package sweep import ( "fmt" "sort" "strings" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/lnwallet/chainfee" ) var ( // DefaultMaxInputsPerTx specifies the default maximum number of inputs // allowed in a single sweep tx. If more need to be swept, multiple txes // are created and published. DefaultMaxInputsPerTx = 100 ) // txInput is an interface that provides the input data required for tx // generation. type txInput interface { input.Input parameters() Params } // inputSet is a set of inputs that can be used as the basis to generate a tx // on. type inputSet []input.Input // generateInputPartitionings goes through all given inputs and constructs sets // of inputs that can be used to generate a sensible transaction. Each set // contains up to the configured maximum number of inputs. Negative yield // inputs are skipped. No input sets with a total value after fees below the // dust limit are returned. func generateInputPartitionings(sweepableInputs []txInput, relayFeePerKW, feePerKW chainfee.SatPerKWeight, maxInputsPerTx int, wallet Wallet) ([]inputSet, error) { // Sort input by yield. We will start constructing input sets starting // with the highest yield inputs. This is to prevent the construction // of a set with an output below the dust limit, causing the sweep // process to stop, while there are still higher value inputs // available. It also allows us to stop evaluating more inputs when the // first input in this ordering is encountered with a negative yield. // // Yield is calculated as the difference between value and added fee // for this input. The fee calculation excludes fee components that are // common to all inputs, as those wouldn't influence the order. The // single component that is differentiating is witness size. // // For witness size, the upper limit is taken. The actual size depends // on the signature length, which is not known yet at this point. yields := make(map[wire.OutPoint]int64) for _, input := range sweepableInputs { size, _, err := input.WitnessType().SizeUpperBound() if err != nil { return nil, fmt.Errorf( "failed adding input weight: %v", err) } yields[*input.OutPoint()] = input.SignDesc().Output.Value - int64(feePerKW.FeeForWeight(int64(size))) } sort.Slice(sweepableInputs, func(i, j int) bool { // Because of the specific ordering and termination condition // that is described above, we place force sweeps at the start // of the list. Otherwise we can't be sure that they will be // included in an input set. if sweepableInputs[i].parameters().Force { return true } return yields[*sweepableInputs[i].OutPoint()] > yields[*sweepableInputs[j].OutPoint()] }) // Select blocks of inputs up to the configured maximum number. var sets []inputSet for len(sweepableInputs) > 0 { // Start building a set of positive-yield tx inputs under the // condition that the tx will be published with the specified // fee rate. txInputs := newTxInputSet( wallet, feePerKW, relayFeePerKW, maxInputsPerTx, ) // From the set of sweepable inputs, keep adding inputs to the // input set until the tx output value no longer goes up or the // maximum number of inputs is reached. txInputs.addPositiveYieldInputs(sweepableInputs) // If there are no positive yield inputs, we can stop here. inputCount := len(txInputs.inputs) if inputCount == 0 { return sets, nil } // Check the current output value and add wallet utxos if // needed to push the output value to the lower limit. if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil { return nil, err } // If the output value of this block of inputs does not reach // the dust limit, stop sweeping. Because of the sorting, // continuing with the remaining inputs will only lead to sets // with an even lower output value. if !txInputs.enoughInput() { log.Debugf("Set value %v (r=%v, c=%v) below dust "+ "limit of %v", txInputs.totalOutput(), txInputs.requiredOutput, txInputs.changeOutput, txInputs.dustLimit) return sets, nil } log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+ "has yield=%v, weight=%v", inputCount, len(txInputs.inputs)-inputCount, txInputs.totalOutput()-txInputs.walletInputTotal, txInputs.weightEstimate(true).weight()) sets = append(sets, txInputs.inputs) sweepableInputs = sweepableInputs[inputCount:] } return sets, nil } // createSweepTx builds a signed tx spending the inputs to the given outputs, // sending any leftover change to the change script. func createSweepTx(inputs []input.Input, outputs []*wire.TxOut, changePkScript []byte, currentBlockHeight uint32, feePerKw chainfee.SatPerKWeight, dustLimit btcutil.Amount, signer input.Signer) (*wire.MsgTx, error) { inputs, estimator := getWeightEstimate(inputs, outputs, feePerKw) txFee := estimator.fee() var ( // Create the sweep transaction that we will be building. We // use version 2 as it is required for CSV. sweepTx = wire.NewMsgTx(2) // Track whether any of the inputs require a certain locktime. locktime = int32(-1) // We keep track of total input amount, and required output // amount to use for calculating the change amount below. totalInput btcutil.Amount requiredOutput btcutil.Amount // We'll add the inputs as we go so we know the final ordering // of inputs to sign. idxs []input.Input ) // We start by adding all inputs that commit to an output. We do this // since the input and output index must stay the same for the // signatures to be valid. for _, o := range inputs { if o.RequiredTxOut() == nil { continue } idxs = append(idxs, o) sweepTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: *o.OutPoint(), Sequence: o.BlocksToMaturity(), }) sweepTx.AddTxOut(o.RequiredTxOut()) if lt, ok := o.RequiredLockTime(); ok { // If another input commits to a different locktime, // they cannot be combined in the same transcation. if locktime != -1 && locktime != int32(lt) { return nil, fmt.Errorf("incompatible locktime") } locktime = int32(lt) } totalInput += btcutil.Amount(o.SignDesc().Output.Value) requiredOutput += btcutil.Amount(o.RequiredTxOut().Value) } // Sum up the value contained in the remaining inputs, and add them to // the sweep transaction. for _, o := range inputs { if o.RequiredTxOut() != nil { continue } idxs = append(idxs, o) sweepTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: *o.OutPoint(), Sequence: o.BlocksToMaturity(), }) if lt, ok := o.RequiredLockTime(); ok { if locktime != -1 && locktime != int32(lt) { return nil, fmt.Errorf("incompatible locktime") } locktime = int32(lt) } totalInput += btcutil.Amount(o.SignDesc().Output.Value) } // Add the outputs given, if any. for _, o := range outputs { sweepTx.AddTxOut(o) requiredOutput += btcutil.Amount(o.Value) } if requiredOutput+txFee > totalInput { return nil, fmt.Errorf("insufficient input to create sweep tx") } // The value remaining after the required output and fees, go to // change. Not that this fee is what we would have to pay in case the // sweep tx has a change output. changeAmt := totalInput - requiredOutput - txFee // The txn will sweep the amount after fees to the pkscript generated // above. if changeAmt >= dustLimit { sweepTx.AddTxOut(&wire.TxOut{ PkScript: changePkScript, Value: int64(changeAmt), }) } else { log.Infof("Change amt %v below dustlimit %v, not adding "+ "change output", changeAmt, dustLimit) } // We'll default to using the current block height as locktime, if none // of the inputs commits to a different locktime. sweepTx.LockTime = currentBlockHeight if locktime != -1 { sweepTx.LockTime = uint32(locktime) } // Before signing the transaction, check to ensure that it meets some // basic validity requirements. // // TODO(conner): add more control to sanity checks, allowing us to // delay spending "problem" outputs, e.g. possibly batching with other // classes if fees are too low. btx := btcutil.NewTx(sweepTx) if err := blockchain.CheckTransactionSanity(btx); err != nil { return nil, err } hashCache := txscript.NewTxSigHashes(sweepTx) // With all the inputs in place, use each output's unique input script // function to generate the final witness required for spending. addInputScript := func(idx int, tso input.Input) error { inputScript, err := tso.CraftInputScript( signer, sweepTx, hashCache, idx, ) if err != nil { return err } sweepTx.TxIn[idx].Witness = inputScript.Witness if len(inputScript.SigScript) != 0 { sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript } return nil } for idx, inp := range idxs { if err := addInputScript(idx, inp); err != nil { return nil, err } } log.Infof("Creating sweep transaction %v for %v inputs (%s) "+ "using %v sat/kw, tx_weight=%v, tx_fee=%v, parents_count=%v, "+ "parents_fee=%v, parents_weight=%v", sweepTx.TxHash(), len(inputs), inputTypeSummary(inputs), int64(feePerKw), estimator.weight(), txFee, len(estimator.parents), estimator.parentsFee, estimator.parentsWeight, ) return sweepTx, nil } // getWeightEstimate returns a weight estimate for the given inputs. // Additionally, it returns counts for the number of csv and cltv inputs. func getWeightEstimate(inputs []input.Input, outputs []*wire.TxOut, feeRate chainfee.SatPerKWeight) ([]input.Input, *weightEstimator) { // We initialize a weight estimator so we can accurately asses the // amount of fees we need to pay for this sweep transaction. // // TODO(roasbeef): can be more intelligent about buffering outputs to // be more efficient on-chain. weightEstimate := newWeightEstimator(feeRate) // Our sweep transaction will always pay to the given set of outputs. for _, o := range outputs { weightEstimate.addOutput(o) } // If there is any leftover change after paying to the given outputs // and required outputs, it will go to a single segwit p2wkh address. // This will be our change address, so ensure it contributes to our // weight estimate. Note that if we have other outputs, we might end up // creating a sweep tx without a change output. It is okay to add the // change output to the weight estimate regardless, since the estimated // fee will just be subtracted from this already dust output, and // trimmed. weightEstimate.addP2WKHOutput() // For each output, use its witness type to determine the estimate // weight of its witness, and add it to the proper set of spendable // outputs. var sweepInputs []input.Input for i := range inputs { inp := inputs[i] err := weightEstimate.add(inp) if err != nil { log.Warn(err) // Skip inputs for which no weight estimate can be // given. continue } // If this input comes with a committed output, add that as // well. if inp.RequiredTxOut() != nil { weightEstimate.addOutput(inp.RequiredTxOut()) } sweepInputs = append(sweepInputs, inp) } return sweepInputs, weightEstimate } // inputSummary returns a string containing a human readable summary about the // witness types of a list of inputs. func inputTypeSummary(inputs []input.Input) string { // Sort inputs by witness type. sortedInputs := make([]input.Input, len(inputs)) copy(sortedInputs, inputs) sort.Slice(sortedInputs, func(i, j int) bool { return sortedInputs[i].WitnessType().String() < sortedInputs[j].WitnessType().String() }) var parts []string for _, i := range sortedInputs { part := fmt.Sprintf("%v (%v)", *i.OutPoint(), i.WitnessType()) parts = append(parts, part) } return strings.Join(parts, ", ") }