with it.
func (i *PsbtIntent) RemoteCanceled() {
log.Debugf("PSBT funding intent canceled by remote, state=%v", i.State)
i.signalPsbtReady.Do(func() {
i.PsbtReady <- ErrRemoteCanceled
i.State = PsbtResponderCanceled
})
i.ShimIntent.Cancel()
}
// Cancel allows the caller to cancel a funding Intent at any time. This will
// return make sure the channel funding flow with the remote peer is failed and
// any reservations are canceled.
//
// NOTE: Part of the chanfunding.Intent interface.
func (i *PsbtIntent) Cancel() {
log.Debugf("PSBT funding intent canceled, state=%v", i.State)
i.signalPsbtReady.Do(func() {
i.PsbtReady <- ErrUserCanceled
i.State = PsbtInitiatorCanceled
})
i.ShimIntent.Cancel()
}
// PsbtAssembler is a type of chanfunding.Assembler wherein the funding
// transaction is constructed outside of lnd by using partially signed bitcoin
// transactions (PSBT).
type PsbtAssembler struct {
// fundingAmt is the total amount of coins in the funding output.
fundingAmt btcutil.Amount
// basePsbt is the user-supplied base PSBT the channel output should be
// added to.
basePsbt *psbt.Packet
// netParams are the network parameters used to encode the P2WSH funding
// address.
netParams *chaincfg.Params
}
// NewPsbtAssembler creates a new CannedAssembler from the material required
// to construct a funding output and channel point. An optional base PSBT can
// be supplied which will be used to add the channel output to instead of
// creating a new one.
func NewPsbtAssembler(fundingAmt btcutil.Amount, basePsbt *psbt.Packet,
netParams *chaincfg.Params) *PsbtAssembler {
return &PsbtAssembler{
fundingAmt: fundingAmt,
basePsbt: basePsbt,
netParams: netParams,
}
}
// ProvisionChannel creates a new ShimIntent given the passed funding Request.
// The returned intent is immediately able to provide the channel point and
// funding output as they've already been created outside lnd.
//
// NOTE: This method satisfies the chanfunding.Assembler interface.
func (p *PsbtAssembler) ProvisionChannel(req *Request) (Intent, error) {
// We'll exit out if this field is set as the funding transaction will
// be assembled externally, so we don't influence coin selection.
if req.SubtractFees {
return nil, fmt.Errorf("SubtractFees not supported for PSBT")
}
intent := &PsbtIntent{
ShimIntent: ShimIntent{
localFundingAmt: p.fundingAmt,
},
State: PsbtShimRegistered,
BasePsbt: p.basePsbt,
PsbtReady: make(chan error, 1),
netParams: p.netParams,
}
// A simple sanity check to ensure the provisioned request matches the
// re-made shim intent.
if req.LocalAmt+req.RemoteAmt != p.fundingAmt {
return nil, fmt.Errorf("intent doesn't match PSBT "+
"assembler: local_amt=%v, remote_amt=%v, funding_amt=%v",
req.LocalAmt, req.RemoteAmt, p.fundingAmt)
}
return intent, nil
}
// FundingTxAvailable is an empty method that an assembler can implement to
// signal to callers that its able to provide the funding transaction for the
// channel via the intent it returns.
//
// NOTE: This method is a part of the FundingTxAssembler interface.
func (p *PsbtAssembler) FundingTxAvailable() {}
// A compile-time assertion to ensure PsbtAssembler meets the Assembler
// interface.
var _ Assembler = (*PsbtAssembler)(nil)
// sumUtxoInputValues tries to extract the sum of all inputs specified in the
// UTXO fields of the PSBT. An error is returned if an input is specified that
// does not contain any UTXO information.
func sumUtxoInputValues(packet *psbt.Packet) (int64, error) {
// We take the TX ins of the unsigned TX as the truth for how many
// inputs there should be, as the fields in the extra data part of the
// PSBT can be empty.
if len(packet.UnsignedTx.TxIn) != len(packet.Inputs) {
return 0, fmt.Errorf("TX input length doesn't match PSBT " +
"input length")
}
inputSum := int64(0)
for idx, in := range packet.Inputs {
switch {
case in.WitnessUtxo != nil:
// Witness UTXOs only need to reference the TxOut.
inputSum += in.WitnessUtxo.Value
case in.NonWitnessUtxo != nil:
// Non-witness UTXOs reference to the whole transaction
// the UTXO resides in.
utxOuts := in.NonWitnessUtxo.TxOut
txIn := packet.UnsignedTx.TxIn[idx]
inputSum += utxOuts[txIn.PreviousOutPoint.Index].Value
default:
return 0, fmt.Errorf("input %d has no UTXO information",
idx)
}
}
return inputSum, nil
}
// txOutsEqual returns true if two transaction outputs are equal.
func txOutsEqual(out1, out2 *wire.TxOut) bool {
if out1 == nil || out2 == nil {
return out1 == out2
}
return out1.Value == out2.Value &&
bytes.Equal(out1.PkScript, out2.PkScript)
}
// verifyOutputsEqual verifies that the two slices of transaction outputs are
// deep equal to each other. We do the length check and manual loop to provide
// better error messages to the user than just returning "not equal".
func verifyOutputsEqual(outs1, outs2 []*wire.TxOut) error {
if len(outs1) != len(outs2) {
return fmt.Errorf("number of outputs are different")
}
for idx, out := range outs1 {
// There is a byte slice in the output so we can't use the
// equality operator.
if !txOutsEqual(out, outs2[idx]) {
return fmt.Errorf("output %d is different", idx)
}
}
return nil
}
// verifyInputPrevOutpointsEqual verifies that the previous outpoints of the
// two slices of transaction inputs are deep equal to each other. We do the
// length check and manual loop to provide better error messages to the user
// than just returning "not equal".
func verifyInputPrevOutpointsEqual(ins1, ins2 []*wire.TxIn) error {
if len(ins1) != len(ins2) {
return fmt.Errorf("number of inputs are different")
}
for idx, in := range ins1 {
if in.PreviousOutPoint != ins2[idx].PreviousOutPoint {
return fmt.Errorf("previous outpoint of input %d is "+
"different", idx)
}
}
return nil
}

View File

@ -0,0 +1,577 @@
package chanfunding
import (
"bytes"
"crypto/sha256"
"fmt"
"reflect"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/psbt"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
)
var (
localPrivkey = []byte{1, 2, 3, 4, 5, 6}
remotePrivkey = []byte{6, 5, 4, 3, 2, 1}
chanCapacity btcutil.Amount = 644000
params = chaincfg.RegressionNetParams
defaultTimeout = 50 * time.Millisecond
)
// TestPsbtIntent tests the basic happy path of the PSBT assembler and intent.
func TestPsbtIntent(t *testing.T) {
t.Parallel()
// Create a simple assembler and ask it to provision a channel to get
// the funding intent.
a := NewPsbtAssembler(chanCapacity, nil, &params)
intent, err := a.ProvisionChannel(&Request{LocalAmt: chanCapacity})
if err != nil {
t.Fatalf("error provisioning channel: %v", err)
}
psbtIntent, ok := intent.(*PsbtIntent)
if !ok {
t.Fatalf("intent was not a PsbtIntent")
}
if psbtIntent.State != PsbtShimRegistered {
t.Fatalf("unexpected state. got %d wanted %d", psbtIntent.State,
PsbtShimRegistered)
}
// The first step with the intent is that the funding manager starts
// negotiating with the remote peer and they accept. By accepting, they
// send over their multisig key that's going to be used for the funding
// output. With that known, we can start crafting a PSBT.
_, localPubkey := btcec.PrivKeyFromBytes(btcec.S256(), localPrivkey)
_, remotePubkey := btcec.PrivKeyFromBytes(btcec.S256(), remotePrivkey)
psbtIntent.BindKeys(
&keychain.KeyDescriptor{PubKey: localPubkey}, remotePubkey,
)
if psbtIntent.State != PsbtOutputKnown {
t.Fatalf("unexpected state. got %d wanted %d", psbtIntent.State,
PsbtOutputKnown)
}
// Make sure the output script address is correct.
script, _, err := input.GenFundingPkScript(
localPubkey.SerializeCompressed(),
remotePubkey.SerializeCompressed(), int64(chanCapacity),
)
if err != nil {
t.Fatalf("error calculating script: %v", err)
}
witnessScriptHash := sha256.Sum256(script)
addr, err := btcutil.NewAddressWitnessScriptHash(
witnessScriptHash[:], &params,
)
if err != nil {
t.Fatalf("unable to encode address: %v", err)
}
fundingAddr, amt, pendingPsbt, err := psbtIntent.FundingParams()
if err != nil {
t.Fatalf("unable to get funding params: %v", err)
}
if addr.EncodeAddress() != fundingAddr.EncodeAddress() {
t.Fatalf("unexpected address. got %s wanted %s", fundingAddr,
addr)
}
if amt != int64(chanCapacity) {
t.Fatalf("unexpected amount. got %d wanted %d", amt,
chanCapacity)
}
// Parse and check the returned PSBT packet.
if pendingPsbt == nil {
t.Fatalf("expected pending PSBT to be returned")
}
if len(pendingPsbt.UnsignedTx.TxOut) != 1 {
t.Fatalf("unexpected number of outputs. got %d wanted %d",
len(pendingPsbt.UnsignedTx.TxOut), 1)
}
txOut := pendingPsbt.UnsignedTx.TxOut[0]
if !bytes.Equal(txOut.PkScript[2:], witnessScriptHash[:]) {
t.Fatalf("unexpected PK script in output. got %x wanted %x",
txOut.PkScript[2:], witnessScriptHash)
}
if txOut.Value != int64(chanCapacity) {
t.Fatalf("unexpected value in output. got %d wanted %d",
txOut.Value, chanCapacity)
}
// Add an input to the pending TX to simulate it being funded.
pendingPsbt.UnsignedTx.TxIn = []*wire.TxIn{
{PreviousOutPoint: wire.OutPoint{Index: 0}},
}
pendingPsbt.Inputs = []psbt.PInput{
{WitnessUtxo: &wire.TxOut{Value: int64(chanCapacity + 1)}},
}
// Verify the dummy PSBT with the intent.
err = psbtIntent.Verify(pendingPsbt)
if err != nil {
t.Fatalf("error verifying pending PSBT: %v", err)
}
if psbtIntent.State != PsbtVerified {
t.Fatalf("unexpected state. got %d wanted %d", psbtIntent.State,
PsbtVerified)
}
// Add some fake witness data to the transaction so it thinks it's
// signed.
pendingPsbt.Inputs[0].WitnessUtxo = &wire.TxOut{
Value: int64(chanCapacity) * 2,
PkScript: []byte{99, 99, 99},
}
pendingPsbt.Inputs[0].FinalScriptSig = []byte{88, 88, 88}
pendingPsbt.Inputs[0].FinalScriptWitness = []byte{2, 0, 0}
// If we call Finalize, the intent will signal to the funding manager
// that it can continue with the funding flow. We want to make sure
// the signal arrives.
var wg sync.WaitGroup
errChan := make(chan error, 1)
wg.Add(1)
go func() {
defer wg.Done()
select {
case err := <-psbtIntent.PsbtReady:
errChan <- err
case <-time.After(defaultTimeout):
errChan <- fmt.Errorf("timed out")
}
}()
err = psbtIntent.Finalize(pendingPsbt)
if err != nil {
t.Fatalf("error finalizing pending PSBT: %v", err)
}
wg.Wait()
// We should have a nil error in our channel now.
err = <-errChan
if err != nil {
t.Fatalf("unexpected error after finalize: %v", err)
}
if psbtIntent.State != PsbtFinalized {
t.Fatalf("unexpected state. got %d wanted %d", psbtIntent.State,
PsbtFinalized)
}
// Make sure the funding transaction can be compiled.
_, err = psbtIntent.CompileFundingTx()
if err != nil {
t.Fatalf("error compiling funding TX from PSBT: %v", err)
}
if psbtIntent.State != PsbtFundingTxCompiled {
t.Fatalf("unexpected state. got %d wanted %d", psbtIntent.State,
PsbtFundingTxCompiled)
}
}
// TestPsbtIntentBasePsbt tests that a channel funding output can be appended to
// a given base PSBT in the funding flow.
func TestPsbtIntentBasePsbt(t *testing.T) {
t.Parallel()
// First create a dummy PSBT with a single output.
pendingPsbt, err := psbt.New(
[]*wire.OutPoint{{}}, []*wire.TxOut{
{Value: 999, PkScript: []byte{99, 88, 77}},
}, 2, 0, []uint32{0},
)
if err != nil {
t.Fatalf("unable to create dummy PSBT")
}
// Generate the funding multisig keys and the address so we can compare
// it to the output of the intent.
_, localPubkey := btcec.PrivKeyFromBytes(btcec.S256(), localPrivkey)
_, remotePubkey := btcec.PrivKeyFromBytes(btcec.S256(), remotePrivkey)
// Make sure the output script address is correct.
script, _, err := input.GenFundingPkScript(
localPubkey.SerializeCompressed(),
remotePubkey.SerializeCompressed(), int64(chanCapacity),
)
if err != nil {
t.Fatalf("error calculating script: %v", err)
}
witnessScriptHash := sha256.Sum256(script)
addr, err := btcutil.NewAddressWitnessScriptHash(
witnessScriptHash[:], &params,
)
if err != nil {
t.Fatalf("unable to encode address: %v", err)
}
// Now as the next step, create a new assembler/intent pair with a base
// PSBT to see that we can add an additional output to it.
a := NewPsbtAssembler(chanCapacity, pendingPsbt, &params)
intent, err := a.ProvisionChannel(&Request{LocalAmt: chanCapacity})
if err != nil {
t.Fatalf("error provisioning channel: %v", err)
}
psbtIntent, ok := intent.(*PsbtIntent)
if !ok {
t.Fatalf("intent was not a PsbtIntent")
}
psbtIntent.BindKeys(
&keychain.KeyDescriptor{PubKey: localPubkey}, remotePubkey,
)
newAddr, amt, twoOutPsbt, err := psbtIntent.FundingParams()
if err != nil {
t.Fatalf("unable to get funding params: %v", err)
}
if addr.EncodeAddress() != newAddr.EncodeAddress() {
t.Fatalf("unexpected address. got %s wanted %s", newAddr,
addr)
}
if amt != int64(chanCapacity) {
t.Fatalf("unexpected amount. got %d wanted %d", amt,
chanCapacity)
}
if len(twoOutPsbt.UnsignedTx.TxOut) != 2 {
t.Fatalf("unexpected number of outputs. got %d wanted %d",
len(twoOutPsbt.UnsignedTx.TxOut), 2)
}
if len(twoOutPsbt.UnsignedTx.TxIn) != 1 {
t.Fatalf("unexpected number of inputs. got %d wanted %d",
len(twoOutPsbt.UnsignedTx.TxIn), 1)
}
txOld := pendingPsbt.UnsignedTx
txNew := twoOutPsbt.UnsignedTx
prevoutEqual := reflect.DeepEqual(
txOld.TxIn[0].PreviousOutPoint, txNew.TxIn[0].PreviousOutPoint,
)
if !prevoutEqual {
t.Fatalf("inputs changed. got %s wanted %s",
spew.Sdump(txOld.TxIn[0].PreviousOutPoint),
spew.Sdump(txNew.TxIn[0].PreviousOutPoint))
}
if !reflect.DeepEqual(txOld.TxOut[0], txNew.TxOut[0]) {
t.Fatalf("existing output changed. got %v wanted %v",
txOld.TxOut[0], txNew.TxOut[0])
}
}
// TestPsbtVerify tests the PSBT verification process more deeply than just
// the happy path.
func TestPsbtVerify(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
expectedErr string
doVerify func(int64, *psbt.Packet, *PsbtIntent) error
}{
{
name: "nil packet",
expectedErr: "PSBT is nil",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
return i.Verify(nil)
},
},
{
name: "wrong state",
expectedErr: "invalid state. got user_canceled " +
"expected output_known",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
i.State = PsbtInitiatorCanceled
return i.Verify(p)
},
},
{
name: "output not found, value wrong",
expectedErr: "funding output not found in PSBT",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxOut[0].Value = 123
return i.Verify(p)
},
},
{
name: "output not found, pk script wrong",
expectedErr: "funding output not found in PSBT",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxOut[0].PkScript = []byte{1, 2, 3}
return i.Verify(p)
},
},
{
name: "no inputs",
expectedErr: "PSBT has no inputs",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
return i.Verify(p)
},
},
{
name: "input(s) too small",
expectedErr: "input amount sum must be larger than " +
"output amount sum",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxIn = []*wire.TxIn{{}}
p.Inputs = []psbt.PInput{{
WitnessUtxo: &wire.TxOut{
Value: int64(chanCapacity),
},
}}
return i.Verify(p)
},
},
{
name: "input correct",
expectedErr: "",
doVerify: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
txOut := &wire.TxOut{
Value: int64(chanCapacity/2) + 1,
}
p.UnsignedTx.TxIn = []*wire.TxIn{
{},
{
PreviousOutPoint: wire.OutPoint{
Index: 0,
},
},
}
p.Inputs = []psbt.PInput{
{
WitnessUtxo: txOut,
},
{
NonWitnessUtxo: &wire.MsgTx{
TxOut: []*wire.TxOut{
txOut,
},
},
}}
return i.Verify(p)
},
},
}
// Create a simple assembler and ask it to provision a channel to get
// the funding intent.
a := NewPsbtAssembler(chanCapacity, nil, &params)
intent, err := a.ProvisionChannel(&Request{LocalAmt: chanCapacity})
if err != nil {
t.Fatalf("error provisioning channel: %v", err)
}
psbtIntent := intent.(*PsbtIntent)
// Bind our test keys to get the funding parameters.
_, localPubkey := btcec.PrivKeyFromBytes(btcec.S256(), localPrivkey)
_, remotePubkey := btcec.PrivKeyFromBytes(btcec.S256(), remotePrivkey)
psbtIntent.BindKeys(
&keychain.KeyDescriptor{PubKey: localPubkey}, remotePubkey,
)
// Loop through all our test cases.
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
// Reset the state from a previous test and create a new
// pending PSBT that we can manipulate.
psbtIntent.State = PsbtOutputKnown
_, amt, pendingPsbt, err := psbtIntent.FundingParams()
if err != nil {
t.Fatalf("unable to get funding params: %v", err)
}
err = tc.doVerify(amt, pendingPsbt, psbtIntent)
if err != nil && tc.expectedErr != "" &&
err.Error() != tc.expectedErr {
t.Fatalf("unexpected error, got '%v' wanted "+
"'%v'", err, tc.expectedErr)
}
})
}
}
// TestPsbtFinalize tests the PSBT finalization process more deeply than just
// the happy path.
func TestPsbtFinalize(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
expectedErr string
doFinalize func(int64, *psbt.Packet, *PsbtIntent) error
}{
{
name: "nil packet",
expectedErr: "PSBT is nil",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
return i.Finalize(nil)
},
},
{
name: "wrong state",
expectedErr: "invalid state. got user_canceled " +
"expected verified",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
i.State = PsbtInitiatorCanceled
return i.Finalize(p)
},
},
{
name: "not verified first",
expectedErr: "PSBT was not verified first",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
i.State = PsbtVerified
i.PendingPsbt = nil
return i.Finalize(p)
},
},
{
name: "output value changed",
expectedErr: "outputs differ from verified PSBT: " +
"output 0 is different",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxOut[0].Value = 123
return i.Finalize(p)
},
},
{
name: "output pk script changed",
expectedErr: "outputs differ from verified PSBT: " +
"output 0 is different",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxOut[0].PkScript = []byte{3, 2, 1}
return i.Finalize(p)
},
},
{
name: "input previous outpoint index changed",
expectedErr: "inputs differ from verified PSBT: " +
"previous outpoint of input 0 is different",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
p.UnsignedTx.TxIn[0].PreviousOutPoint.Index = 0
return i.Finalize(p)
},
},
{
name: "input previous outpoint hash changed",
expectedErr: "inputs differ from verified PSBT: " +
"previous outpoint of input 0 is different",
doFinalize: func(amt int64, p *psbt.Packet,
i *PsbtIntent) error {
prevout := &p.UnsignedTx.TxIn[0].PreviousOutPoint
prevout.Hash = chainhash.Hash{77, 88, 99, 11}
return i.Finalize(p)
},
},
}
// Create a simple assembler and ask it to provision a channel to get
// the funding intent.
a := NewPsbtAssembler(chanCapacity, nil, &params)
intent, err := a.ProvisionChannel(&Request{LocalAmt: chanCapacity})
if err != nil {
t.Fatalf("error provisioning channel: %v", err)
}
psbtIntent := intent.(*PsbtIntent)
// Bind our test keys to get the funding parameters.
_, localPubkey := btcec.PrivKeyFromBytes(btcec.S256(), localPrivkey)
_, remotePubkey := btcec.PrivKeyFromBytes(btcec.S256(), remotePrivkey)
psbtIntent.BindKeys(
&keychain.KeyDescriptor{PubKey: localPubkey}, remotePubkey,
)
// Loop through all our test cases.
for _, tc := range testCases {
tc := tc
t.Run(tc.name, func(t *testing.T) {
// Reset the state from a previous test and create a new
// pending PSBT that we can manipulate.
psbtIntent.State = PsbtOutputKnown
_, amt, pendingPsbt, err := psbtIntent.FundingParams()
if err != nil {
t.Fatalf("unable to get funding params: %v", err)
}
// We need to have a simulated transaction here that is
// fully funded and signed.
pendingPsbt.UnsignedTx.TxIn = []*wire.TxIn{{
PreviousOutPoint: wire.OutPoint{
Index: 1,
Hash: chainhash.Hash{1, 2, 3},
},
}}
pendingPsbt.Inputs = []psbt.PInput{{
WitnessUtxo: &wire.TxOut{
Value: int64(chanCapacity) + 1,
PkScript: []byte{1, 2, 3},
},
FinalScriptWitness: []byte{0x01, 0x00},
}}
err = psbtIntent.Verify(pendingPsbt)
if err != nil {
t.Fatalf("error verifying PSBT: %v", err)
}
// Deep clone the PSBT so we don't modify the pending
// one that was registered during Verify.
pendingPsbt = clonePsbt(t, pendingPsbt)
err = tc.doFinalize(amt, pendingPsbt, psbtIntent)
if (err == nil && tc.expectedErr != "") ||
(err != nil && err.Error() != tc.expectedErr) {
t.Fatalf("unexpected error, got '%v' wanted "+
"'%v'", err, tc.expectedErr)
}
})
}
}
// clonePsbt creates a clone of a PSBT packet by serializing then de-serializing
// it.
func clonePsbt(t *testing.T, p *psbt.Packet) *psbt.Packet {
var buf bytes.Buffer
err := p.Serialize(&buf)
if err != nil {
t.Fatalf("error serializing PSBT: %v", err)
}
newPacket, err := psbt.NewFromRawBytes(&buf, false)
if err != nil {
t.Fatalf("error unserializing PSBT: %v", err)
}
return newPacket
}