Merge pull request #2293 from halseth/unit-tests-weighted-choice
[autopilot] weighted choice unit tests and optimizations
This commit is contained in:
commit
21460c9e67
@ -551,7 +551,7 @@ func (a *Agent) openChans(availableFunds btcutil.Amount, numChans uint32,
|
||||
|
||||
// Now use the score to make a weighted choice which
|
||||
// nodes to attempt to open channels to.
|
||||
chanCandidates, err := chooseN(int(numChans), scores)
|
||||
chanCandidates, err := chooseN(numChans, scores)
|
||||
if err != nil {
|
||||
return fmt.Errorf("Unable to make weighted choice: %v",
|
||||
err)
|
||||
|
@ -10,28 +10,23 @@ import (
|
||||
// weights left to choose from.
|
||||
var ErrNoPositive = errors.New("no positive weights left")
|
||||
|
||||
// weightedChoice draws a random index from the map of channel candidates, with
|
||||
// a probability propotional to their score.
|
||||
func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) {
|
||||
// Calculate the sum of scores found in the map.
|
||||
// weightedChoice draws a random index from the slice of weights, with a
|
||||
// probability propotional to the weight at the given index.
|
||||
func weightedChoice(w []float64) (int, error) {
|
||||
// Calculate the sum of weights.
|
||||
var sum float64
|
||||
for _, v := range s {
|
||||
sum += v.Score
|
||||
for _, v := range w {
|
||||
sum += v
|
||||
}
|
||||
|
||||
if sum <= 0 {
|
||||
return NodeID{}, ErrNoPositive
|
||||
return 0, ErrNoPositive
|
||||
}
|
||||
|
||||
// Create a map of normalized scores such, that they sum to 1.0.
|
||||
norm := make(map[NodeID]float64)
|
||||
for k, v := range s {
|
||||
norm[k] = v.Score / sum
|
||||
}
|
||||
|
||||
// Pick a random number in the range [0.0, 1.0), and iterate the map
|
||||
// until the number goes below 0. This means that each index is picked
|
||||
// with a probablity equal to their normalized score.
|
||||
// Pick a random number in the range [0.0, 1.0) and multiply it with
|
||||
// the sum of weights. Then we'll iterate the weights until the number
|
||||
// goes below 0. This means that each index is picked with a probablity
|
||||
// equal to their normalized score.
|
||||
//
|
||||
// Example:
|
||||
// Items with scores [1, 5, 2, 2]
|
||||
@ -40,40 +35,52 @@ func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) {
|
||||
// in [0, 1.0]:
|
||||
// [|-0.1-||-----0.5-----||--0.2--||--0.2--|]
|
||||
// The following loop is now equivalent to "hitting" the intervals.
|
||||
r := rand.Float64()
|
||||
for k, v := range norm {
|
||||
r -= v
|
||||
r := rand.Float64() * sum
|
||||
for i := range w {
|
||||
r -= w[i]
|
||||
if r <= 0 {
|
||||
return k, nil
|
||||
return i, nil
|
||||
}
|
||||
}
|
||||
return NodeID{}, fmt.Errorf("unable to make choice")
|
||||
|
||||
return 0, fmt.Errorf("unable to make choice")
|
||||
}
|
||||
|
||||
// chooseN picks at random min[n, len(s)] nodes if from the
|
||||
// AttachmentDirectives map, with a probability weighted by their score.
|
||||
func chooseN(n int, s map[NodeID]*AttachmentDirective) (
|
||||
func chooseN(n uint32, s map[NodeID]*AttachmentDirective) (
|
||||
map[NodeID]*AttachmentDirective, error) {
|
||||
|
||||
// Keep a map of nodes not yet choosen.
|
||||
rem := make(map[NodeID]*AttachmentDirective)
|
||||
// Keep track of the number of nodes not yet chosen, in addition to
|
||||
// their scores and NodeIDs.
|
||||
rem := len(s)
|
||||
scores := make([]float64, len(s))
|
||||
nodeIDs := make([]NodeID, len(s))
|
||||
i := 0
|
||||
for k, v := range s {
|
||||
rem[k] = v
|
||||
scores[i] = v.Score
|
||||
nodeIDs[i] = k
|
||||
i++
|
||||
}
|
||||
|
||||
// Pick a weighted choice from the remaining nodes as long as there are
|
||||
// nodes left, and we haven't already picked n.
|
||||
chosen := make(map[NodeID]*AttachmentDirective)
|
||||
for len(chosen) < n && len(rem) > 0 {
|
||||
choice, err := weightedChoice(rem)
|
||||
for len(chosen) < int(n) && rem > 0 {
|
||||
choice, err := weightedChoice(scores)
|
||||
if err == ErrNoPositive {
|
||||
return chosen, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
chosen[choice] = rem[choice]
|
||||
delete(rem, choice)
|
||||
nID := nodeIDs[choice]
|
||||
|
||||
chosen[nID] = s[nID]
|
||||
|
||||
// We set the score of the chosen node to 0, so it won't be
|
||||
// picked the next iteration.
|
||||
scores[choice] = 0
|
||||
}
|
||||
|
||||
return chosen, nil
|
||||
|
349
autopilot/choice_test.go
Normal file
349
autopilot/choice_test.go
Normal file
@ -0,0 +1,349 @@
|
||||
package autopilot
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"math/rand"
|
||||
"reflect"
|
||||
"testing"
|
||||
"testing/quick"
|
||||
)
|
||||
|
||||
var (
|
||||
nID1 = NodeID([33]byte{1})
|
||||
nID2 = NodeID([33]byte{2})
|
||||
nID3 = NodeID([33]byte{3})
|
||||
nID4 = NodeID([33]byte{4})
|
||||
)
|
||||
|
||||
// TestWeightedChoiceEmptyMap tests that passing in an empty slice of weights
|
||||
// returns an error.
|
||||
func TestWeightedChoiceEmptyMap(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
var w []float64
|
||||
_, err := weightedChoice(w)
|
||||
if err != ErrNoPositive {
|
||||
t.Fatalf("expected ErrNoPositive when choosing in "+
|
||||
"empty map, instead got %v", err)
|
||||
}
|
||||
}
|
||||
|
||||
// singeNonZero is a type used to generate float64 slices with one non-zero
|
||||
// element.
|
||||
type singleNonZero []float64
|
||||
|
||||
// Generate generates a value of type sinelNonZero to be used during
|
||||
// QuickTests.
|
||||
func (singleNonZero) Generate(rand *rand.Rand, size int) reflect.Value {
|
||||
w := make([]float64, size)
|
||||
|
||||
// Pick a random index and set it to a random float.
|
||||
i := rand.Intn(size)
|
||||
w[i] = rand.Float64()
|
||||
|
||||
return reflect.ValueOf(w)
|
||||
}
|
||||
|
||||
// TestWeightedChoiceSingleIndex tests that choosing randomly in a slice with
|
||||
// one positive element always returns that one index.
|
||||
func TestWeightedChoiceSingleIndex(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Helper that returns the index of the non-zero element.
|
||||
allButOneZero := func(weights []float64) (bool, int) {
|
||||
var (
|
||||
numZero uint32
|
||||
nonZeroEl int
|
||||
)
|
||||
|
||||
for i, w := range weights {
|
||||
if w != 0 {
|
||||
numZero++
|
||||
nonZeroEl = i
|
||||
}
|
||||
}
|
||||
|
||||
return numZero == 1, nonZeroEl
|
||||
}
|
||||
|
||||
property := func(weights singleNonZero) bool {
|
||||
// Make sure the generated slice has exactly one non-zero
|
||||
// element.
|
||||
conditionMet, nonZeroElem := allButOneZero(weights[:])
|
||||
if !conditionMet {
|
||||
return false
|
||||
}
|
||||
|
||||
// Call weightedChoice and assert it picks the non-zero
|
||||
// element.
|
||||
choice, err := weightedChoice(weights[:])
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
return choice == nonZeroElem
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// nonNegative is a type used to generate float64 slices with non-negative
|
||||
// elements.
|
||||
type nonNegative []float64
|
||||
|
||||
// Generate generates a value of type nonNegative to be used during
|
||||
// QuickTests.
|
||||
func (nonNegative) Generate(rand *rand.Rand, size int) reflect.Value {
|
||||
const precision = 100
|
||||
w := make([]float64, size)
|
||||
|
||||
for i := range w {
|
||||
r := rand.Float64()
|
||||
|
||||
// For very small weights it won't work to check deviation from
|
||||
// expected value, so we set them to zero.
|
||||
if r < 0.01*float64(size) {
|
||||
r = 0
|
||||
}
|
||||
w[i] = float64(r)
|
||||
}
|
||||
return reflect.ValueOf(w)
|
||||
}
|
||||
|
||||
func assertChoice(w []float64, iterations int) bool {
|
||||
var sum float64
|
||||
for _, v := range w {
|
||||
sum += v
|
||||
}
|
||||
|
||||
// Calculate the expected frequency of each choice.
|
||||
expFrequency := make([]float64, len(w))
|
||||
for i, ww := range w {
|
||||
expFrequency[i] = ww / sum
|
||||
}
|
||||
|
||||
chosen := make(map[int]int)
|
||||
for i := 0; i < iterations; i++ {
|
||||
res, err := weightedChoice(w)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
chosen[res]++
|
||||
}
|
||||
|
||||
// Since this is random we check that the number of times chosen is
|
||||
// within 20% of the expected value.
|
||||
totalChoices := 0
|
||||
for i, f := range expFrequency {
|
||||
exp := float64(iterations) * f
|
||||
v := float64(chosen[i])
|
||||
totalChoices += chosen[i]
|
||||
expHigh := exp + exp/5
|
||||
expLow := exp - exp/5
|
||||
if v < expLow || v > expHigh {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// The sum of choices must be exactly iterations of course.
|
||||
if totalChoices != iterations {
|
||||
return false
|
||||
}
|
||||
return true
|
||||
|
||||
}
|
||||
|
||||
// TestWeightedChoiceDistribution asserts that the weighted choice algorithm
|
||||
// chooses among indexes according to their scores.
|
||||
func TestWeightedChoiceDistribution(t *testing.T) {
|
||||
const iterations = 100000
|
||||
|
||||
property := func(weights nonNegative) bool {
|
||||
return assertChoice(weights, iterations)
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// TestChooseNEmptyMap checks that chooseN returns an empty result when no
|
||||
// nodes are chosen among.
|
||||
func TestChooseNEmptyMap(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
nodes := map[NodeID]*AttachmentDirective{}
|
||||
property := func(n uint32) bool {
|
||||
res, err := chooseN(n, nodes)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
// Result should always be empty.
|
||||
return len(res) == 0
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// candidateMapVarLen is a type we'll use to generate maps of various lengths
|
||||
// up to 255 to be used during QuickTests.
|
||||
type candidateMapVarLen map[NodeID]*AttachmentDirective
|
||||
|
||||
// Generate generates a value of type candidateMapVarLen to be used during
|
||||
// QuickTests.
|
||||
func (candidateMapVarLen) Generate(rand *rand.Rand, size int) reflect.Value {
|
||||
nodes := make(map[NodeID]*AttachmentDirective)
|
||||
|
||||
// To avoid creating huge maps, we restrict them to max uint8 len.
|
||||
n := uint8(rand.Uint32())
|
||||
|
||||
for i := uint8(0); i < n; i++ {
|
||||
s := rand.Float64()
|
||||
|
||||
// We set small values to zero, to ensure we handle these
|
||||
// correctly.
|
||||
if s < 0.01 {
|
||||
s = 0
|
||||
}
|
||||
|
||||
var nID [33]byte
|
||||
binary.BigEndian.PutUint32(nID[:], uint32(i))
|
||||
nodes[nID] = &AttachmentDirective{
|
||||
Score: s,
|
||||
}
|
||||
}
|
||||
|
||||
return reflect.ValueOf(nodes)
|
||||
}
|
||||
|
||||
// TestChooseNMinimum test that chooseN returns the minimum of the number of
|
||||
// nodes we request and the number of positively scored nodes in the given map.
|
||||
func TestChooseNMinimum(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
// Helper to count the number of positive scores in the given map.
|
||||
numPositive := func(nodes map[NodeID]*AttachmentDirective) int {
|
||||
cnt := 0
|
||||
for _, v := range nodes {
|
||||
if v.Score > 0 {
|
||||
cnt++
|
||||
}
|
||||
}
|
||||
return cnt
|
||||
}
|
||||
|
||||
// We use let the type of n be uint8 to avoid generating huge numbers.
|
||||
property := func(nodes candidateMapVarLen, n uint8) bool {
|
||||
res, err := chooseN(uint32(n), nodes)
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
|
||||
positive := numPositive(nodes)
|
||||
|
||||
// Result should always be the minimum of the number of nodes
|
||||
// we wanted to select and the number of positively scored
|
||||
// nodes in the map.
|
||||
min := positive
|
||||
if int(n) < min {
|
||||
min = int(n)
|
||||
}
|
||||
|
||||
if len(res) != min {
|
||||
return false
|
||||
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
if err := quick.Check(property, nil); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// TestChooseNSample sanity checks that nodes are picked by chooseN according
|
||||
// to their scores.
|
||||
func TestChooseNSample(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
const numNodes = 500
|
||||
const maxIterations = 100000
|
||||
fifth := uint32(numNodes / 5)
|
||||
|
||||
nodes := make(map[NodeID]*AttachmentDirective)
|
||||
|
||||
// we make 5 buckets of nodes: 0, 0.1, 0.2, 0.4 and 0.8 score. We want
|
||||
// to check that zero scores never gets chosen, while a doubling the
|
||||
// score makes a node getting chosen about double the amount (this is
|
||||
// true only when n <<< numNodes).
|
||||
j := 2 * fifth
|
||||
score := 0.1
|
||||
for i := uint32(0); i < numNodes; i++ {
|
||||
|
||||
// Each time i surpasses j we double the score we give to the
|
||||
// next fifth of nodes.
|
||||
if i >= j {
|
||||
score *= 2
|
||||
j += fifth
|
||||
}
|
||||
s := score
|
||||
|
||||
// The first 1/5 of nodes we give a score of 0.
|
||||
if i < fifth {
|
||||
s = 0
|
||||
}
|
||||
|
||||
var nID [33]byte
|
||||
binary.BigEndian.PutUint32(nID[:], i)
|
||||
nodes[nID] = &AttachmentDirective{
|
||||
Score: s,
|
||||
}
|
||||
}
|
||||
|
||||
// For each value of N we'll check that the nodes are picked the
|
||||
// expected number of times over time.
|
||||
for _, n := range []uint32{1, 5, 10, 20, 50} {
|
||||
// Since choosing more nodes will result in chooseN getting
|
||||
// slower we decrease the number of iterations. This is okay
|
||||
// since the variance in the total picks for a node will be
|
||||
// lower when choosing more nodes each time.
|
||||
iterations := maxIterations / n
|
||||
count := make(map[NodeID]int)
|
||||
for i := 0; i < int(iterations); i++ {
|
||||
res, err := chooseN(n, nodes)
|
||||
if err != nil {
|
||||
t.Fatalf("failed choosing nodes: %v", err)
|
||||
}
|
||||
|
||||
for nID := range res {
|
||||
count[nID]++
|
||||
}
|
||||
}
|
||||
|
||||
// Sum the number of times a node in each score bucket was
|
||||
// picked.
|
||||
sums := make(map[float64]int)
|
||||
for nID, s := range nodes {
|
||||
sums[s.Score] += count[nID]
|
||||
}
|
||||
|
||||
// The count of each bucket should be about double of the
|
||||
// previous bucket. Since this is all random, we check that
|
||||
// the result is within 20% of the expected value.
|
||||
for _, score := range []float64{0.2, 0.4, 0.8} {
|
||||
cnt := sums[score]
|
||||
half := cnt / 2
|
||||
expLow := half - half/5
|
||||
expHigh := half + half/5
|
||||
if sums[score/2] < expLow || sums[score/2] > expHigh {
|
||||
t.Fatalf("expected the nodes with score %v "+
|
||||
"to be chosen about %v times, instead "+
|
||||
"was %v", score/2, half, sums[score/2])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user