From a202860ce1986d131dd8fae27f49a0c5ceec99d2 Mon Sep 17 00:00:00 2001 From: "Johan T. Halseth" Date: Thu, 13 Dec 2018 15:27:14 +0100 Subject: [PATCH 1/4] autopilot: make n uint32 in chooseN To avoid negative values being input, as it doesn't really make sense. --- autopilot/agent.go | 2 +- autopilot/choice.go | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/autopilot/agent.go b/autopilot/agent.go index 8475bb7c..56038c01 100644 --- a/autopilot/agent.go +++ b/autopilot/agent.go @@ -551,7 +551,7 @@ func (a *Agent) openChans(availableFunds btcutil.Amount, numChans uint32, // Now use the score to make a weighted choice which // nodes to attempt to open channels to. - chanCandidates, err := chooseN(int(numChans), scores) + chanCandidates, err := chooseN(numChans, scores) if err != nil { return fmt.Errorf("Unable to make weighted choice: %v", err) diff --git a/autopilot/choice.go b/autopilot/choice.go index 6e4ec9c0..c51062d2 100644 --- a/autopilot/choice.go +++ b/autopilot/choice.go @@ -52,7 +52,7 @@ func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) { // chooseN picks at random min[n, len(s)] nodes if from the // AttachmentDirectives map, with a probability weighted by their score. -func chooseN(n int, s map[NodeID]*AttachmentDirective) ( +func chooseN(n uint32, s map[NodeID]*AttachmentDirective) ( map[NodeID]*AttachmentDirective, error) { // Keep a map of nodes not yet choosen. @@ -64,7 +64,7 @@ func chooseN(n int, s map[NodeID]*AttachmentDirective) ( // Pick a weighted choice from the remaining nodes as long as there are // nodes left, and we haven't already picked n. chosen := make(map[NodeID]*AttachmentDirective) - for len(chosen) < n && len(rem) > 0 { + for len(chosen) < int(n) && len(rem) > 0 { choice, err := weightedChoice(rem) if err == ErrNoPositive { return chosen, nil From 3d2a39a18c3e6d11373f4b6739323d9db75ccc6b Mon Sep 17 00:00:00 2001 From: "Johan T. Halseth" Date: Mon, 10 Dec 2018 11:23:19 +0100 Subject: [PATCH 2/4] autopilot/choice_test: add chooseN tests --- autopilot/choice_test.go | 196 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 196 insertions(+) create mode 100644 autopilot/choice_test.go diff --git a/autopilot/choice_test.go b/autopilot/choice_test.go new file mode 100644 index 00000000..cabfa11d --- /dev/null +++ b/autopilot/choice_test.go @@ -0,0 +1,196 @@ +package autopilot + +import ( + "encoding/binary" + "math/rand" + "reflect" + "testing" + "testing/quick" +) + +var ( + nID1 = NodeID([33]byte{1}) + nID2 = NodeID([33]byte{2}) + nID3 = NodeID([33]byte{3}) + nID4 = NodeID([33]byte{4}) +) + +// TestChooseNEmptyMap checks that chooseN returns an empty result when no +// nodes are chosen among. +func TestChooseNEmptyMap(t *testing.T) { + t.Parallel() + + nodes := map[NodeID]*AttachmentDirective{} + property := func(n uint32) bool { + res, err := chooseN(n, nodes) + if err != nil { + return false + } + + // Result should always be empty. + return len(res) == 0 + } + + if err := quick.Check(property, nil); err != nil { + t.Fatal(err) + } +} + +// candidateMapVarLen is a type we'll use to generate maps of various lengths +// up to 255 to be used during QuickTests. +type candidateMapVarLen map[NodeID]*AttachmentDirective + +// Generate generates a value of type candidateMapVarLen to be used during +// QuickTests. +func (candidateMapVarLen) Generate(rand *rand.Rand, size int) reflect.Value { + nodes := make(map[NodeID]*AttachmentDirective) + + // To avoid creating huge maps, we restrict them to max uint8 len. + n := uint8(rand.Uint32()) + + for i := uint8(0); i < n; i++ { + s := rand.Float64() + + // We set small values to zero, to ensure we handle these + // correctly. + if s < 0.01 { + s = 0 + } + + var nID [33]byte + binary.BigEndian.PutUint32(nID[:], uint32(i)) + nodes[nID] = &AttachmentDirective{ + Score: s, + } + } + + return reflect.ValueOf(nodes) +} + +// TestChooseNMinimum test that chooseN returns the minimum of the number of +// nodes we request and the number of positively scored nodes in the given map. +func TestChooseNMinimum(t *testing.T) { + t.Parallel() + + // Helper to count the number of positive scores in the given map. + numPositive := func(nodes map[NodeID]*AttachmentDirective) int { + cnt := 0 + for _, v := range nodes { + if v.Score > 0 { + cnt++ + } + } + return cnt + } + + // We use let the type of n be uint8 to avoid generating huge numbers. + property := func(nodes candidateMapVarLen, n uint8) bool { + res, err := chooseN(uint32(n), nodes) + if err != nil { + return false + } + + positive := numPositive(nodes) + + // Result should always be the minimum of the number of nodes + // we wanted to select and the number of positively scored + // nodes in the map. + min := positive + if int(n) < min { + min = int(n) + } + + if len(res) != min { + return false + + } + return true + } + + if err := quick.Check(property, nil); err != nil { + t.Fatal(err) + } +} + +// TestChooseNSample sanity checks that nodes are picked by chooseN according +// to their scores. +func TestChooseNSample(t *testing.T) { + t.Parallel() + + const numNodes = 500 + const maxIterations = 100000 + fifth := uint32(numNodes / 5) + + nodes := make(map[NodeID]*AttachmentDirective) + + // we make 5 buckets of nodes: 0, 0.1, 0.2, 0.4 and 0.8 score. We want + // to check that zero scores never gets chosen, while a doubling the + // score makes a node getting chosen about double the amount (this is + // true only when n <<< numNodes). + j := 2 * fifth + score := 0.1 + for i := uint32(0); i < numNodes; i++ { + + // Each time i surpasses j we double the score we give to the + // next fifth of nodes. + if i >= j { + score *= 2 + j += fifth + } + s := score + + // The first 1/5 of nodes we give a score of 0. + if i < fifth { + s = 0 + } + + var nID [33]byte + binary.BigEndian.PutUint32(nID[:], i) + nodes[nID] = &AttachmentDirective{ + Score: s, + } + } + + // For each value of N we'll check that the nodes are picked the + // expected number of times over time. + for _, n := range []uint32{1, 5, 10, 20, 50} { + // Since choosing more nodes will result in chooseN getting + // slower we decrease the number of iterations. This is okay + // since the variance in the total picks for a node will be + // lower when choosing more nodes each time. + iterations := maxIterations / n + count := make(map[NodeID]int) + for i := 0; i < int(iterations); i++ { + res, err := chooseN(n, nodes) + if err != nil { + t.Fatalf("failed choosing nodes: %v", err) + } + + for nID := range res { + count[nID]++ + } + } + + // Sum the number of times a node in each score bucket was + // picked. + sums := make(map[float64]int) + for nID, s := range nodes { + sums[s.Score] += count[nID] + } + + // The count of each bucket should be about double of the + // previous bucket. Since this is all random, we check that + // the result is within 20% of the expected value. + for _, score := range []float64{0.2, 0.4, 0.8} { + cnt := sums[score] + half := cnt / 2 + expLow := half - half/5 + expHigh := half + half/5 + if sums[score/2] < expLow || sums[score/2] > expHigh { + t.Fatalf("expected the nodes with score %v "+ + "to be chosen about %v times, instead "+ + "was %v", score/2, half, sums[score/2]) + } + } + } +} From 4ac3c171ec09804aff8e52291fc2c7047e07f952 Mon Sep 17 00:00:00 2001 From: "Johan T. Halseth" Date: Mon, 10 Dec 2018 11:23:19 +0100 Subject: [PATCH 3/4] autopilot/choice: avoid costly map allocations This commit makes the weightedChoice algorithm take a slice of weights instead of a map of node scores. This let us avoid costly map allocation and iteration. In addition we make the chooseN algorithm keep track of the remaining nodes by keeping a slice of weights through its entire run, similarly avoiding costly map allocation and iteration. In total this brings the runtime of the TestChooseNSample testcase down from ~73s to ~3.6s. --- autopilot/choice.go | 63 +++++++++++++++++++++++++-------------------- 1 file changed, 35 insertions(+), 28 deletions(-) diff --git a/autopilot/choice.go b/autopilot/choice.go index c51062d2..e3052535 100644 --- a/autopilot/choice.go +++ b/autopilot/choice.go @@ -10,28 +10,23 @@ import ( // weights left to choose from. var ErrNoPositive = errors.New("no positive weights left") -// weightedChoice draws a random index from the map of channel candidates, with -// a probability propotional to their score. -func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) { - // Calculate the sum of scores found in the map. +// weightedChoice draws a random index from the slice of weights, with a +// probability propotional to the weight at the given index. +func weightedChoice(w []float64) (int, error) { + // Calculate the sum of weights. var sum float64 - for _, v := range s { - sum += v.Score + for _, v := range w { + sum += v } if sum <= 0 { - return NodeID{}, ErrNoPositive + return 0, ErrNoPositive } - // Create a map of normalized scores such, that they sum to 1.0. - norm := make(map[NodeID]float64) - for k, v := range s { - norm[k] = v.Score / sum - } - - // Pick a random number in the range [0.0, 1.0), and iterate the map - // until the number goes below 0. This means that each index is picked - // with a probablity equal to their normalized score. + // Pick a random number in the range [0.0, 1.0) and multiply it with + // the sum of weights. Then we'll iterate the weights until the number + // goes below 0. This means that each index is picked with a probablity + // equal to their normalized score. // // Example: // Items with scores [1, 5, 2, 2] @@ -40,14 +35,15 @@ func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) { // in [0, 1.0]: // [|-0.1-||-----0.5-----||--0.2--||--0.2--|] // The following loop is now equivalent to "hitting" the intervals. - r := rand.Float64() - for k, v := range norm { - r -= v + r := rand.Float64() * sum + for i := range w { + r -= w[i] if r <= 0 { - return k, nil + return i, nil } } - return NodeID{}, fmt.Errorf("unable to make choice") + + return 0, fmt.Errorf("unable to make choice") } // chooseN picks at random min[n, len(s)] nodes if from the @@ -55,25 +51,36 @@ func weightedChoice(s map[NodeID]*AttachmentDirective) (NodeID, error) { func chooseN(n uint32, s map[NodeID]*AttachmentDirective) ( map[NodeID]*AttachmentDirective, error) { - // Keep a map of nodes not yet choosen. - rem := make(map[NodeID]*AttachmentDirective) + // Keep track of the number of nodes not yet chosen, in addition to + // their scores and NodeIDs. + rem := len(s) + scores := make([]float64, len(s)) + nodeIDs := make([]NodeID, len(s)) + i := 0 for k, v := range s { - rem[k] = v + scores[i] = v.Score + nodeIDs[i] = k + i++ } // Pick a weighted choice from the remaining nodes as long as there are // nodes left, and we haven't already picked n. chosen := make(map[NodeID]*AttachmentDirective) - for len(chosen) < int(n) && len(rem) > 0 { - choice, err := weightedChoice(rem) + for len(chosen) < int(n) && rem > 0 { + choice, err := weightedChoice(scores) if err == ErrNoPositive { return chosen, nil } else if err != nil { return nil, err } - chosen[choice] = rem[choice] - delete(rem, choice) + nID := nodeIDs[choice] + + chosen[nID] = s[nID] + + // We set the score of the chosen node to 0, so it won't be + // picked the next iteration. + scores[choice] = 0 } return chosen, nil From 902d6edad287a9e0586f924c5ffbe7ac544360fb Mon Sep 17 00:00:00 2001 From: "Johan T. Halseth" Date: Mon, 10 Dec 2018 11:23:19 +0100 Subject: [PATCH 4/4] autopilot/choice: add weightedChoice tests --- autopilot/choice_test.go | 153 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 153 insertions(+) diff --git a/autopilot/choice_test.go b/autopilot/choice_test.go index cabfa11d..6c17c609 100644 --- a/autopilot/choice_test.go +++ b/autopilot/choice_test.go @@ -15,6 +15,159 @@ var ( nID4 = NodeID([33]byte{4}) ) +// TestWeightedChoiceEmptyMap tests that passing in an empty slice of weights +// returns an error. +func TestWeightedChoiceEmptyMap(t *testing.T) { + t.Parallel() + + var w []float64 + _, err := weightedChoice(w) + if err != ErrNoPositive { + t.Fatalf("expected ErrNoPositive when choosing in "+ + "empty map, instead got %v", err) + } +} + +// singeNonZero is a type used to generate float64 slices with one non-zero +// element. +type singleNonZero []float64 + +// Generate generates a value of type sinelNonZero to be used during +// QuickTests. +func (singleNonZero) Generate(rand *rand.Rand, size int) reflect.Value { + w := make([]float64, size) + + // Pick a random index and set it to a random float. + i := rand.Intn(size) + w[i] = rand.Float64() + + return reflect.ValueOf(w) +} + +// TestWeightedChoiceSingleIndex tests that choosing randomly in a slice with +// one positive element always returns that one index. +func TestWeightedChoiceSingleIndex(t *testing.T) { + t.Parallel() + + // Helper that returns the index of the non-zero element. + allButOneZero := func(weights []float64) (bool, int) { + var ( + numZero uint32 + nonZeroEl int + ) + + for i, w := range weights { + if w != 0 { + numZero++ + nonZeroEl = i + } + } + + return numZero == 1, nonZeroEl + } + + property := func(weights singleNonZero) bool { + // Make sure the generated slice has exactly one non-zero + // element. + conditionMet, nonZeroElem := allButOneZero(weights[:]) + if !conditionMet { + return false + } + + // Call weightedChoice and assert it picks the non-zero + // element. + choice, err := weightedChoice(weights[:]) + if err != nil { + return false + } + return choice == nonZeroElem + } + + if err := quick.Check(property, nil); err != nil { + t.Fatal(err) + } +} + +// nonNegative is a type used to generate float64 slices with non-negative +// elements. +type nonNegative []float64 + +// Generate generates a value of type nonNegative to be used during +// QuickTests. +func (nonNegative) Generate(rand *rand.Rand, size int) reflect.Value { + const precision = 100 + w := make([]float64, size) + + for i := range w { + r := rand.Float64() + + // For very small weights it won't work to check deviation from + // expected value, so we set them to zero. + if r < 0.01*float64(size) { + r = 0 + } + w[i] = float64(r) + } + return reflect.ValueOf(w) +} + +func assertChoice(w []float64, iterations int) bool { + var sum float64 + for _, v := range w { + sum += v + } + + // Calculate the expected frequency of each choice. + expFrequency := make([]float64, len(w)) + for i, ww := range w { + expFrequency[i] = ww / sum + } + + chosen := make(map[int]int) + for i := 0; i < iterations; i++ { + res, err := weightedChoice(w) + if err != nil { + return false + } + chosen[res]++ + } + + // Since this is random we check that the number of times chosen is + // within 20% of the expected value. + totalChoices := 0 + for i, f := range expFrequency { + exp := float64(iterations) * f + v := float64(chosen[i]) + totalChoices += chosen[i] + expHigh := exp + exp/5 + expLow := exp - exp/5 + if v < expLow || v > expHigh { + return false + } + } + + // The sum of choices must be exactly iterations of course. + if totalChoices != iterations { + return false + } + return true + +} + +// TestWeightedChoiceDistribution asserts that the weighted choice algorithm +// chooses among indexes according to their scores. +func TestWeightedChoiceDistribution(t *testing.T) { + const iterations = 100000 + + property := func(weights nonNegative) bool { + return assertChoice(weights, iterations) + } + + if err := quick.Check(property, nil); err != nil { + t.Fatal(err) + } +} + // TestChooseNEmptyMap checks that chooseN returns an empty result when no // nodes are chosen among. func TestChooseNEmptyMap(t *testing.T) {