lnd.xprv/sweep/txgenerator.go

375 lines
12 KiB
Go
Raw Normal View History

package sweep
import (
"fmt"
"sort"
"strings"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
)
var (
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
// allowed in a single sweep tx. If more need to be swept, multiple txes
// are created and published.
DefaultMaxInputsPerTx = 100
)
// txInput is an interface that provides the input data required for tx
// generation.
type txInput interface {
input.Input
parameters() Params
}
// inputSet is a set of inputs that can be used as the basis to generate a tx
// on.
type inputSet []input.Input
// generateInputPartitionings goes through all given inputs and constructs sets
// of inputs that can be used to generate a sensible transaction. Each set
// contains up to the configured maximum number of inputs. Negative yield
// inputs are skipped. No input sets with a total value after fees below the
// dust limit are returned.
func generateInputPartitionings(sweepableInputs []txInput,
relayFeePerKW, feePerKW chainfee.SatPerKWeight,
maxInputsPerTx int, wallet Wallet) ([]inputSet, error) {
// Sort input by yield. We will start constructing input sets starting
// with the highest yield inputs. This is to prevent the construction
// of a set with an output below the dust limit, causing the sweep
// process to stop, while there are still higher value inputs
// available. It also allows us to stop evaluating more inputs when the
// first input in this ordering is encountered with a negative yield.
//
// Yield is calculated as the difference between value and added fee
// for this input. The fee calculation excludes fee components that are
// common to all inputs, as those wouldn't influence the order. The
// single component that is differentiating is witness size.
//
// For witness size, the upper limit is taken. The actual size depends
// on the signature length, which is not known yet at this point.
yields := make(map[wire.OutPoint]int64)
for _, input := range sweepableInputs {
size, _, err := input.WitnessType().SizeUpperBound()
if err != nil {
return nil, fmt.Errorf(
"failed adding input weight: %v", err)
}
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
int64(feePerKW.FeeForWeight(int64(size)))
}
sort.Slice(sweepableInputs, func(i, j int) bool {
2019-12-09 17:40:05 +03:00
// Because of the specific ordering and termination condition
// that is described above, we place force sweeps at the start
// of the list. Otherwise we can't be sure that they will be
// included in an input set.
if sweepableInputs[i].parameters().Force {
return true
}
return yields[*sweepableInputs[i].OutPoint()] >
yields[*sweepableInputs[j].OutPoint()]
})
// Select blocks of inputs up to the configured maximum number.
var sets []inputSet
for len(sweepableInputs) > 0 {
// Start building a set of positive-yield tx inputs under the
// condition that the tx will be published with the specified
// fee rate.
txInputs := newTxInputSet(
wallet, feePerKW, relayFeePerKW, maxInputsPerTx,
)
// From the set of sweepable inputs, keep adding inputs to the
// input set until the tx output value no longer goes up or the
// maximum number of inputs is reached.
txInputs.addPositiveYieldInputs(sweepableInputs)
// If there are no positive yield inputs, we can stop here.
inputCount := len(txInputs.inputs)
if inputCount == 0 {
return sets, nil
}
// Check the current output value and add wallet utxos if
// needed to push the output value to the lower limit.
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
return nil, err
}
// If the output value of this block of inputs does not reach
// the dust limit, stop sweeping. Because of the sorting,
// continuing with the remaining inputs will only lead to sets
// with an even lower output value.
if !txInputs.enoughInput() {
log.Debugf("Set value %v (r=%v, c=%v) below dust "+
"limit of %v", txInputs.totalOutput(),
txInputs.requiredOutput, txInputs.changeOutput,
txInputs.dustLimit)
return sets, nil
}
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+
"has yield=%v, weight=%v",
inputCount, len(txInputs.inputs)-inputCount,
txInputs.totalOutput()-txInputs.walletInputTotal,
txInputs.weightEstimate(true).weight())
sets = append(sets, txInputs.inputs)
sweepableInputs = sweepableInputs[inputCount:]
}
return sets, nil
}
// createSweepTx builds a signed tx spending the inputs to the given outputs,
// sending any leftover change to the change script.
func createSweepTx(inputs []input.Input, outputs []*wire.TxOut,
changePkScript []byte, currentBlockHeight uint32,
feePerKw chainfee.SatPerKWeight, dustLimit btcutil.Amount,
signer input.Signer) (*wire.MsgTx, error) {
inputs, estimator := getWeightEstimate(inputs, outputs, feePerKw)
txFee := estimator.fee()
var (
// Create the sweep transaction that we will be building. We
// use version 2 as it is required for CSV.
sweepTx = wire.NewMsgTx(2)
// Track whether any of the inputs require a certain locktime.
locktime = int32(-1)
// We keep track of total input amount, and required output
// amount to use for calculating the change amount below.
totalInput btcutil.Amount
requiredOutput btcutil.Amount
// We'll add the inputs as we go so we know the final ordering
// of inputs to sign.
idxs []input.Input
)
// We start by adding all inputs that commit to an output. We do this
// since the input and output index must stay the same for the
// signatures to be valid.
for _, o := range inputs {
if o.RequiredTxOut() == nil {
continue
}
idxs = append(idxs, o)
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *o.OutPoint(),
Sequence: o.BlocksToMaturity(),
})
sweepTx.AddTxOut(o.RequiredTxOut())
if lt, ok := o.RequiredLockTime(); ok {
// If another input commits to a different locktime,
// they cannot be combined in the same transcation.
if locktime != -1 && locktime != int32(lt) {
return nil, fmt.Errorf("incompatible locktime")
}
locktime = int32(lt)
}
totalInput += btcutil.Amount(o.SignDesc().Output.Value)
requiredOutput += btcutil.Amount(o.RequiredTxOut().Value)
}
// Sum up the value contained in the remaining inputs, and add them to
// the sweep transaction.
for _, o := range inputs {
if o.RequiredTxOut() != nil {
continue
}
idxs = append(idxs, o)
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *o.OutPoint(),
Sequence: o.BlocksToMaturity(),
})
if lt, ok := o.RequiredLockTime(); ok {
if locktime != -1 && locktime != int32(lt) {
return nil, fmt.Errorf("incompatible locktime")
}
locktime = int32(lt)
}
totalInput += btcutil.Amount(o.SignDesc().Output.Value)
}
// Add the outputs given, if any.
for _, o := range outputs {
sweepTx.AddTxOut(o)
requiredOutput += btcutil.Amount(o.Value)
}
if requiredOutput+txFee > totalInput {
return nil, fmt.Errorf("insufficient input to create sweep tx")
}
// The value remaining after the required output and fees, go to
// change. Not that this fee is what we would have to pay in case the
// sweep tx has a change output.
changeAmt := totalInput - requiredOutput - txFee
// The txn will sweep the amount after fees to the pkscript generated
// above.
if changeAmt >= dustLimit {
2020-11-06 21:44:12 +03:00
sweepTx.AddTxOut(&wire.TxOut{
PkScript: changePkScript,
Value: int64(changeAmt),
2020-11-06 21:44:12 +03:00
})
} else {
log.Infof("Change amt %v below dustlimit %v, not adding "+
"change output", changeAmt, dustLimit)
2020-11-06 21:44:12 +03:00
}
// We'll default to using the current block height as locktime, if none
// of the inputs commits to a different locktime.
sweepTx.LockTime = currentBlockHeight
if locktime != -1 {
sweepTx.LockTime = uint32(locktime)
}
// Before signing the transaction, check to ensure that it meets some
// basic validity requirements.
//
// TODO(conner): add more control to sanity checks, allowing us to
// delay spending "problem" outputs, e.g. possibly batching with other
// classes if fees are too low.
btx := btcutil.NewTx(sweepTx)
if err := blockchain.CheckTransactionSanity(btx); err != nil {
return nil, err
}
hashCache := txscript.NewTxSigHashes(sweepTx)
// With all the inputs in place, use each output's unique input script
// function to generate the final witness required for spending.
addInputScript := func(idx int, tso input.Input) error {
inputScript, err := tso.CraftInputScript(
signer, sweepTx, hashCache, idx,
)
if err != nil {
return err
}
sweepTx.TxIn[idx].Witness = inputScript.Witness
if len(inputScript.SigScript) != 0 {
sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript
}
return nil
}
for idx, inp := range idxs {
if err := addInputScript(idx, inp); err != nil {
return nil, err
}
}
log.Infof("Creating sweep transaction %v for %v inputs (%s) "+
"using %v sat/kw, tx_weight=%v, tx_fee=%v, parents_count=%v, "+
"parents_fee=%v, parents_weight=%v",
sweepTx.TxHash(), len(inputs),
inputTypeSummary(inputs), int64(feePerKw),
estimator.weight(), txFee,
len(estimator.parents), estimator.parentsFee,
estimator.parentsWeight,
)
return sweepTx, nil
}
// getWeightEstimate returns a weight estimate for the given inputs.
// Additionally, it returns counts for the number of csv and cltv inputs.
func getWeightEstimate(inputs []input.Input, outputs []*wire.TxOut,
feeRate chainfee.SatPerKWeight) ([]input.Input, *weightEstimator) {
// We initialize a weight estimator so we can accurately asses the
// amount of fees we need to pay for this sweep transaction.
//
// TODO(roasbeef): can be more intelligent about buffering outputs to
// be more efficient on-chain.
weightEstimate := newWeightEstimator(feeRate)
// Our sweep transaction will always pay to the given set of outputs.
for _, o := range outputs {
weightEstimate.addOutput(o)
}
// If there is any leftover change after paying to the given outputs
// and required outputs, it will go to a single segwit p2wkh address.
// This will be our change address, so ensure it contributes to our
// weight estimate. Note that if we have other outputs, we might end up
// creating a sweep tx without a change output. It is okay to add the
// change output to the weight estimate regardless, since the estimated
// fee will just be subtracted from this already dust output, and
// trimmed.
weightEstimate.addP2WKHOutput()
// For each output, use its witness type to determine the estimate
// weight of its witness, and add it to the proper set of spendable
// outputs.
var sweepInputs []input.Input
for i := range inputs {
inp := inputs[i]
err := weightEstimate.add(inp)
if err != nil {
log.Warn(err)
// Skip inputs for which no weight estimate can be
// given.
continue
}
// If this input comes with a committed output, add that as
// well.
if inp.RequiredTxOut() != nil {
weightEstimate.addOutput(inp.RequiredTxOut())
}
sweepInputs = append(sweepInputs, inp)
}
return sweepInputs, weightEstimate
}
// inputSummary returns a string containing a human readable summary about the
// witness types of a list of inputs.
func inputTypeSummary(inputs []input.Input) string {
// Sort inputs by witness type.
sortedInputs := make([]input.Input, len(inputs))
copy(sortedInputs, inputs)
sort.Slice(sortedInputs, func(i, j int) bool {
return sortedInputs[i].WitnessType().String() <
sortedInputs[j].WitnessType().String()
})
var parts []string
for _, i := range sortedInputs {
part := fmt.Sprintf("%v (%v)",
*i.OutPoint(), i.WitnessType())
parts = append(parts, part)
}
return strings.Join(parts, ", ")
}