lnd.xprv/rpcserver.go

4184 lines
126 KiB
Go
Raw Normal View History

2015-12-26 09:09:17 +03:00
package main
import (
"bytes"
"crypto/rand"
"crypto/sha256"
"encoding/hex"
"errors"
"fmt"
"io"
"math"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
2018-07-31 10:17:17 +03:00
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/signal"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/tv42/zbase32"
"golang.org/x/net/context"
"gopkg.in/macaroon-bakery.v2/bakery"
)
const (
// maxBtcPaymentMSat is the maximum allowed Bitcoin payment currently
// permitted as defined in BOLT-0002.
maxBtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32)
// maxLtcPaymentMSat is the maximum allowed Litecoin payment currently
// permitted.
maxLtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32) *
btcToLtcConversionRate
)
var (
zeroHash [32]byte
// maxPaymentMSat is the maximum allowed payment currently permitted as
// defined in BOLT-002. This value depends on which chain is active.
// It is set to the value under the Bitcoin chain as default.
maxPaymentMSat = maxBtcPaymentMSat
defaultAccount uint32 = waddrmgr.DefaultAccountNum
// readPermissions is a slice of all entities that allow read
// permissions for authorization purposes, all lowercase.
readPermissions = []bakery.Op{
{
Entity: "onchain",
Action: "read",
},
{
Entity: "offchain",
Action: "read",
},
{
Entity: "address",
Action: "read",
},
{
Entity: "message",
Action: "read",
},
{
Entity: "peers",
Action: "read",
},
{
Entity: "info",
Action: "read",
},
{
Entity: "invoices",
Action: "read",
},
}
// writePermissions is a slice of all entities that allow write
// permissions for authorization purposes, all lowercase.
writePermissions = []bakery.Op{
{
Entity: "onchain",
Action: "write",
},
{
Entity: "offchain",
Action: "write",
},
{
Entity: "address",
Action: "write",
},
{
Entity: "message",
Action: "write",
},
{
Entity: "peers",
Action: "write",
},
{
Entity: "info",
Action: "write",
},
{
Entity: "invoices",
Action: "write",
},
}
// invoicePermissions is a slice of all the entities that allows a user
// to only access calls that are related to invoices, so: streaming
// RPCs, generating, and listening invoices.
invoicePermissions = []bakery.Op{
{
Entity: "invoices",
Action: "read",
},
{
Entity: "invoices",
Action: "write",
},
{
Entity: "address",
Action: "read",
},
{
Entity: "address",
Action: "write",
},
}
// permissions maps RPC calls to the permissions they require.
permissions = map[string][]bakery.Op{
"/lnrpc.Lightning/SendCoins": {{
Entity: "onchain",
Action: "write",
}},
"/lnrpc.Lightning/SendMany": {{
Entity: "onchain",
Action: "write",
}},
"/lnrpc.Lightning/NewAddress": {{
Entity: "address",
Action: "write",
}},
"/lnrpc.Lightning/SignMessage": {{
Entity: "message",
Action: "write",
}},
"/lnrpc.Lightning/VerifyMessage": {{
Entity: "message",
Action: "read",
}},
"/lnrpc.Lightning/ConnectPeer": {{
Entity: "peers",
Action: "write",
}},
"/lnrpc.Lightning/DisconnectPeer": {{
Entity: "peers",
Action: "write",
}},
"/lnrpc.Lightning/OpenChannel": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/OpenChannelSync": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/CloseChannel": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/AbandonChannel": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/GetInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/ListPeers": {{
Entity: "peers",
Action: "read",
}},
"/lnrpc.Lightning/WalletBalance": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/ChannelBalance": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/PendingChannels": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/ListChannels": {{
Entity: "offchain",
Action: "read",
}},
2018-05-24 12:35:34 +03:00
"/lnrpc.Lightning/ClosedChannels": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/SendPayment": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendPaymentSync": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendToRoute": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendToRouteSync": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/AddInvoice": {{
Entity: "invoices",
Action: "write",
}},
"/lnrpc.Lightning/LookupInvoice": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/ListInvoices": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeInvoices": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeTransactions": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/GetTransactions": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/DescribeGraph": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetChanInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetNodeInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/QueryRoutes": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetNetworkInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/StopDaemon": {{
Entity: "info",
Action: "write",
}},
"/lnrpc.Lightning/SubscribeChannelGraph": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/ListPayments": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/DeleteAllPayments": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/DebugLevel": {{
Entity: "info",
Action: "write",
}},
"/lnrpc.Lightning/DecodePayReq": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/FeeReport": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/UpdateChannelPolicy": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/ForwardingHistory": {{
Entity: "offchain",
Action: "read",
}},
}
)
// rpcServer is a gRPC, RPC front end to the lnd daemon.
// TODO(roasbeef): pagination support for the list-style calls
2016-01-17 06:07:44 +03:00
type rpcServer struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
server *server
2016-01-17 06:07:44 +03:00
wg sync.WaitGroup
quit chan struct{}
}
// A compile time check to ensure that rpcServer fully implements the
// LightningServer gRPC service.
var _ lnrpc.LightningServer = (*rpcServer)(nil)
// newRPCServer creates and returns a new instance of the rpcServer.
func newRPCServer(s *server) *rpcServer {
return &rpcServer{
server: s,
quit: make(chan struct{}, 1),
}
}
// Start launches any helper goroutines required for the rpcServer to function.
func (r *rpcServer) Start() error {
if atomic.AddInt32(&r.started, 1) != 1 {
return nil
}
return nil
}
// Stop signals any active goroutines for a graceful closure.
func (r *rpcServer) Stop() error {
if atomic.AddInt32(&r.shutdown, 1) != 1 {
return nil
}
close(r.quit)
return nil
}
// addrPairsToOutputs converts a map describing a set of outputs to be created,
// the outputs themselves. The passed map pairs up an address, to a desired
// output value amount. Each address is converted to its corresponding pkScript
// to be used within the constructed output(s).
func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) {
outputs := make([]*wire.TxOut, 0, len(addrPairs))
for addr, amt := range addrPairs {
addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params)
if err != nil {
return nil, err
}
pkscript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
outputs = append(outputs, wire.NewTxOut(amt, pkscript))
}
return outputs, nil
}
// sendCoinsOnChain makes an on-chain transaction in or to send coins to one or
// more addresses specified in the passed payment map. The payment map maps an
// address to a specified output value to be sent to that address.
func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64,
feeRate lnwallet.SatPerKWeight) (*chainhash.Hash, error) {
outputs, err := addrPairsToOutputs(paymentMap)
if err != nil {
return nil, err
}
return r.server.cc.wallet.SendOutputs(outputs, feeRate)
}
// determineFeePerKw will determine the fee in sat/kw that should be paid given
// an estimator, a confirmation target, and a manual value for sat/byte. A value
// is chosen based on the two free parameters as one, or both of them can be
// zero.
func determineFeePerKw(feeEstimator lnwallet.FeeEstimator, targetConf int32,
feePerByte int64) (lnwallet.SatPerKWeight, error) {
switch {
// If the target number of confirmations is set, then we'll use that to
// consult our fee estimator for an adequate fee.
case targetConf != 0:
feePerKw, err := feeEstimator.EstimateFeePerKW(
uint32(targetConf),
)
if err != nil {
return 0, fmt.Errorf("unable to query fee "+
"estimator: %v", err)
}
return feePerKw, nil
// If a manual sat/byte fee rate is set, then we'll use that directly.
// We'll need to convert it to sat/kw as this is what we use internally.
case feePerByte != 0:
feePerKW := lnwallet.SatPerKVByte(feePerByte * 1000).FeePerKWeight()
if feePerKW < lnwallet.FeePerKwFloor {
rpcsLog.Infof("Manual fee rate input of %d sat/kw is "+
"too low, using %d sat/kw instead", feePerKW,
lnwallet.FeePerKwFloor)
feePerKW = lnwallet.FeePerKwFloor
}
return feePerKW, nil
// Otherwise, we'll attempt a relaxed confirmation target for the
// transaction
default:
feePerKw, err := feeEstimator.EstimateFeePerKW(6)
if err != nil {
return 0, fmt.Errorf("unable to query fee estimator: "+
"%v", err)
}
return feePerKw, nil
}
}
// SendCoins executes a request to send coins to a particular address. Unlike
// SendMany, this RPC call only allows creating a single output at a time.
func (r *rpcServer) SendCoins(ctx context.Context,
in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) {
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for this transaction.
feePerKw, err := determineFeePerKw(
r.server.cc.feeEstimator, in.TargetConf, in.SatPerByte,
)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendcoins] addr=%v, amt=%v, sat/kw=%v", in.Addr,
btcutil.Amount(in.Amount), int64(feePerKw))
paymentMap := map[string]int64{in.Addr: in.Amount}
txid, err := r.sendCoinsOnChain(paymentMap, feePerKw)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String())
return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil
}
// SendMany handles a request for a transaction create multiple specified
// outputs in parallel.
func (r *rpcServer) SendMany(ctx context.Context,
in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) {
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for this transaction.
feePerKw, err := determineFeePerKw(
r.server.cc.feeEstimator, in.TargetConf, in.SatPerByte,
)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] outputs=%v, sat/kw=%v",
spew.Sdump(in.AddrToAmount), int64(feePerKw))
txid, err := r.sendCoinsOnChain(in.AddrToAmount, feePerKw)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String())
return &lnrpc.SendManyResponse{Txid: txid.String()}, nil
}
// NewAddress creates a new address under control of the local wallet.
func (r *rpcServer) NewAddress(ctx context.Context,
in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) {
// Translate the gRPC proto address type to the wallet controller's
// available address types.
var addrType lnwallet.AddressType
switch in.Type {
case lnrpc.NewAddressRequest_WITNESS_PUBKEY_HASH:
addrType = lnwallet.WitnessPubKey
case lnrpc.NewAddressRequest_NESTED_PUBKEY_HASH:
addrType = lnwallet.NestedWitnessPubKey
}
addr, err := r.server.cc.wallet.NewAddress(addrType, false)
if err != nil {
return nil, err
}
rpcsLog.Infof("[newaddress] addr=%v", addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
var (
// signedMsgPrefix is a special prefix that we'll prepend to any
// messages we sign/verify. We do this to ensure that we don't
// accidentally sign a sighash, or other sensitive material. By
// prepending this fragment, we mind message signing to our particular
// context.
signedMsgPrefix = []byte("Lightning Signed Message:")
)
// SignMessage signs a message with the resident node's private key. The
// returned signature string is zbase32 encoded and pubkey recoverable, meaning
// that only the message digest and signature are needed for verification.
func (r *rpcServer) SignMessage(ctx context.Context,
in *lnrpc.SignMessageRequest) (*lnrpc.SignMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to sign")
}
in.Msg = append(signedMsgPrefix, in.Msg...)
sigBytes, err := r.server.nodeSigner.SignCompact(in.Msg)
if err != nil {
return nil, err
}
sig := zbase32.EncodeToString(sigBytes)
return &lnrpc.SignMessageResponse{Signature: sig}, nil
}
// VerifyMessage verifies a signature over a msg. The signature must be zbase32
// encoded and signed by an active node in the resident node's channel
// database. In addition to returning the validity of the signature,
// VerifyMessage also returns the recovered pubkey from the signature.
func (r *rpcServer) VerifyMessage(ctx context.Context,
in *lnrpc.VerifyMessageRequest) (*lnrpc.VerifyMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to verify")
}
// The signature should be zbase32 encoded
sig, err := zbase32.DecodeString(in.Signature)
if err != nil {
return nil, fmt.Errorf("failed to decode signature: %v", err)
}
// The signature is over the double-sha256 hash of the message.
in.Msg = append(signedMsgPrefix, in.Msg...)
digest := chainhash.DoubleHashB(in.Msg)
// RecoverCompact both recovers the pubkey and validates the signature.
pubKey, _, err := btcec.RecoverCompact(btcec.S256(), sig, digest)
if err != nil {
return &lnrpc.VerifyMessageResponse{Valid: false}, nil
}
pubKeyHex := hex.EncodeToString(pubKey.SerializeCompressed())
var pub [33]byte
copy(pub[:], pubKey.SerializeCompressed())
// Query the channel graph to ensure a node in the network with active
// channels signed the message.
//
// TODO(phlip9): Require valid nodes to have capital in active channels.
graph := r.server.chanDB.ChannelGraph()
_, active, err := graph.HasLightningNode(pub)
if err != nil {
return nil, fmt.Errorf("failed to query graph: %v", err)
}
return &lnrpc.VerifyMessageResponse{
Valid: active,
Pubkey: pubKeyHex,
}, nil
}
// ConnectPeer attempts to establish a connection to a remote peer.
func (r *rpcServer) ConnectPeer(ctx context.Context,
in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) {
// The server hasn't yet started, so it won't be able to service any of
// our requests, so we'll bail early here.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
if in.Addr == nil {
return nil, fmt.Errorf("need: lnc pubkeyhash@hostname")
}
pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256())
if err != nil {
return nil, err
}
// Connections to ourselves are disallowed for obvious reasons.
if pubKey.IsEqual(r.server.identityPriv.PubKey()) {
return nil, fmt.Errorf("cannot make connection to self")
}
addr, err := parseAddr(in.Addr.Host)
if err != nil {
return nil, err
}
peerAddr := &lnwire.NetAddress{
IdentityKey: pubKey,
Address: addr,
ChainNet: activeNetParams.Net,
}
if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil {
rpcsLog.Errorf("(connectpeer): error connecting to peer: %v", err)
return nil, err
}
rpcsLog.Debugf("Connected to peer: %v", peerAddr.String())
return &lnrpc.ConnectPeerResponse{}, nil
}
// DisconnectPeer attempts to disconnect one peer from another identified by a
2017-12-30 17:44:31 +03:00
// given pubKey. In the case that we currently have a pending or active channel
// with the target peer, this action will be disallowed.
func (r *rpcServer) DisconnectPeer(ctx context.Context,
in *lnrpc.DisconnectPeerRequest) (*lnrpc.DisconnectPeerResponse, error) {
rpcsLog.Debugf("[disconnectpeer] from peer(%s)", in.PubKey)
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// First we'll validate the string passed in within the request to
// ensure that it's a valid hex-string, and also a valid compressed
// public key.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, fmt.Errorf("unable to decode pubkey bytes: %v", err)
}
peerPubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, fmt.Errorf("unable to parse pubkey: %v", err)
}
// Next, we'll fetch the pending/active channels we have with a
// particular peer.
nodeChannels, err := r.server.chanDB.FetchOpenChannels(peerPubKey)
if err != nil {
return nil, fmt.Errorf("unable to fetch channels for peer: %v", err)
}
// In order to avoid erroneously disconnecting from a peer that we have
// an active channel with, if we have any channels active with this
// peer, then we'll disallow disconnecting from them.
2018-02-23 01:28:48 +03:00
if len(nodeChannels) > 0 && !cfg.UnsafeDisconnect {
return nil, fmt.Errorf("cannot disconnect from peer(%x), "+
"all active channels with the peer need to be closed "+
"first", pubKeyBytes)
}
// With all initial validation complete, we'll now request that the
2017-12-30 17:44:31 +03:00
// server disconnects from the peer.
if err := r.server.DisconnectPeer(peerPubKey); err != nil {
return nil, fmt.Errorf("unable to disconnect peer: %v", err)
}
return &lnrpc.DisconnectPeerResponse{}, nil
}
// OpenChannel attempts to open a singly funded channel specified in the
// request to a remote peer.
func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest,
updateStream lnrpc.Lightning_OpenChannelServer) error {
rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+
2018-02-14 08:48:42 +03:00
"allocation(us=%v, them=%v)", in.NodePubkeyString,
in.LocalFundingAmount, in.PushSat)
if !r.server.Started() {
return fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat)
remoteCsvDelay := uint16(in.RemoteCsvDelay)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not exceed the amount the local party has requested
// for funding.
//
// TODO(roasbeef): incorporate base fee?
if remoteInitialBalance >= localFundingAmt {
return fmt.Errorf("amount pushed to remote peer for initial " +
"state must be below the local funding amount")
}
// Ensure that the user doesn't exceed the current soft-limit for
// channel size. If the funding amount is above the soft-limit, then
// we'll reject the request.
if localFundingAmt > maxFundingAmount {
return fmt.Errorf("funding amount is too large, the max "+
"channel size is: %v", maxFundingAmount)
}
// Restrict the size of the channel we'll actually open. At a later
// level, we'll ensure that the output we create after accounting for
// fees that a dust output isn't created.
if localFundingAmt < minChanFundingSize {
return fmt.Errorf("channel is too small, the minimum channel "+
"size is: %v SAT", int64(minChanFundingSize))
}
// Ensure that the MinConfs parameter is non-negative.
if in.MinConfs < 0 {
return errors.New("minimum number of confirmations must be a " +
"non-negative number")
}
var (
nodePubKey *btcec.PublicKey
nodePubKeyBytes []byte
err error
)
// TODO(roasbeef): also return channel ID?
// Ensure that the NodePubKey is set before attempting to use it
if len(in.NodePubkey) == 0 {
return fmt.Errorf("NodePubKey is not set")
}
2018-02-14 08:48:42 +03:00
// Parse the raw bytes of the node key into a pubkey object so we
// can easily manipulate it.
nodePubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256())
if err != nil {
return err
}
2018-02-14 08:48:42 +03:00
// Making a channel to ourselves wouldn't be of any use, so we
// explicitly disallow them.
if nodePubKey.IsEqual(r.server.identityPriv.PubKey()) {
return fmt.Errorf("cannot open channel to self")
}
2018-02-14 08:48:42 +03:00
nodePubKeyBytes = nodePubKey.SerializeCompressed()
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for the funding transaction.
feeRate, err := determineFeePerKw(
r.server.cc.feeEstimator, in.TargetConf, in.SatPerByte,
)
if err != nil {
return err
}
rpcsLog.Debugf("[openchannel]: using fee of %v sat/kw for funding tx",
int64(feeRate))
// Instruct the server to trigger the necessary events to attempt to
// open a new channel. A stream is returned in place, this stream will
// be used to consume updates of the state of the pending channel.
req := &openChanReq{
targetPubkey: nodePubKey,
chainHash: *activeNetParams.GenesisHash,
localFundingAmt: localFundingAmt,
pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance),
minHtlc: minHtlc,
fundingFeePerKw: feeRate,
private: in.Private,
remoteCsvDelay: remoteCsvDelay,
minConfs: in.MinConfs,
}
updateChan, errChan := r.server.OpenChannel(req)
var outpoint wire.OutPoint
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v",
2018-02-14 08:48:42 +03:00
nodePubKeyBytes, err)
return err
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
if err := updateStream.Send(fundingUpdate); err != nil {
return err
}
// If a final channel open update is being sent, then
// we can break out of our recv loop as we no longer
// need to process any further updates.
switch update := fundingUpdate.Update.(type) {
case *lnrpc.OpenStatusUpdate_ChanOpen:
chanPoint := update.ChanOpen.ChannelPoint
txidHash, err := getChanPointFundingTxid(chanPoint)
if err != nil {
return err
}
h, err := chainhash.NewHash(txidHash)
if err != nil {
return err
}
outpoint = wire.OutPoint{
Hash: *h,
Index: chanPoint.OutputIndex,
}
break out
}
case <-r.quit:
return nil
}
}
rpcsLog.Tracef("[openchannel] success NodeKey(%x), ChannelPoint(%v)",
2018-02-14 08:48:42 +03:00
nodePubKeyBytes, outpoint)
return nil
}
// OpenChannelSync is a synchronous version of the OpenChannel RPC call. This
// call is meant to be consumed by clients to the REST proxy. As with all other
// sync calls, all byte slices are instead to be populated as hex encoded
// strings.
func (r *rpcServer) OpenChannelSync(ctx context.Context,
in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) {
rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+
2018-02-14 08:48:42 +03:00
"allocation(us=%v, them=%v)", in.NodePubkeyString,
in.LocalFundingAmount, in.PushSat)
// We don't allow new channels to be open while the server is still
// syncing, as otherwise we may not be able to obtain the relevant
// notifications.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// Creation of channels before the wallet syncs up is currently
// disallowed.
isSynced, _, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, err
}
if !isSynced {
return nil, errors.New("channels cannot be created before the " +
"wallet is fully synced")
}
// Decode the provided target node's public key, parsing it into a pub
// key object. For all sync call, byte slices are expected to be
// encoded as hex strings.
keyBytes, err := hex.DecodeString(in.NodePubkeyString)
if err != nil {
return nil, err
}
nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256())
if err != nil {
return nil, err
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat)
remoteCsvDelay := uint16(in.RemoteCsvDelay)
// Ensure that the initial balance of the remote party (if pushing
2017-12-30 17:44:31 +03:00
// satoshis) does not exceed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return nil, fmt.Errorf("amount pushed to remote peer for " +
"initial state must be below the local funding amount")
}
// Restrict the size of the channel we'll actually open. At a later
// level, we'll ensure that the output we create after accounting for
// fees that a dust output isn't created.
if localFundingAmt < minChanFundingSize {
return nil, fmt.Errorf("channel is too small, the minimum channel "+
"size is: %v SAT", int64(minChanFundingSize))
}
// Ensure that the MinConfs parameter is non-negative.
if in.MinConfs < 0 {
return nil, errors.New("minimum number of confirmations must " +
"be a non-negative number")
}
// Based on the passed fee related parameters, we'll determine an
2017-12-30 17:44:31 +03:00
// appropriate fee rate for the funding transaction.
feeRate, err := determineFeePerKw(
r.server.cc.feeEstimator, in.TargetConf, in.SatPerByte,
)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[openchannel] target sat/kw for funding tx: %v",
int64(feeRate))
req := &openChanReq{
targetPubkey: nodepubKey,
chainHash: *activeNetParams.GenesisHash,
localFundingAmt: localFundingAmt,
pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance),
minHtlc: minHtlc,
fundingFeePerKw: feeRate,
private: in.Private,
remoteCsvDelay: remoteCsvDelay,
minConfs: in.MinConfs,
}
updateChan, errChan := r.server.OpenChannel(req)
select {
// If an error occurs them immediately return the error to the client.
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v",
2018-02-14 08:48:42 +03:00
nodepubKey, err)
return nil, err
// Otherwise, wait for the first channel update. The first update sent
// is when the funding transaction is broadcast to the network.
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
// Parse out the txid of the pending funding transaction. The
// sync client can use this to poll against the list of
// PendingChannels.
openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
chanUpdate := openUpdate.ChanPending
return &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: chanUpdate.Txid,
},
}, nil
case <-r.quit:
return nil, nil
}
}
// getChanPointFundingTxid returns the given channel point's funding txid in
// raw bytes.
func getChanPointFundingTxid(chanPoint *lnrpc.ChannelPoint) ([]byte, error) {
var txid []byte
// A channel point's funding txid can be get/set as a byte slice or a
// string. In the case it is a string, decode it.
switch chanPoint.GetFundingTxid().(type) {
case *lnrpc.ChannelPoint_FundingTxidBytes:
txid = chanPoint.GetFundingTxidBytes()
case *lnrpc.ChannelPoint_FundingTxidStr:
s := chanPoint.GetFundingTxidStr()
h, err := chainhash.NewHashFromStr(s)
if err != nil {
return nil, err
}
txid = h[:]
}
return txid, nil
}
// CloseChannel attempts to close an active channel identified by its channel
// point. The actions of this method can additionally be augmented to attempt
// a force close after a timeout period in the case of an inactive peer.
func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest,
updateStream lnrpc.Lightning_CloseChannelServer) error {
force := in.Force
index := in.ChannelPoint.OutputIndex
txidHash, err := getChanPointFundingTxid(in.GetChannelPoint())
if err != nil {
rpcsLog.Errorf("[closechannel] unable to get funding txid: %v", err)
return err
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
rpcsLog.Errorf("[closechannel] invalid txid: %v", err)
return err
}
chanPoint := wire.NewOutPoint(txid, index)
rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v), force=%v",
chanPoint, force)
var (
updateChan chan *lnrpc.CloseStatusUpdate
errChan chan error
)
// TODO(roasbeef): if force and peer online then don't force?
// First, we'll fetch the channel as is, as we'll need to examine it
// regardless of if this is a force close or not.
channel, err := r.fetchActiveChannel(*chanPoint)
if err != nil {
return err
}
channel.Stop()
// If a force closure was requested, then we'll handle all the details
// around the creation and broadcast of the unilateral closure
// transaction here rather than going to the switch as we don't require
// interaction from the peer.
if force {
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return err
}
// As we're force closing this channel, as a precaution, we'll
// ensure that the switch doesn't continue to see this channel
// as eligible for forwarding HTLC's. If the peer is online,
// then we'll also purge all of its indexes.
remotePub := &channel.StateSnapshot().RemoteIdentity
if peer, err := r.server.FindPeer(remotePub); err == nil {
// TODO(roasbeef): actually get the active channel
// instead too?
// * so only need to grab from database
peer.WipeChannel(channel.ChannelPoint())
} else {
chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint())
r.server.htlcSwitch.RemoveLink(chanID)
}
// With the necessary indexes cleaned up, we'll now force close
// the channel.
chainArbitrator := r.server.chainArb
closingTx, err := chainArbitrator.ForceCloseContract(
*chanPoint,
)
if err != nil {
rpcsLog.Errorf("unable to force close transaction: %v", err)
return err
}
closingTxid := closingTx.TxHash()
// With the transaction broadcast, we send our first update to
// the client.
updateChan = make(chan *lnrpc.CloseStatusUpdate, 2)
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ClosePending{
ClosePending: &lnrpc.PendingUpdate{
Txid: closingTxid[:],
},
},
}
errChan = make(chan error, 1)
notifier := r.server.cc.chainNotifier
go waitForChanToClose(uint32(bestHeight), notifier, errChan, chanPoint,
&closingTxid, closingTx.TxOut[0].PkScript, func() {
// Respond to the local subsystem which
// requested the channel closure.
updateChan <- &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ChanClose{
ChanClose: &lnrpc.ChannelCloseUpdate{
ClosingTxid: closingTxid[:],
Success: true,
},
},
}
})
} else {
// If the link is not known by the switch, we cannot gracefully close
// the channel.
channelID := lnwire.NewChanIDFromOutPoint(chanPoint)
if _, err := r.server.htlcSwitch.GetLink(channelID); err != nil {
rpcsLog.Debugf("Trying to non-force close offline channel with "+
"chan_point=%v", chanPoint)
return fmt.Errorf("unable to gracefully close channel while peer "+
"is offline (try force closing it instead): %v", err)
}
// Based on the passed fee related parameters, we'll determine
// an appropriate fee rate for the cooperative closure
// transaction.
feeRate, err := determineFeePerKw(
r.server.cc.feeEstimator, in.TargetConf, in.SatPerByte,
)
if err != nil {
return err
}
rpcsLog.Debugf("Target sat/kw for closing transaction: %v",
int64(feeRate))
// Before we attempt the cooperative channel closure, we'll
// examine the channel to ensure that it doesn't have a
// lingering HTLC.
if len(channel.ActiveHtlcs()) != 0 {
return fmt.Errorf("cannot co-op close channel " +
"with active htlcs")
}
// Otherwise, the caller has requested a regular interactive
// cooperative channel closure. So we'll forward the request to
// the htlc switch which will handle the negotiation and
// broadcast details.
updateChan, errChan = r.server.htlcSwitch.CloseLink(
chanPoint, htlcswitch.CloseRegular, feeRate,
)
}
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("[closechannel] unable to close "+
"ChannelPoint(%v): %v", chanPoint, err)
return err
case closingUpdate := <-updateChan:
rpcsLog.Tracef("[closechannel] sending update: %v",
closingUpdate)
if err := updateStream.Send(closingUpdate); err != nil {
return err
}
// If a final channel closing updates is being sent,
// then we can break out of our dispatch loop as we no
// longer need to process any further updates.
switch closeUpdate := closingUpdate.Update.(type) {
case *lnrpc.CloseStatusUpdate_ChanClose:
h, _ := chainhash.NewHash(closeUpdate.ChanClose.ClosingTxid)
rpcsLog.Infof("[closechannel] close completed: "+
"txid(%v)", h)
break out
}
case <-r.quit:
return nil
}
}
return nil
}
// AbandonChannel removes all channel state from the database except for a
// close summary. This method can be used to get rid of permanently unusable
// channels due to bugs fixed in newer versions of lnd.
func (r *rpcServer) AbandonChannel(ctx context.Context,
in *lnrpc.AbandonChannelRequest) (*lnrpc.AbandonChannelResponse, error) {
// If this isn't the debug build, then we won't allow the RPC to be
// executed, as it's an advanced feature and won't be activated in
// regular production/release builds.
if !DebugBuild {
return nil, fmt.Errorf("AbandonChannel RPC call only " +
"available in debug builds")
}
// We'll parse out the arguments to we can obtain the chanPoint of the
// target channel.
txidHash, err := getChanPointFundingTxid(in.GetChannelPoint())
if err != nil {
return nil, err
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
return nil, err
}
index := in.ChannelPoint.OutputIndex
chanPoint := wire.NewOutPoint(txid, index)
// With the chanPoint constructed, we'll attempt to find the target
// channel in the database. If we can't find the channel, then we'll
// return the error back to the caller.
dbChan, err := r.fetchOpenDbChannel(*chanPoint)
if err != nil {
return nil, err
}
// Now that we've found the channel, we'll populate a close summary for
// the channel, so we can store as much information for this abounded
// channel as possible. We also ensure that we set Pending to false, to
// indicate that this channel has been "fully" closed.
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
summary := &channeldb.ChannelCloseSummary{
CloseType: channeldb.Abandoned,
ChanPoint: *chanPoint,
ChainHash: dbChan.ChainHash,
CloseHeight: uint32(bestHeight),
RemotePub: dbChan.IdentityPub,
Capacity: dbChan.Capacity,
SettledBalance: dbChan.LocalCommitment.LocalBalance.ToSatoshis(),
ShortChanID: dbChan.ShortChanID(),
RemoteCurrentRevocation: dbChan.RemoteCurrentRevocation,
RemoteNextRevocation: dbChan.RemoteNextRevocation,
LocalChanConfig: dbChan.LocalChanCfg,
}
// Finally, we'll close the channel in the DB, and return back to the
// caller.
err = dbChan.CloseChannel(summary)
if err != nil {
return nil, err
}
return &lnrpc.AbandonChannelResponse{}, nil
}
// fetchOpenDbChannel attempts to locate a channel identified by its channel
// point from the database's set of all currently opened channels.
func (r *rpcServer) fetchOpenDbChannel(chanPoint wire.OutPoint) (
*channeldb.OpenChannel, error) {
dbChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, err
}
// With the channels fetched, attempt to locate the target channel
// according to its channel point.
var dbChan *channeldb.OpenChannel
for _, dbChannel := range dbChannels {
if dbChannel.FundingOutpoint == chanPoint {
dbChan = dbChannel
break
}
}
// If the channel cannot be located, then we exit with an error to the
// caller.
if dbChan == nil {
return nil, fmt.Errorf("unable to find channel")
}
return dbChan, nil
}
// fetchActiveChannel attempts to locate a channel identified by its channel
// point from the database's set of all currently opened channels and
// return it as a fully popuplated state machine
func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) (
*lnwallet.LightningChannel, error) {
dbChan, err := r.fetchOpenDbChannel(chanPoint)
if err != nil {
return nil, err
}
// If the channel is successfully fetched from the database,
// we create a fully populated channel state machine which
// uses the db channel as backing storage.
return lnwallet.NewLightningChannel(
r.server.cc.wallet.Cfg.Signer, nil, dbChan,
)
}
// GetInfo returns general information concerning the lightning node including
// its identity pubkey, alias, the chains it is connected to, and information
// concerning the number of open+pending channels.
2016-07-06 04:57:08 +03:00
func (r *rpcServer) GetInfo(ctx context.Context,
in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) {
2016-07-06 04:57:08 +03:00
var activeChannels uint32
serverPeers := r.server.Peers()
for _, serverPeer := range serverPeers {
activeChannels += uint32(len(serverPeer.ChannelSnapshots()))
}
pendingChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
return nil, fmt.Errorf("unable to get retrieve pending "+
"channels: %v", err)
}
nPendingChannels := uint32(len(pendingChannels))
2016-07-06 04:57:08 +03:00
idPub := r.server.identityPriv.PubKey().SerializeCompressed()
encodedIDPub := hex.EncodeToString(idPub)
2016-07-06 04:57:08 +03:00
bestHash, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, fmt.Errorf("unable to get best block info: %v", err)
}
isSynced, bestHeaderTimestamp, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, fmt.Errorf("unable to sync PoV of the wallet "+
"with current best block in the main chain: %v", err)
}
activeChains := make([]string, registeredChains.NumActiveChains())
for i, chain := range registeredChains.ActiveChains() {
activeChains[i] = chain.String()
}
// Check if external IP addresses were provided to lnd and use them
// to set the URIs.
nodeAnn, err := r.server.genNodeAnnouncement(false)
if err != nil {
return nil, fmt.Errorf("unable to retrieve current fully signed "+
"node announcement: %v", err)
}
addrs := nodeAnn.Addresses
uris := make([]string, len(addrs))
for i, addr := range addrs {
uris[i] = fmt.Sprintf("%s@%s", encodedIDPub, addr.String())
}
2017-01-15 05:16:53 +03:00
// TODO(roasbeef): add synced height n stuff
2016-07-06 04:57:08 +03:00
return &lnrpc.GetInfoResponse{
IdentityPubkey: encodedIDPub,
NumPendingChannels: nPendingChannels,
NumActiveChannels: activeChannels,
NumPeers: uint32(len(serverPeers)),
BlockHeight: uint32(bestHeight),
BlockHash: bestHash.String(),
SyncedToChain: isSynced,
Testnet: isTestnet(&activeNetParams),
Chains: activeChains,
Uris: uris,
Alias: nodeAnn.Alias.String(),
BestHeaderTimestamp: int64(bestHeaderTimestamp),
Version: version(),
2016-07-06 04:57:08 +03:00
}, nil
}
// ListPeers returns a verbose listing of all currently active peers.
func (r *rpcServer) ListPeers(ctx context.Context,
in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) {
rpcsLog.Tracef("[listpeers] request")
serverPeers := r.server.Peers()
resp := &lnrpc.ListPeersResponse{
Peers: make([]*lnrpc.Peer, 0, len(serverPeers)),
}
for _, serverPeer := range serverPeers {
var (
satSent int64
satRecv int64
)
// In order to display the total number of satoshis of outbound
// (sent) and inbound (recv'd) satoshis that have been
// transported through this peer, we'll sum up the sent/recv'd
// values for each of the active channels we have with the
// peer.
chans := serverPeer.ChannelSnapshots()
for _, c := range chans {
satSent += int64(c.TotalMSatSent.ToSatoshis())
satRecv += int64(c.TotalMSatReceived.ToSatoshis())
}
nodePub := serverPeer.addr.IdentityKey.SerializeCompressed()
peer := &lnrpc.Peer{
PubKey: hex.EncodeToString(nodePub),
Address: serverPeer.conn.RemoteAddr().String(),
Inbound: serverPeer.inbound,
BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived),
BytesSent: atomic.LoadUint64(&serverPeer.bytesSent),
SatSent: satSent,
SatRecv: satRecv,
PingTime: serverPeer.PingTime(),
}
resp.Peers = append(resp.Peers, peer)
}
rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers)
return resp, nil
}
// WalletBalance returns total unspent outputs(confirmed and unconfirmed), all
// confirmed unspent outputs and all unconfirmed unspent outputs under control
// by the wallet. This method can be modified by having the request specify
// only witness outputs should be factored into the final output sum.
// TODO(roasbeef): add async hooks into wallet balance changes
func (r *rpcServer) WalletBalance(ctx context.Context,
in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) {
// Get total balance, from txs that have >= 0 confirmations.
totalBal, err := r.server.cc.wallet.ConfirmedBalance(0)
if err != nil {
return nil, err
}
// Get confirmed balance, from txs that have >= 1 confirmations.
confirmedBal, err := r.server.cc.wallet.ConfirmedBalance(1)
if err != nil {
return nil, err
}
// Get unconfirmed balance, from txs with 0 confirmations.
unconfirmedBal := totalBal - confirmedBal
rpcsLog.Debugf("[walletbalance] Total balance=%v", totalBal)
return &lnrpc.WalletBalanceResponse{
TotalBalance: int64(totalBal),
ConfirmedBalance: int64(confirmedBal),
UnconfirmedBalance: int64(unconfirmedBal),
}, nil
}
// ChannelBalance returns the total available channel flow across all open
// channels in satoshis.
func (r *rpcServer) ChannelBalance(ctx context.Context,
in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) {
openChannels, err := r.server.chanDB.FetchAllOpenChannels()
if err != nil {
return nil, err
}
var balance btcutil.Amount
for _, channel := range openChannels {
balance += channel.LocalCommitment.LocalBalance.ToSatoshis()
}
pendingChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
return nil, err
}
var pendingOpenBalance btcutil.Amount
for _, channel := range pendingChannels {
pendingOpenBalance += channel.LocalCommitment.LocalBalance.ToSatoshis()
}
return &lnrpc.ChannelBalanceResponse{
Balance: int64(balance),
PendingOpenBalance: int64(pendingOpenBalance),
}, nil
}
// PendingChannels returns a list of all the channels that are currently
// considered "pending". A channel is pending if it has finished the funding
// workflow and is waiting for confirmations for the funding txn, or is in the
// process of closure, either initiated cooperatively or non-cooperatively.
func (r *rpcServer) PendingChannels(ctx context.Context,
in *lnrpc.PendingChannelsRequest) (*lnrpc.PendingChannelsResponse, error) {
rpcsLog.Debugf("[pendingchannels]")
resp := &lnrpc.PendingChannelsResponse{}
// First, we'll populate the response with all the channels that are
// soon to be opened. We can easily fetch this data from the database
// and map the db struct to the proto response.
pendingOpenChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
rpcsLog.Errorf("unable to fetch pending channels: %v", err)
return nil, err
}
resp.PendingOpenChannels = make([]*lnrpc.PendingChannelsResponse_PendingOpenChannel,
len(pendingOpenChannels))
for i, pendingChan := range pendingOpenChannels {
pub := pendingChan.IdentityPub.SerializeCompressed()
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
// TODO(roasbeef): query for funding tx from wallet, display
// that also?
localCommitment := pendingChan.LocalCommitment
utx := btcutil.NewTx(localCommitment.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight
resp.PendingOpenChannels[i] = &lnrpc.PendingChannelsResponse_PendingOpenChannel{
Channel: &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: pendingChan.FundingOutpoint.String(),
Capacity: int64(pendingChan.Capacity),
LocalBalance: int64(localCommitment.LocalBalance.ToSatoshis()),
RemoteBalance: int64(localCommitment.RemoteBalance.ToSatoshis()),
},
CommitWeight: commitWeight,
CommitFee: int64(localCommitment.CommitFee),
FeePerKw: int64(localCommitment.FeePerKw),
// TODO(roasbeef): need to track confirmation height
}
}
_, currentHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
// Next, we'll examine the channels that are soon to be closed so we
// can populate these fields within the response.
pendingCloseChannels, err := r.server.chanDB.FetchClosedChannels(true)
if err != nil {
rpcsLog.Errorf("unable to fetch closed channels: %v", err)
return nil, err
}
for _, pendingClose := range pendingCloseChannels {
// First construct the channel struct itself, this will be
// needed regardless of how this channel was closed.
pub := pendingClose.RemotePub.SerializeCompressed()
chanPoint := pendingClose.ChanPoint
channel := &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: chanPoint.String(),
Capacity: int64(pendingClose.Capacity),
LocalBalance: int64(pendingClose.SettledBalance),
}
closeTXID := pendingClose.ClosingTXID.String()
switch pendingClose.CloseType {
// If the channel was closed cooperatively, then we'll only
// need to tack on the closing txid.
// TODO(halseth): remove. After recent changes, a coop closed
// channel should never be in the "pending close" state.
// Keeping for now to let someone that upgraded in the middle
// of a close let their closing tx confirm.
case channeldb.CooperativeClose:
resp.PendingClosingChannels = append(
resp.PendingClosingChannels,
&lnrpc.PendingChannelsResponse_ClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
},
)
resp.TotalLimboBalance += channel.LocalBalance
// If the channel was force closed, then we'll need to query
// the utxoNursery for additional information.
// TODO(halseth): distinguish remote and local case?
case channeldb.LocalForceClose, channeldb.RemoteForceClose:
forceClose := &lnrpc.PendingChannelsResponse_ForceClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
}
// Query for the maturity state for this force closed
// channel. If we didn't have any time-locked outputs,
// then the nursery may not know of the contract.
nurseryInfo, err := r.server.utxoNursery.NurseryReport(&chanPoint)
if err != nil && err != ErrContractNotFound {
return nil, fmt.Errorf("unable to obtain "+
"nursery report for ChannelPoint(%v): %v",
chanPoint, err)
}
// If the nursery knows of this channel, then we can
// populate information detailing exactly how much
// funds are time locked and also the height in which
// we can ultimately sweep the funds into the wallet.
if nurseryInfo != nil {
forceClose.LimboBalance = int64(nurseryInfo.limboBalance)
forceClose.RecoveredBalance = int64(nurseryInfo.recoveredBalance)
forceClose.MaturityHeight = nurseryInfo.maturityHeight
// If the transaction has been confirmed, then
// we can compute how many blocks it has left.
if forceClose.MaturityHeight != 0 {
forceClose.BlocksTilMaturity =
int32(forceClose.MaturityHeight) -
currentHeight
}
for _, htlcReport := range nurseryInfo.htlcs {
// TODO(conner) set incoming flag
// appropriately after handling incoming
// incubation
htlc := &lnrpc.PendingHTLC{
Incoming: false,
Amount: int64(htlcReport.amount),
Outpoint: htlcReport.outpoint.String(),
MaturityHeight: htlcReport.maturityHeight,
Stage: htlcReport.stage,
}
if htlc.MaturityHeight != 0 {
htlc.BlocksTilMaturity =
int32(htlc.MaturityHeight) -
currentHeight
}
forceClose.PendingHtlcs = append(forceClose.PendingHtlcs,
htlc)
}
resp.TotalLimboBalance += int64(nurseryInfo.limboBalance)
}
resp.PendingForceClosingChannels = append(
resp.PendingForceClosingChannels,
forceClose,
)
}
}
// We'll also fetch all channels that are open, but have had their
// commitment broadcasted, meaning they are waiting for the closing
// transaction to confirm.
waitingCloseChans, err := r.server.chanDB.FetchWaitingCloseChannels()
if err != nil {
rpcsLog.Errorf("unable to fetch channels waiting close: %v",
err)
return nil, err
}
for _, waitingClose := range waitingCloseChans {
pub := waitingClose.IdentityPub.SerializeCompressed()
chanPoint := waitingClose.FundingOutpoint
channel := &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: chanPoint.String(),
Capacity: int64(waitingClose.Capacity),
LocalBalance: int64(waitingClose.LocalCommitment.LocalBalance.ToSatoshis()),
}
// A close tx has been broadcasted, all our balance will be in
// limbo until it confirms.
resp.WaitingCloseChannels = append(
resp.WaitingCloseChannels,
&lnrpc.PendingChannelsResponse_WaitingCloseChannel{
Channel: channel,
LimboBalance: channel.LocalBalance,
},
)
resp.TotalLimboBalance += channel.LocalBalance
}
return resp, nil
}
// ClosedChannels returns a list of all the channels have been closed.
2018-05-24 12:35:34 +03:00
// This does not include channels that are still in the process of closing.
func (r *rpcServer) ClosedChannels(ctx context.Context,
in *lnrpc.ClosedChannelsRequest) (*lnrpc.ClosedChannelsResponse,
2018-05-24 12:35:34 +03:00
error) {
// Show all channels when no filter flags are set.
filterResults := in.Cooperative || in.LocalForce ||
in.RemoteForce || in.Breach || in.FundingCanceled ||
in.Abandoned
2018-05-24 12:35:34 +03:00
resp := &lnrpc.ClosedChannelsResponse{}
dbChannels, err := r.server.chanDB.FetchClosedChannels(false)
if err != nil {
return nil, err
}
// In order to make the response easier to parse for clients, we'll
// sort the set of closed channels by their closing height before
// serializing the proto response.
sort.Slice(dbChannels, func(i, j int) bool {
return dbChannels[i].CloseHeight < dbChannels[j].CloseHeight
})
2018-05-24 12:35:34 +03:00
for _, dbChannel := range dbChannels {
if dbChannel.IsPending {
continue
}
nodePub := dbChannel.RemotePub
nodeID := hex.EncodeToString(nodePub.SerializeCompressed())
var closeType lnrpc.ChannelCloseSummary_ClosureType
switch dbChannel.CloseType {
case channeldb.CooperativeClose:
if filterResults && !in.Cooperative {
continue
}
closeType = lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE
case channeldb.LocalForceClose:
if filterResults && !in.LocalForce {
continue
}
closeType = lnrpc.ChannelCloseSummary_LOCAL_FORCE_CLOSE
case channeldb.RemoteForceClose:
if filterResults && !in.RemoteForce {
continue
}
closeType = lnrpc.ChannelCloseSummary_REMOTE_FORCE_CLOSE
case channeldb.BreachClose:
if filterResults && !in.Breach {
continue
}
closeType = lnrpc.ChannelCloseSummary_BREACH_CLOSE
case channeldb.FundingCanceled:
if filterResults && !in.FundingCanceled {
continue
}
closeType = lnrpc.ChannelCloseSummary_FUNDING_CANCELED
case channeldb.Abandoned:
if filterResults && !in.Abandoned {
continue
}
closeType = lnrpc.ChannelCloseSummary_ABANDONED
2018-05-24 12:35:34 +03:00
}
channel := &lnrpc.ChannelCloseSummary{
Capacity: int64(dbChannel.Capacity),
RemotePubkey: nodeID,
CloseHeight: dbChannel.CloseHeight,
CloseType: closeType,
ChannelPoint: dbChannel.ChanPoint.String(),
ChanId: dbChannel.ShortChanID.ToUint64(),
SettledBalance: int64(dbChannel.SettledBalance),
TimeLockedBalance: int64(dbChannel.TimeLockedBalance),
ChainHash: dbChannel.ChainHash.String(),
ClosingTxHash: dbChannel.ClosingTXID.String(),
}
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// ListChannels returns a description of all the open channels that this node
// is a participant in.
func (r *rpcServer) ListChannels(ctx context.Context,
in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) {
if in.ActiveOnly && in.InactiveOnly {
return nil, fmt.Errorf("either `active_only` or " +
"`inactive_only` can be set, but not both")
}
if in.PublicOnly && in.PrivateOnly {
return nil, fmt.Errorf("either `public_only` or " +
"`private_only` can be set, but not both")
}
resp := &lnrpc.ListChannelsResponse{}
graph := r.server.chanDB.ChannelGraph()
dbChannels, err := r.server.chanDB.FetchAllOpenChannels()
if err != nil {
return nil, err
}
rpcsLog.Infof("[listchannels] fetched %v channels from DB",
len(dbChannels))
for _, dbChannel := range dbChannels {
nodePub := dbChannel.IdentityPub
nodeID := hex.EncodeToString(nodePub.SerializeCompressed())
chanPoint := dbChannel.FundingOutpoint
// With the channel point known, retrieve the network channel
// ID from the database.
var chanID uint64
chanID, _ = graph.ChannelID(&chanPoint)
var peerOnline bool
if _, err := r.server.FindPeer(nodePub); err == nil {
peerOnline = true
}
channelID := lnwire.NewChanIDFromOutPoint(&chanPoint)
var linkActive bool
if link, err := r.server.htlcSwitch.GetLink(channelID); err == nil {
// A channel is only considered active if it is known
// by the switch *and* able to forward
// incoming/outgoing payments.
linkActive = link.EligibleToForward()
}
// Next, we'll determine whether we should add this channel to
// our list depending on the type of channels requested to us.
isActive := peerOnline && linkActive
isPublic := dbChannel.ChannelFlags&lnwire.FFAnnounceChannel != 0
// We'll only skip returning this channel if we were requested
// for a specific kind and this channel doesn't satisfy it.
switch {
case in.ActiveOnly && !isActive:
continue
case in.InactiveOnly && isActive:
continue
case in.PublicOnly && !isPublic:
continue
case in.PrivateOnly && isPublic:
continue
}
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
localCommit := dbChannel.LocalCommitment
utx := btcutil.NewTx(localCommit.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight
localBalance := localCommit.LocalBalance
remoteBalance := localCommit.RemoteBalance
// As an artifact of our usage of mSAT internally, either party
// may end up in a state where they're holding a fractional
// amount of satoshis which can't be expressed within the
// actual commitment output. Since we round down when going
// from mSAT -> SAT, we may at any point be adding an
// additional SAT to miners fees. As a result, we display a
// commitment fee that accounts for this externally.
var sumOutputs btcutil.Amount
for _, txOut := range localCommit.CommitTx.TxOut {
sumOutputs += btcutil.Amount(txOut.Value)
}
externalCommitFee := dbChannel.Capacity - sumOutputs
channel := &lnrpc.Channel{
Active: isActive,
Private: !isPublic,
RemotePubkey: nodeID,
ChannelPoint: chanPoint.String(),
ChanId: chanID,
Capacity: int64(dbChannel.Capacity),
LocalBalance: int64(localBalance.ToSatoshis()),
RemoteBalance: int64(remoteBalance.ToSatoshis()),
CommitFee: int64(externalCommitFee),
CommitWeight: commitWeight,
FeePerKw: int64(localCommit.FeePerKw),
TotalSatoshisSent: int64(dbChannel.TotalMSatSent.ToSatoshis()),
TotalSatoshisReceived: int64(dbChannel.TotalMSatReceived.ToSatoshis()),
NumUpdates: localCommit.CommitHeight,
PendingHtlcs: make([]*lnrpc.HTLC, len(localCommit.Htlcs)),
CsvDelay: uint32(dbChannel.LocalChanCfg.CsvDelay),
}
for i, htlc := range localCommit.Htlcs {
var rHash [32]byte
copy(rHash[:], htlc.RHash[:])
channel.PendingHtlcs[i] = &lnrpc.HTLC{
Incoming: htlc.Incoming,
Amount: int64(htlc.Amt.ToSatoshis()),
HashLock: rHash[:],
ExpirationHeight: htlc.RefundTimeout,
}
}
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// savePayment saves a successfully completed payment to the database for
// historical record keeping.
func (r *rpcServer) savePayment(route *routing.Route,
amount lnwire.MilliSatoshi, preImage []byte) error {
paymentPath := make([][33]byte, len(route.Hops))
for i, hop := range route.Hops {
hopPub := hop.Channel.Node.PubKeyBytes
copy(paymentPath[i][:], hopPub[:])
}
payment := &channeldb.OutgoingPayment{
Invoice: channeldb.Invoice{
Terms: channeldb.ContractTerm{
2017-02-23 22:07:01 +03:00
Value: amount,
},
CreationDate: time.Now(),
},
Path: paymentPath,
Fee: route.TotalFees,
TimeLockLength: route.TotalTimeLock,
}
copy(payment.PaymentPreimage[:], preImage)
return r.server.chanDB.AddPayment(payment)
}
// validatePayReqExpiry checks if the passed payment request has expired. In
// the case it has expired, an error will be returned.
func validatePayReqExpiry(payReq *zpay32.Invoice) error {
expiry := payReq.Expiry()
validUntil := payReq.Timestamp.Add(expiry)
if time.Now().After(validUntil) {
return fmt.Errorf("invoice expired. Valid until %v", validUntil)
}
return nil
}
// paymentStream enables different types of payment streams, such as:
// lnrpc.Lightning_SendPaymentServer and lnrpc.Lightning_SendToRouteServer to
// execute sendPayment. We use this struct as a sort of bridge to enable code
// re-use between SendPayment and SendToRoute.
type paymentStream struct {
recv func() (*rpcPaymentRequest, error)
send func(*lnrpc.SendResponse) error
}
// rpcPaymentRequest wraps lnrpc.SendRequest so that routes from
// lnrpc.SendToRouteRequest can be passed to sendPayment.
type rpcPaymentRequest struct {
*lnrpc.SendRequest
routes []*routing.Route
}
// calculateFeeLimit returns the fee limit in millisatoshis. If a percentage
// based fee limit has been requested, we'll factor in the ratio provided with
// the amount of the payment.
func calculateFeeLimit(feeLimit *lnrpc.FeeLimit,
amount lnwire.MilliSatoshi) lnwire.MilliSatoshi {
switch feeLimit.GetLimit().(type) {
case *lnrpc.FeeLimit_Fixed:
return lnwire.NewMSatFromSatoshis(
btcutil.Amount(feeLimit.GetFixed()),
)
case *lnrpc.FeeLimit_Percent:
return amount * lnwire.MilliSatoshi(feeLimit.GetPercent()) / 100
default:
// If a fee limit was not specified, we'll use the payment's
// amount as an upper bound in order to avoid payment attempts
// from incurring fees higher than the payment amount itself.
return amount
}
}
// SendPayment dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network. A single RPC invocation creates a persistent
// bi-directional stream allowing clients to rapidly send payments through the
// Lightning Network with a single persistent connection.
func (r *rpcServer) SendPayment(stream lnrpc.Lightning_SendPaymentServer) error {
return r.sendPayment(&paymentStream{
recv: func() (*rpcPaymentRequest, error) {
req, err := stream.Recv()
if err != nil {
return nil, err
}
return &rpcPaymentRequest{
SendRequest: req,
}, nil
},
send: stream.Send,
})
}
// SendToRoute dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network via predefined routes passed in. A single RPC
// invocation creates a persistent bi-directional stream allowing clients to
// rapidly send payments through the Lightning Network with a single persistent
// connection.
func (r *rpcServer) SendToRoute(stream lnrpc.Lightning_SendToRouteServer) error {
return r.sendPayment(&paymentStream{
recv: func() (*rpcPaymentRequest, error) {
req, err := stream.Recv()
if err != nil {
return nil, err
}
graph := r.server.chanDB.ChannelGraph()
if len(req.Routes) == 0 {
return nil, fmt.Errorf("unable to send, no routes provided")
}
routes := make([]*routing.Route, len(req.Routes))
for i, rpcroute := range req.Routes {
route, err := unmarshallRoute(rpcroute, graph)
if err != nil {
return nil, err
}
routes[i] = route
}
return &rpcPaymentRequest{
SendRequest: &lnrpc.SendRequest{
PaymentHash: req.PaymentHash,
},
routes: routes,
}, nil
},
send: stream.Send,
})
}
// rpcPaymentIntent is a small wrapper struct around the of values we can
// receive from a client over RPC if they wish to send a payment. We'll either
// extract these fields from a payment request (which may include routing
// hints), or we'll get a fully populated route from the user that we'll pass
// directly to the channel router for dispatching.
type rpcPaymentIntent struct {
msat lnwire.MilliSatoshi
feeLimit lnwire.MilliSatoshi
dest *btcec.PublicKey
rHash [32]byte
cltvDelta uint16
routeHints [][]routing.HopHint
routes []*routing.Route
}
// extractPaymentIntent attempts to parse the complete details required to
// dispatch a client from the information presented by an RPC client. There are
// three ways a client can specify their payment details: a payment request,
// via manual details, or via a complete route.
func extractPaymentIntent(rpcPayReq *rpcPaymentRequest) (rpcPaymentIntent, error) {
var err error
payIntent := rpcPaymentIntent{}
// If a route was specified, then we can use that directly.
if len(rpcPayReq.routes) != 0 {
// If the user is using the REST interface, then they'll be
// passing the payment hash as a hex encoded string.
if rpcPayReq.PaymentHashString != "" {
paymentHash, err := hex.DecodeString(
rpcPayReq.PaymentHashString,
)
if err != nil {
return payIntent, err
}
copy(payIntent.rHash[:], paymentHash)
} else {
copy(payIntent.rHash[:], rpcPayReq.PaymentHash)
}
payIntent.routes = rpcPayReq.routes
return payIntent, nil
}
// If the payment request field isn't blank, then the details of the
// invoice are encoded entirely within the encoded payReq. So we'll
// attempt to decode it, populating the payment accordingly.
if rpcPayReq.PaymentRequest != "" {
payReq, err := zpay32.Decode(
rpcPayReq.PaymentRequest, activeNetParams.Params,
)
if err != nil {
return payIntent, err
}
// Next, we'll ensure that this payreq hasn't already expired.
err = validatePayReqExpiry(payReq)
if err != nil {
return payIntent, err
}
// If the amount was not included in the invoice, then we let
// the payee specify the amount of satoshis they wish to send.
// We override the amount to pay with the amount provided from
// the payment request.
if payReq.MilliSat == nil {
if rpcPayReq.Amt == 0 {
return payIntent, errors.New("amount must be " +
"specified when paying a zero amount " +
"invoice")
}
payIntent.msat = lnwire.NewMSatFromSatoshis(
btcutil.Amount(rpcPayReq.Amt),
)
} else {
payIntent.msat = *payReq.MilliSat
}
// Calculate the fee limit that should be used for this payment.
payIntent.feeLimit = calculateFeeLimit(
rpcPayReq.FeeLimit, payIntent.msat,
)
copy(payIntent.rHash[:], payReq.PaymentHash[:])
payIntent.dest = payReq.Destination
payIntent.cltvDelta = uint16(payReq.MinFinalCLTVExpiry())
payIntent.routeHints = payReq.RouteHints
return payIntent, nil
}
// At this point, a destination MUST be specified, so we'll convert it
// into the proper representation now. The destination will either be
// encoded as raw bytes, or via a hex string.
if len(rpcPayReq.Dest) != 0 {
payIntent.dest, err = btcec.ParsePubKey(
rpcPayReq.Dest, btcec.S256(),
)
if err != nil {
return payIntent, err
}
} else {
pubBytes, err := hex.DecodeString(rpcPayReq.DestString)
if err != nil {
return payIntent, err
}
payIntent.dest, err = btcec.ParsePubKey(pubBytes, btcec.S256())
if err != nil {
return payIntent, err
}
}
// Otherwise, If the payment request field was not specified
// (and a custom route wasn't specified), construct the payment
// from the other fields.
payIntent.msat = lnwire.NewMSatFromSatoshis(
btcutil.Amount(rpcPayReq.Amt),
)
// Calculate the fee limit that should be used for this payment.
payIntent.feeLimit = calculateFeeLimit(
rpcPayReq.FeeLimit, payIntent.msat,
)
payIntent.cltvDelta = uint16(rpcPayReq.FinalCltvDelta)
// If the user is manually specifying payment details, then the payment
// hash may be encoded as a string.
switch {
case rpcPayReq.PaymentHashString != "":
paymentHash, err := hex.DecodeString(
rpcPayReq.PaymentHashString,
)
if err != nil {
return payIntent, err
}
copy(payIntent.rHash[:], paymentHash)
// If we're in debug HTLC mode, then all outgoing HTLCs will pay to the
// same debug rHash. Otherwise, we pay to the rHash specified within
// the RPC request.
case cfg.DebugHTLC && bytes.Equal(payIntent.rHash[:], zeroHash[:]):
copy(payIntent.rHash[:], debugHash[:])
default:
copy(payIntent.rHash[:], rpcPayReq.PaymentHash)
}
// Currently, within the bootstrap phase of the network, we limit the
// largest payment size allotted to (2^32) - 1 mSAT or 4.29 million
// satoshis.
if payIntent.msat > maxPaymentMSat {
// In this case, we'll send an error to the caller, but
// continue our loop for the next payment.
return payIntent, fmt.Errorf("payment of %v is too large, "+
"max payment allowed is %v", payIntent.msat,
maxPaymentMSat)
}
return payIntent, nil
}
2018-07-31 11:29:12 +03:00
type paymentIntentResponse struct {
Route *routing.Route
Preimage [32]byte
Err error
}
// dispatchPaymentIntent attempts to fully dispatch an RPC payment intent.
// We'll either pass the payment as a whole to the channel router, or give it a
// pre-built route. The first error this method returns denotes if we were
// unable to save the payment. The second error returned denotes if the payment
// didn't succeed.
2018-07-31 11:29:12 +03:00
func (r *rpcServer) dispatchPaymentIntent(
payIntent *rpcPaymentIntent) (*paymentIntentResponse, error) {
// Construct a payment request to send to the channel router. If the
// payment is successful, the route chosen will be returned. Otherwise,
// we'll get a non-nil error.
var (
preImage [32]byte
route *routing.Route
routerErr error
)
// If a route was specified, then we'll pass the route directly to the
// router, otherwise we'll create a payment session to execute it.
if len(payIntent.routes) == 0 {
payment := &routing.LightningPayment{
Target: payIntent.dest,
Amount: payIntent.msat,
FeeLimit: payIntent.feeLimit,
PaymentHash: payIntent.rHash,
RouteHints: payIntent.routeHints,
}
// If the final CLTV value was specified, then we'll use that
// rather than the default.
if payIntent.cltvDelta != 0 {
payment.FinalCLTVDelta = &payIntent.cltvDelta
}
preImage, route, routerErr = r.server.chanRouter.SendPayment(
payment,
)
} else {
payment := &routing.LightningPayment{
PaymentHash: payIntent.rHash,
}
preImage, route, routerErr = r.server.chanRouter.SendToRoute(
payIntent.routes, payment,
)
}
// If the route failed, then we'll return a nil save err, but a non-nil
// routing err.
if routerErr != nil {
2018-07-31 11:29:12 +03:00
return &paymentIntentResponse{
Err: routerErr,
}, nil
}
// If a route was used to complete this payment, then we'll need to
// compute the final amount sent
var amt lnwire.MilliSatoshi
if len(payIntent.routes) > 0 {
amt = route.TotalAmount - route.TotalFees
} else {
amt = payIntent.msat
}
// Save the completed payment to the database for record keeping
// purposes.
err := r.savePayment(route, amt, preImage[:])
if err != nil {
// We weren't able to save the payment, so we return the save
// err, but a nil routing err.
2018-07-31 11:29:12 +03:00
return nil, err
}
2018-07-31 11:29:12 +03:00
return &paymentIntentResponse{
Route: route,
Preimage: preImage,
}, nil
}
// sendPayment takes a paymentStream (a source of pre-built routes or payment
// requests) and continually attempt to dispatch payment requests written to
// the write end of the stream. Responses will also be streamed back to the
// client via the write end of the stream. This method is by both SendToRoute
// and SendPayment as the logic is virtually identical.
func (r *rpcServer) sendPayment(stream *paymentStream) error {
payChan := make(chan *rpcPaymentIntent)
errChan := make(chan error, 1)
// We don't allow payments to be sent while the daemon itself is still
// syncing as we may be trying to sent a payment over a "stale"
// channel.
if !r.server.Started() {
return fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// TODO(roasbeef): check payment filter to see if already used?
// In order to limit the level of concurrency and prevent a client from
// attempting to OOM the server, we'll set up a semaphore to create an
// upper ceiling on the number of outstanding payments.
const numOutstandingPayments = 2000
htlcSema := make(chan struct{}, numOutstandingPayments)
for i := 0; i < numOutstandingPayments; i++ {
htlcSema <- struct{}{}
}
// Launch a new goroutine to handle reading new payment requests from
// the client. This way we can handle errors independently of blocking
// and waiting for the next payment request to come through.
reqQuit := make(chan struct{})
defer func() {
close(reqQuit)
}()
go func() {
for {
select {
case <-reqQuit:
return
case <-r.quit:
errChan <- nil
return
default:
// Receive the next pending payment within the
// stream sent by the client. If we read the
// EOF sentinel, then the client has closed the
// stream, and we can exit normally.
nextPayment, err := stream.recv()
if err == io.EOF {
errChan <- nil
return
} else if err != nil {
select {
case errChan <- err:
case <-reqQuit:
return
}
return
}
// Populate the next payment, either from the
// payment request, or from the explicitly set
// fields. If the payment proto wasn't well
// formed, then we'll send an error reply and
// wait for the next payment.
payIntent, err := extractPaymentIntent(nextPayment)
if err != nil {
if err := stream.send(&lnrpc.SendResponse{
PaymentError: err.Error(),
}); err != nil {
select {
case errChan <- err:
case <-reqQuit:
return
}
}
continue
}
// If the payment was well formed, then we'll
// send to the dispatch goroutine, or exit,
// which ever comes first
select {
case payChan <- &payIntent:
case <-reqQuit:
return
}
}
}
}()
for {
select {
case err := <-errChan:
return err
case payIntent := <-payChan:
// We launch a new goroutine to execute the current
// payment so we can continue to serve requests while
// this payment is being dispatched.
go func() {
// Attempt to grab a free semaphore slot, using
// a defer to eventually release the slot
// regardless of payment success.
<-htlcSema
defer func() {
htlcSema <- struct{}{}
}()
2018-07-31 11:29:12 +03:00
resp, saveErr := r.dispatchPaymentIntent(
payIntent,
)
switch {
2018-07-31 11:29:12 +03:00
// If we were unable to save the state of the
// payment, then we'll return the error to the
// user, and terminate.
case saveErr != nil:
errChan <- saveErr
return
// If we receive payment error than, instead of
// terminating the stream, send error response
// to the user.
2018-07-31 11:29:12 +03:00
case resp.Err != nil:
err := stream.send(&lnrpc.SendResponse{
2018-07-31 11:29:12 +03:00
PaymentError: resp.Err.Error(),
})
if err != nil {
errChan <- err
}
return
}
2018-07-31 11:29:12 +03:00
marshalledRouted := marshallRoute(resp.Route)
err := stream.send(&lnrpc.SendResponse{
2018-07-31 11:29:12 +03:00
PaymentPreimage: resp.Preimage[:],
PaymentRoute: marshalledRouted,
})
if err != nil {
errChan <- err
return
}
}()
}
}
}
// SendPaymentSync is the synchronous non-streaming version of SendPayment.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the destination's public key and the payment
// hash (if any) to be encoded as hex strings.
func (r *rpcServer) SendPaymentSync(ctx context.Context,
nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) {
return r.sendPaymentSync(ctx, &rpcPaymentRequest{
SendRequest: nextPayment,
})
}
// SendToRouteSync is the synchronous non-streaming version of SendToRoute.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the payment hash (if any) to be encoded as
// hex strings.
func (r *rpcServer) SendToRouteSync(ctx context.Context,
req *lnrpc.SendToRouteRequest) (*lnrpc.SendResponse, error) {
if len(req.Routes) == 0 {
return nil, fmt.Errorf("unable to send, no routes provided")
}
graph := r.server.chanDB.ChannelGraph()
routes := make([]*routing.Route, len(req.Routes))
for i, route := range req.Routes {
route, err := unmarshallRoute(route, graph)
if err != nil {
return nil, err
}
routes[i] = route
}
return r.sendPaymentSync(ctx, &rpcPaymentRequest{
SendRequest: &lnrpc.SendRequest{
PaymentHashString: req.PaymentHashString,
},
routes: routes,
})
}
// sendPaymentSync is the synchronous variant of sendPayment. It will block and
// wait until the payment has been fully completed.
func (r *rpcServer) sendPaymentSync(ctx context.Context,
nextPayment *rpcPaymentRequest) (*lnrpc.SendResponse, error) {
// We don't allow payments to be sent while the daemon itself is still
// syncing as we may be trying to sent a payment over a "stale"
// channel.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// First we'll attempt to map the proto describing the next payment to
// an intent that we can pass to local sub-systems.
payIntent, err := extractPaymentIntent(nextPayment)
if err != nil {
return nil, err
}
// With the payment validated, we'll now attempt to dispatch the
// payment.
2018-07-31 11:29:12 +03:00
resp, saveErr := r.dispatchPaymentIntent(&payIntent)
switch {
2018-07-31 11:29:12 +03:00
case saveErr != nil:
return nil, saveErr
case resp.Err != nil:
return &lnrpc.SendResponse{
2018-07-31 11:29:12 +03:00
PaymentError: resp.Err.Error(),
}, nil
}
return &lnrpc.SendResponse{
2018-07-31 11:29:12 +03:00
PaymentPreimage: resp.Preimage[:],
PaymentRoute: marshallRoute(resp.Route),
}, nil
}
// AddInvoice attempts to add a new invoice to the invoice database. Any
// duplicated invoices are rejected, therefore all invoices *must* have a
// unique payment preimage.
func (r *rpcServer) AddInvoice(ctx context.Context,
invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) {
var paymentPreimage [32]byte
switch {
// If a preimage wasn't specified, then we'll generate a new preimage
// from fresh cryptographic randomness.
case len(invoice.RPreimage) == 0:
if _, err := rand.Read(paymentPreimage[:]); err != nil {
return nil, err
}
// Otherwise, if a preimage was specified, then it MUST be exactly
// 32-bytes.
case len(invoice.RPreimage) > 0 && len(invoice.RPreimage) != 32:
return nil, fmt.Errorf("payment preimage must be exactly "+
"32 bytes, is instead %v", len(invoice.RPreimage))
// If the preimage meets the size specifications, then it can be used
// as is.
default:
copy(paymentPreimage[:], invoice.RPreimage[:])
}
// The size of the memo, receipt and description hash attached must not
// exceed the maximum values for either of the fields.
if len(invoice.Memo) > channeldb.MaxMemoSize {
return nil, fmt.Errorf("memo too large: %v bytes "+
"(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize)
}
if len(invoice.Receipt) > channeldb.MaxReceiptSize {
return nil, fmt.Errorf("receipt too large: %v bytes "+
"(maxsize=%v)", len(invoice.Receipt), channeldb.MaxReceiptSize)
}
if len(invoice.DescriptionHash) > 0 && len(invoice.DescriptionHash) != 32 {
return nil, fmt.Errorf("description hash is %v bytes, must be %v",
len(invoice.DescriptionHash), channeldb.MaxPaymentRequestSize)
}
// The value of the invoice must not be negative.
if invoice.Value < 0 {
return nil, fmt.Errorf("payments of negative value "+
"are not allowed, value is %v", invoice.Value)
}
2018-07-31 10:17:17 +03:00
amt := btcutil.Amount(invoice.Value)
amtMSat := lnwire.NewMSatFromSatoshis(amt)
// The value of the invoice must also not exceed the current soft-limit
// on the largest payment within the network.
if amtMSat > maxPaymentMSat {
return nil, fmt.Errorf("payment of %v is too large, max "+
"payment allowed is %v", amt, maxPaymentMSat.ToSatoshis())
}
// Next, generate the payment hash itself from the preimage. This will
// be used by clients to query for the state of a particular invoice.
rHash := sha256.Sum256(paymentPreimage[:])
// We also create an encoded payment request which allows the
// caller to compactly send the invoice to the payer. We'll create a
// list of options to be added to the encoded payment request. For now
// we only support the required fields description/description_hash,
// expiry, fallback address, and the amount field.
var options []func(*zpay32.Invoice)
// We only include the amount in the invoice if it is greater than 0.
// By not including the amount, we enable the creation of invoices that
// allow the payee to specify the amount of satoshis they wish to send.
if amtMSat > 0 {
options = append(options, zpay32.Amount(amtMSat))
}
// If specified, add a fallback address to the payment request.
if len(invoice.FallbackAddr) > 0 {
addr, err := btcutil.DecodeAddress(invoice.FallbackAddr,
activeNetParams.Params)
if err != nil {
return nil, fmt.Errorf("invalid fallback address: %v",
err)
}
options = append(options, zpay32.FallbackAddr(addr))
}
// If expiry is set, specify it. If it is not provided, no expiry time
// will be explicitly added to this payment request, which will imply
// the default 3600 seconds.
if invoice.Expiry > 0 {
// We'll ensure that the specified expiry is restricted to sane
// number of seconds. As a result, we'll reject an invoice with
// an expiry greater than 1 year.
maxExpiry := time.Hour * 24 * 365
expSeconds := invoice.Expiry
if float64(expSeconds) > maxExpiry.Seconds() {
return nil, fmt.Errorf("expiry of %v seconds "+
"greater than max expiry of %v seconds",
float64(expSeconds), maxExpiry.Seconds())
}
expiry := time.Duration(invoice.Expiry) * time.Second
options = append(options, zpay32.Expiry(expiry))
}
// If the description hash is set, then we add it do the list of options.
// If not, use the memo field as the payment request description.
if len(invoice.DescriptionHash) > 0 {
var descHash [32]byte
copy(descHash[:], invoice.DescriptionHash[:])
options = append(options, zpay32.DescriptionHash(descHash))
} else {
// Use the memo field as the description. If this is not set
// this will just be an empty string.
options = append(options, zpay32.Description(invoice.Memo))
}
// We'll use our current default CLTV value unless one was specified as
// an option on the command line when creating an invoice.
switch {
case invoice.CltvExpiry > math.MaxUint16:
return nil, fmt.Errorf("CLTV delta of %v is too large, max "+
"accepted is: %v", invoice.CltvExpiry, math.MaxUint16)
case invoice.CltvExpiry != 0:
options = append(options,
zpay32.CLTVExpiry(invoice.CltvExpiry))
default:
// TODO(roasbeef): assumes set delta between versions
defaultDelta := cfg.Bitcoin.TimeLockDelta
if registeredChains.PrimaryChain() == litecoinChain {
defaultDelta = cfg.Litecoin.TimeLockDelta
}
options = append(options, zpay32.CLTVExpiry(uint64(defaultDelta)))
}
// If we were requested to include routing hints in the invoice, then
// we'll fetch all of our available private channels and create routing
// hints for them.
if invoice.Private {
openChannels, err := r.server.chanDB.FetchAllChannels()
if err != nil {
return nil, fmt.Errorf("could not fetch all channels")
}
graph := r.server.chanDB.ChannelGraph()
numHints := 0
for _, channel := range openChannels {
// We'll restrict the number of individual route hints
// to 20 to avoid creating overly large invoices.
if numHints > 20 {
break
}
// Since we're only interested in our private channels,
// we'll skip public ones.
isPublic := channel.ChannelFlags&lnwire.FFAnnounceChannel != 0
if isPublic {
continue
}
// Make sure the counterparty has enough balance in the
// channel for our amount. We do this in order to reduce
// payment errors when attempting to use this channel
// as a hint.
chanPoint := lnwire.NewChanIDFromOutPoint(
&channel.FundingOutpoint,
)
if amtMSat >= channel.LocalCommitment.RemoteBalance {
rpcsLog.Debugf("Skipping channel %v due to "+
"not having enough remote balance",
chanPoint)
continue
}
// Make sure the channel is active.
link, err := r.server.htlcSwitch.GetLink(chanPoint)
if err != nil {
rpcsLog.Errorf("Unable to get link for "+
"channel %v: %v", chanPoint, err)
continue
}
if !link.EligibleToForward() {
rpcsLog.Debugf("Skipping link %v due to not "+
"being eligible to forward payments",
chanPoint)
continue
}
// Fetch the policies for each end of the channel.
chanID := channel.ShortChanID().ToUint64()
info, p1, p2, err := graph.FetchChannelEdgesByID(chanID)
if err != nil {
rpcsLog.Errorf("Unable to fetch the routing "+
"policies for the edges of the channel "+
"%v: %v", chanPoint, err)
continue
}
// Now, we'll need to determine which is the correct
// policy for HTLCs being sent from the remote node.
var remotePolicy *channeldb.ChannelEdgePolicy
remotePub := channel.IdentityPub.SerializeCompressed()
if bytes.Equal(remotePub, info.NodeKey1Bytes[:]) {
remotePolicy = p1
} else {
remotePolicy = p2
}
// If for some reason we don't yet have the edge for
// the remote party, then we'll just skip adding this
// channel as a routing hint.
if remotePolicy == nil {
continue
}
// Finally, create the routing hint for this channel and
// add it to our list of route hints.
hint := routing.HopHint{
NodeID: channel.IdentityPub,
ChannelID: chanID,
FeeBaseMSat: uint32(remotePolicy.FeeBaseMSat),
FeeProportionalMillionths: uint32(
remotePolicy.FeeProportionalMillionths,
),
CLTVExpiryDelta: remotePolicy.TimeLockDelta,
}
// Include the route hint in our set of options that
// will be used when creating the invoice.
routeHint := []routing.HopHint{hint}
options = append(options, zpay32.RouteHint(routeHint))
numHints++
}
}
// Create and encode the payment request as a bech32 (zpay32) string.
creationDate := time.Now()
payReq, err := zpay32.NewInvoice(
activeNetParams.Params, rHash, creationDate, options...,
)
if err != nil {
return nil, err
}
payReqString, err := payReq.Encode(
zpay32.MessageSigner{
SignCompact: r.server.nodeSigner.SignDigestCompact,
},
)
if err != nil {
return nil, err
}
newInvoice := &channeldb.Invoice{
CreationDate: creationDate,
Memo: []byte(invoice.Memo),
Receipt: invoice.Receipt,
PaymentRequest: []byte(payReqString),
Terms: channeldb.ContractTerm{
Value: amtMSat,
},
}
copy(newInvoice.Terms.PaymentPreimage[:], paymentPreimage[:])
rpcsLog.Tracef("[addinvoice] adding new invoice %v",
newLogClosure(func() string {
return spew.Sdump(newInvoice)
}),
)
// With all sanity checks passed, write the invoice to the database.
addIndex, err := r.server.invoices.AddInvoice(newInvoice)
if err != nil {
return nil, err
}
return &lnrpc.AddInvoiceResponse{
RHash: rHash[:],
PaymentRequest: payReqString,
AddIndex: addIndex,
}, nil
}
// createRPCInvoice creates an *lnrpc.Invoice from the *channeldb.Invoice.
func createRPCInvoice(invoice *channeldb.Invoice) (*lnrpc.Invoice, error) {
paymentRequest := string(invoice.PaymentRequest)
decoded, err := zpay32.Decode(paymentRequest, activeNetParams.Params)
if err != nil {
return nil, fmt.Errorf("unable to decode payment request: %v",
err)
}
descHash := []byte("")
if decoded.DescriptionHash != nil {
descHash = decoded.DescriptionHash[:]
}
fallbackAddr := ""
if decoded.FallbackAddr != nil {
fallbackAddr = decoded.FallbackAddr.String()
}
settleDate := int64(0)
if !invoice.SettleDate.IsZero() {
settleDate = invoice.SettleDate.Unix()
}
// Expiry time will default to 3600 seconds if not specified
// explicitly.
expiry := int64(decoded.Expiry().Seconds())
// The expiry will default to 9 blocks if not specified explicitly.
cltvExpiry := decoded.MinFinalCLTVExpiry()
// Convert between the `lnrpc` and `routing` types.
routeHints := createRPCRouteHints(decoded.RouteHints)
preimage := invoice.Terms.PaymentPreimage
satAmt := invoice.Terms.Value.ToSatoshis()
satAmtPaid := invoice.AmtPaid.ToSatoshis()
return &lnrpc.Invoice{
Memo: string(invoice.Memo[:]),
Receipt: invoice.Receipt[:],
RHash: decoded.PaymentHash[:],
RPreimage: preimage[:],
Value: int64(satAmt),
CreationDate: invoice.CreationDate.Unix(),
SettleDate: settleDate,
Settled: invoice.Terms.Settled,
PaymentRequest: paymentRequest,
DescriptionHash: descHash,
Expiry: expiry,
CltvExpiry: cltvExpiry,
FallbackAddr: fallbackAddr,
RouteHints: routeHints,
AddIndex: invoice.AddIndex,
SettleIndex: invoice.SettleIndex,
AmtPaidSat: int64(satAmtPaid),
AmtPaidMsat: int64(invoice.AmtPaid),
AmtPaid: int64(invoice.AmtPaid),
}, nil
}
// createRPCRouteHints takes in the decoded form of an invoice's route hints
// and converts them into the lnrpc type.
func createRPCRouteHints(routeHints [][]routing.HopHint) []*lnrpc.RouteHint {
var res []*lnrpc.RouteHint
for _, route := range routeHints {
hopHints := make([]*lnrpc.HopHint, 0, len(route))
for _, hop := range route {
pubKey := hex.EncodeToString(
hop.NodeID.SerializeCompressed(),
)
hint := &lnrpc.HopHint{
NodeId: pubKey,
ChanId: hop.ChannelID,
FeeBaseMsat: hop.FeeBaseMSat,
FeeProportionalMillionths: hop.FeeProportionalMillionths,
CltvExpiryDelta: uint32(hop.CLTVExpiryDelta),
}
hopHints = append(hopHints, hint)
}
routeHint := &lnrpc.RouteHint{HopHints: hopHints}
res = append(res, routeHint)
}
return res
}
// LookupInvoice attempts to look up an invoice according to its payment hash.
// The passed payment hash *must* be exactly 32 bytes, if not an error is
// returned.
func (r *rpcServer) LookupInvoice(ctx context.Context,
req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) {
var (
payHash [32]byte
rHash []byte
err error
)
// If the RHash as a raw string was provided, then decode that and use
// that directly. Otherwise, we use the raw bytes provided.
if req.RHashStr != "" {
rHash, err = hex.DecodeString(req.RHashStr)
if err != nil {
return nil, err
}
} else {
rHash = req.RHash
}
// Ensure that the payment hash is *exactly* 32-bytes.
if len(rHash) != 0 && len(rHash) != 32 {
return nil, fmt.Errorf("payment hash must be exactly "+
"32 bytes, is instead %v", len(rHash))
}
copy(payHash[:], rHash)
rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:])
invoice, _, err := r.server.invoices.LookupInvoice(payHash)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[lookupinvoice] located invoice %v",
newLogClosure(func() string {
return spew.Sdump(invoice)
}))
rpcInvoice, err := createRPCInvoice(&invoice)
if err != nil {
return nil, err
}
return rpcInvoice, nil
}
// ListInvoices returns a list of all the invoices currently stored within the
// database. Any active debug invoices are ignored.
func (r *rpcServer) ListInvoices(ctx context.Context,
req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) {
// If the number of invoices was not specified, then we'll default to
// returning the latest 100 invoices.
if req.NumMaxInvoices == 0 {
req.NumMaxInvoices = 100
}
// Next, we'll map the proto request into a format that is understood by
// the database.
q := channeldb.InvoiceQuery{
IndexOffset: req.IndexOffset,
NumMaxInvoices: req.NumMaxInvoices,
PendingOnly: req.PendingOnly,
Reversed: req.Reversed,
}
invoiceSlice, err := r.server.chanDB.QueryInvoices(q)
if err != nil {
return nil, fmt.Errorf("unable to query invoices: %v", err)
}
// Before returning the response, we'll need to convert each invoice
// into it's proto representation.
resp := &lnrpc.ListInvoiceResponse{
Invoices: make([]*lnrpc.Invoice, len(invoiceSlice.Invoices)),
FirstIndexOffset: invoiceSlice.FirstIndexOffset,
LastIndexOffset: invoiceSlice.LastIndexOffset,
}
for i, invoice := range invoiceSlice.Invoices {
resp.Invoices[i], err = createRPCInvoice(&invoice)
if err != nil {
return nil, err
}
}
return resp, nil
}
2017-12-30 17:44:31 +03:00
// SubscribeInvoices returns a uni-directional stream (server -> client) for
// notifying the client of newly added/settled invoices.
func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription,
updateStream lnrpc.Lightning_SubscribeInvoicesServer) error {
invoiceClient := r.server.invoices.SubscribeNotifications(
req.AddIndex, req.SettleIndex,
)
defer invoiceClient.Cancel()
for {
select {
case newInvoice := <-invoiceClient.NewInvoices:
rpcInvoice, err := createRPCInvoice(newInvoice)
if err != nil {
return err
}
if err := updateStream.Send(rpcInvoice); err != nil {
return err
}
case settledInvoice := <-invoiceClient.SettledInvoices:
rpcInvoice, err := createRPCInvoice(settledInvoice)
if err != nil {
return err
}
if err := updateStream.Send(rpcInvoice); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// SubscribeTransactions creates a uni-directional stream (server -> client) in
// which any newly discovered transactions relevant to the wallet are sent
// over.
func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest,
updateStream lnrpc.Lightning_SubscribeTransactionsServer) error {
txClient, err := r.server.cc.wallet.SubscribeTransactions()
if err != nil {
return err
}
defer txClient.Cancel()
for {
select {
case tx := <-txClient.ConfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case tx := <-txClient.UnconfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// GetTransactions returns a list of describing all the known transactions
// relevant to the wallet.
func (r *rpcServer) GetTransactions(ctx context.Context,
_ *lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) {
// TODO(roasbeef): add pagination support
transactions, err := r.server.cc.wallet.ListTransactionDetails()
if err != nil {
return nil, err
}
txDetails := &lnrpc.TransactionDetails{
Transactions: make([]*lnrpc.Transaction, len(transactions)),
}
for i, tx := range transactions {
var destAddresses []string
for _, destAddress := range tx.DestAddresses {
destAddresses = append(destAddresses, destAddress.EncodeAddress())
}
// We also get unconfirmed transactions, so BlockHash can be
// nil.
blockHash := ""
if tx.BlockHash != nil {
blockHash = tx.BlockHash.String()
}
txDetails.Transactions[i] = &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: blockHash,
BlockHeight: tx.BlockHeight,
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
DestAddresses: destAddresses,
}
}
return txDetails, nil
}
// DescribeGraph returns a description of the latest graph state from the PoV
// of the node. The graph information is partitioned into two components: all
// the nodes/vertexes, and all the edges that connect the vertexes themselves.
// As this is a directed graph, the edges also contain the node directional
// specific routing policy which includes: the time lock delta, fee
// information, etc.
func (r *rpcServer) DescribeGraph(ctx context.Context,
_ *lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) {
resp := &lnrpc.ChannelGraph{}
// Obtain the pointer to the global singleton channel graph, this will
// provide a consistent view of the graph due to bolt db's
// transactional model.
graph := r.server.chanDB.ChannelGraph()
// First iterate through all the known nodes (connected or unconnected
// within the graph), collating their current state into the RPC
// response.
err := graph.ForEachNode(nil, func(_ *bolt.Tx, node *channeldb.LightningNode) error {
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
nodeColor := fmt.Sprintf("#%02x%02x%02x", node.Color.R, node.Color.G, node.Color.B)
resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: hex.EncodeToString(node.PubKeyBytes[:]),
Addresses: nodeAddrs,
Alias: node.Alias,
Color: nodeColor,
})
return nil
})
if err != nil {
return nil, err
}
// Next, for each active channel we know of within the graph, create a
// similar response which details both the edge information as well as
// the routing policies of th nodes connecting the two edges.
err = graph.ForEachChannel(func(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) error {
edge := marshalDbEdge(edgeInfo, c1, c2)
resp.Edges = append(resp.Edges, edge)
return nil
})
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return nil, err
}
return resp, nil
}
func marshalDbEdge(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) *lnrpc.ChannelEdge {
var (
lastUpdate int64
)
if c2 != nil {
lastUpdate = c2.LastUpdate.Unix()
}
if c1 != nil {
lastUpdate = c1.LastUpdate.Unix()
}
edge := &lnrpc.ChannelEdge{
ChannelId: edgeInfo.ChannelID,
ChanPoint: edgeInfo.ChannelPoint.String(),
// TODO(roasbeef): update should be on edge info itself
LastUpdate: uint32(lastUpdate),
Node1Pub: hex.EncodeToString(edgeInfo.NodeKey1Bytes[:]),
Node2Pub: hex.EncodeToString(edgeInfo.NodeKey2Bytes[:]),
Capacity: int64(edgeInfo.Capacity),
}
if c1 != nil {
edge.Node1Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c1.TimeLockDelta),
MinHtlc: int64(c1.MinHTLC),
FeeBaseMsat: int64(c1.FeeBaseMSat),
FeeRateMilliMsat: int64(c1.FeeProportionalMillionths),
Disabled: c1.Flags&lnwire.ChanUpdateDisabled != 0,
}
}
if c2 != nil {
edge.Node2Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c2.TimeLockDelta),
MinHtlc: int64(c2.MinHTLC),
FeeBaseMsat: int64(c2.FeeBaseMSat),
FeeRateMilliMsat: int64(c2.FeeProportionalMillionths),
Disabled: c2.Flags&lnwire.ChanUpdateDisabled != 0,
}
}
return edge
}
// GetChanInfo returns the latest authenticated network announcement for the
// given channel identified by its channel ID: an 8-byte integer which uniquely
// identifies the location of transaction's funding output within the block
// chain.
func (r *rpcServer) GetChanInfo(ctx context.Context,
in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) {
graph := r.server.chanDB.ChannelGraph()
edgeInfo, edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId)
if err != nil {
return nil, err
}
// Convert the database's edge format into the network/RPC edge format
// which couples the edge itself along with the directional node
// routing policies of each node involved within the channel.
channelEdge := marshalDbEdge(edgeInfo, edge1, edge2)
return channelEdge, nil
}
// GetNodeInfo returns the latest advertised and aggregate authenticated
// channel information for the specified node identified by its public key.
func (r *rpcServer) GetNodeInfo(ctx context.Context,
in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) {
graph := r.server.chanDB.ChannelGraph()
// First, parse the hex-encoded public key into a full in-memory public
// key object we can work with for querying.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// With the public key decoded, attempt to fetch the node corresponding
// to this public key. If the node cannot be found, then an error will
// be returned.
node, err := graph.FetchLightningNode(pubKey)
if err != nil {
return nil, err
}
// With the node obtained, we'll now iterate through all its out going
// edges to gather some basic statistics about its out going channels.
var (
numChannels uint32
totalCapacity btcutil.Amount
)
if err := node.ForEachChannel(nil, func(_ *bolt.Tx, edge *channeldb.ChannelEdgeInfo,
_, _ *channeldb.ChannelEdgePolicy) error {
numChannels++
totalCapacity += edge.Capacity
return nil
}); err != nil {
return nil, err
}
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
// TODO(roasbeef): list channels as well?
nodeColor := fmt.Sprintf("#%02x%02x%02x", node.Color.R, node.Color.G, node.Color.B)
return &lnrpc.NodeInfo{
Node: &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: in.PubKey,
Addresses: nodeAddrs,
Alias: node.Alias,
Color: nodeColor,
},
NumChannels: numChannels,
TotalCapacity: int64(totalCapacity),
}, nil
}
// QueryRoutes attempts to query the daemons' Channel Router for a possible
// route to a target destination capable of carrying a specific amount of
// satoshis within the route's flow. The retuned route contains the full
// details required to craft and send an HTLC, also including the necessary
// information that should be present within the Sphinx packet encapsulated
// within the HTLC.
//
// TODO(roasbeef): should return a slice of routes in reality
// * create separate PR to send based on well formatted route
func (r *rpcServer) QueryRoutes(ctx context.Context,
in *lnrpc.QueryRoutesRequest) (*lnrpc.QueryRoutesResponse, error) {
// First parse the hex-encoded public key into a full public key object
// we can properly manipulate.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// Currently, within the bootstrap phase of the network, we limit the
// largest payment size allotted to (2^32) - 1 mSAT or 4.29 million
// satoshis.
amt := btcutil.Amount(in.Amt)
amtMSat := lnwire.NewMSatFromSatoshis(amt)
if amtMSat > maxPaymentMSat {
return nil, fmt.Errorf("payment of %v is too large, max payment "+
"allowed is %v", amt, maxPaymentMSat.ToSatoshis())
}
feeLimit := calculateFeeLimit(in.FeeLimit, amtMSat)
// Query the channel router for a possible path to the destination that
// can carry `in.Amt` satoshis _including_ the total fee required on
// the route.
var (
routes []*routing.Route
findErr error
)
if in.FinalCltvDelta == 0 {
routes, findErr = r.server.chanRouter.FindRoutes(
pubKey, amtMSat, feeLimit, uint32(in.NumRoutes),
)
} else {
routes, findErr = r.server.chanRouter.FindRoutes(
pubKey, amtMSat, feeLimit, uint32(in.NumRoutes),
uint16(in.FinalCltvDelta),
)
}
if findErr != nil {
return nil, findErr
}
// As the number of returned routes can be less than the number of
// requested routes, we'll clamp down the length of the response to the
// minimum of the two.
numRoutes := int32(len(routes))
if in.NumRoutes < numRoutes {
numRoutes = in.NumRoutes
}
// For each valid route, we'll convert the result into the format
// required by the RPC system.
routeResp := &lnrpc.QueryRoutesResponse{
Routes: make([]*lnrpc.Route, 0, in.NumRoutes),
}
for i := int32(0); i < numRoutes; i++ {
routeResp.Routes = append(
routeResp.Routes, marshallRoute(routes[i]),
)
}
return routeResp, nil
}
func marshallRoute(route *routing.Route) *lnrpc.Route {
resp := &lnrpc.Route{
TotalTimeLock: route.TotalTimeLock,
TotalFees: int64(route.TotalFees.ToSatoshis()),
TotalFeesMsat: int64(route.TotalFees),
TotalAmt: int64(route.TotalAmount.ToSatoshis()),
TotalAmtMsat: int64(route.TotalAmount),
Hops: make([]*lnrpc.Hop, len(route.Hops)),
}
for i, hop := range route.Hops {
resp.Hops[i] = &lnrpc.Hop{
ChanId: hop.Channel.ChannelID,
2018-06-04 23:10:05 +03:00
ChanCapacity: int64(hop.Channel.Bandwidth.ToSatoshis()),
AmtToForward: int64(hop.AmtToForward.ToSatoshis()),
AmtToForwardMsat: int64(hop.AmtToForward),
Fee: int64(hop.Fee.ToSatoshis()),
FeeMsat: int64(hop.Fee),
Expiry: uint32(hop.OutgoingTimeLock),
}
}
return resp
}
func unmarshallRoute(rpcroute *lnrpc.Route,
graph *channeldb.ChannelGraph) (*routing.Route, error) {
route := &routing.Route{
TotalTimeLock: rpcroute.TotalTimeLock,
TotalFees: lnwire.MilliSatoshi(rpcroute.TotalFeesMsat),
TotalAmount: lnwire.MilliSatoshi(rpcroute.TotalAmtMsat),
Hops: make([]*routing.Hop, len(rpcroute.Hops)),
}
node, err := graph.SourceNode()
if err != nil {
return nil, fmt.Errorf("unable to fetch source node from graph "+
"while unmarshaling route. %v", err)
}
for i, hop := range rpcroute.Hops {
edgeInfo, c1, c2, err := graph.FetchChannelEdgesByID(hop.ChanId)
if err != nil {
return nil, fmt.Errorf("unable to fetch channel edges by "+
"channel ID for hop (%d): %v", i, err)
}
var channelEdgePolicy *channeldb.ChannelEdgePolicy
switch {
case bytes.Equal(node.PubKeyBytes[:], c1.Node.PubKeyBytes[:]):
channelEdgePolicy = c2
node = c2.Node
case bytes.Equal(node.PubKeyBytes[:], c2.Node.PubKeyBytes[:]):
channelEdgePolicy = c1
node = c1.Node
default:
return nil, fmt.Errorf("could not find channel edge for hop=%d", i)
}
routingHop := &routing.ChannelHop{
ChannelEdgePolicy: channelEdgePolicy,
2018-06-04 23:10:05 +03:00
Bandwidth: lnwire.NewMSatFromSatoshis(
btcutil.Amount(hop.ChanCapacity)),
Chain: edgeInfo.ChainHash,
}
route.Hops[i] = &routing.Hop{
Channel: routingHop,
OutgoingTimeLock: hop.Expiry,
AmtToForward: lnwire.MilliSatoshi(hop.AmtToForwardMsat),
Fee: lnwire.MilliSatoshi(hop.FeeMsat),
}
}
return route, nil
}
// GetNetworkInfo returns some basic stats about the known channel graph from
// the PoV of the node.
func (r *rpcServer) GetNetworkInfo(ctx context.Context,
_ *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) {
graph := r.server.chanDB.ChannelGraph()
var (
numNodes uint32
numChannels uint32
maxChanOut uint32
totalNetworkCapacity btcutil.Amount
minChannelSize btcutil.Amount = math.MaxInt64
maxChannelSize btcutil.Amount
)
// We'll use this map to de-duplicate channels during our traversal.
// This is needed since channels are directional, so there will be two
// edges for each channel within the graph.
seenChans := make(map[uint64]struct{})
// We'll run through all the known nodes in the within our view of the
// network, tallying up the total number of nodes, and also gathering
// each node so we can measure the graph diameter and degree stats
// below.
if err := graph.ForEachNode(nil, func(tx *bolt.Tx, node *channeldb.LightningNode) error {
// Increment the total number of nodes with each iteration.
numNodes++
// For each channel we'll compute the out degree of each node,
// and also update our running tallies of the min/max channel
// capacity, as well as the total channel capacity. We pass
// through the db transaction from the outer view so we can
// re-use it within this inner view.
var outDegree uint32
if err := node.ForEachChannel(tx, func(_ *bolt.Tx,
edge *channeldb.ChannelEdgeInfo, _, _ *channeldb.ChannelEdgePolicy) error {
// Bump up the out degree for this node for each
// channel encountered.
outDegree++
// If we've already seen this channel, then we'll
// return early to ensure that we don't double-count
// stats.
if _, ok := seenChans[edge.ChannelID]; ok {
return nil
}
// Compare the capacity of this channel against the
// running min/max to see if we should update the
// extrema.
chanCapacity := edge.Capacity
if chanCapacity < minChannelSize {
minChannelSize = chanCapacity
}
if chanCapacity > maxChannelSize {
maxChannelSize = chanCapacity
}
// Accumulate the total capacity of this channel to the
// network wide-capacity.
totalNetworkCapacity += chanCapacity
numChannels++
seenChans[edge.ChannelID] = struct{}{}
return nil
}); err != nil {
return err
}
// Finally, if the out degree of this node is greater than what
// we've seen so far, update the maxChanOut variable.
if outDegree > maxChanOut {
maxChanOut = outDegree
}
return nil
}); err != nil {
return nil, err
}
// If we don't have any channels, then reset the minChannelSize to zero
// to avoid outputting NaN in encoded JSON.
if numChannels == 0 {
minChannelSize = 0
}
// TODO(roasbeef): graph diameter
// TODO(roasbeef): also add oldest channel?
// * also add median channel size
netInfo := &lnrpc.NetworkInfo{
MaxOutDegree: maxChanOut,
AvgOutDegree: float64(numChannels) / float64(numNodes),
NumNodes: numNodes,
NumChannels: numChannels,
TotalNetworkCapacity: int64(totalNetworkCapacity),
AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels),
MinChannelSize: int64(minChannelSize),
MaxChannelSize: int64(maxChannelSize),
}
// Similarly, if we don't have any channels, then we'll also set the
// average channel size to zero in order to avoid weird JSON encoding
// outputs.
if numChannels == 0 {
netInfo.AvgChannelSize = 0
}
return netInfo, nil
}
// StopDaemon will send a shutdown request to the interrupt handler, triggering
// a graceful shutdown of the daemon.
func (r *rpcServer) StopDaemon(ctx context.Context,
_ *lnrpc.StopRequest) (*lnrpc.StopResponse, error) {
signal.RequestShutdown()
return &lnrpc.StopResponse{}, nil
}
// SubscribeChannelGraph launches a streaming RPC that allows the caller to
// receive notifications upon any changes the channel graph topology from the
// review of the responding node. Events notified include: new nodes coming
// online, nodes updating their authenticated attributes, new channels being
// advertised, updates in the routing policy for a directional channel edge,
// and finally when prior channels are closed on-chain.
func (r *rpcServer) SubscribeChannelGraph(req *lnrpc.GraphTopologySubscription,
updateStream lnrpc.Lightning_SubscribeChannelGraphServer) error {
// First, we start by subscribing to a new intent to receive
// notifications from the channel router.
client, err := r.server.chanRouter.SubscribeTopology()
if err != nil {
return err
}
// Ensure that the resources for the topology update client is cleaned
// up once either the server, or client exists.
defer client.Cancel()
for {
select {
// A new update has been sent by the channel router, we'll
// marshal it into the form expected by the gRPC client, then
// send it off.
case topChange, ok := <-client.TopologyChanges:
// If the second value from the channel read is nil,
// then this means that the channel router is exiting
// or the notification client was cancelled. So we'll
// exit early.
if !ok {
return errors.New("server shutting down")
}
// Convert the struct from the channel router into the
// form expected by the gRPC service then send it off
// to the client.
graphUpdate := marshallTopologyChange(topChange)
if err := updateStream.Send(graphUpdate); err != nil {
return err
}
// The server is quitting, so we'll exit immediately. Returning
// nil will close the clients read end of the stream.
case <-r.quit:
return nil
}
}
}
// marshallTopologyChange performs a mapping from the topology change struct
// returned by the router to the form of notifications expected by the current
// gRPC service.
func marshallTopologyChange(topChange *routing.TopologyChange) *lnrpc.GraphTopologyUpdate {
// encodeKey is a simple helper function that converts a live public
// key into a hex-encoded version of the compressed serialization for
// the public key.
encodeKey := func(k *btcec.PublicKey) string {
return hex.EncodeToString(k.SerializeCompressed())
}
nodeUpdates := make([]*lnrpc.NodeUpdate, len(topChange.NodeUpdates))
for i, nodeUpdate := range topChange.NodeUpdates {
addrs := make([]string, len(nodeUpdate.Addresses))
for i, addr := range nodeUpdate.Addresses {
addrs[i] = addr.String()
}
nodeUpdates[i] = &lnrpc.NodeUpdate{
Addresses: addrs,
IdentityKey: encodeKey(nodeUpdate.IdentityKey),
GlobalFeatures: nodeUpdate.GlobalFeatures,
Alias: nodeUpdate.Alias,
}
}
channelUpdates := make([]*lnrpc.ChannelEdgeUpdate, len(topChange.ChannelEdgeUpdates))
for i, channelUpdate := range topChange.ChannelEdgeUpdates {
channelUpdates[i] = &lnrpc.ChannelEdgeUpdate{
ChanId: channelUpdate.ChanID,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: channelUpdate.ChanPoint.Hash[:],
},
OutputIndex: channelUpdate.ChanPoint.Index,
},
Capacity: int64(channelUpdate.Capacity),
RoutingPolicy: &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(channelUpdate.TimeLockDelta),
MinHtlc: int64(channelUpdate.MinHTLC),
FeeBaseMsat: int64(channelUpdate.BaseFee),
FeeRateMilliMsat: int64(channelUpdate.FeeRate),
Disabled: channelUpdate.Disabled,
},
AdvertisingNode: encodeKey(channelUpdate.AdvertisingNode),
ConnectingNode: encodeKey(channelUpdate.ConnectingNode),
}
}
closedChans := make([]*lnrpc.ClosedChannelUpdate, len(topChange.ClosedChannels))
for i, closedChan := range topChange.ClosedChannels {
closedChans[i] = &lnrpc.ClosedChannelUpdate{
ChanId: closedChan.ChanID,
Capacity: int64(closedChan.Capacity),
ClosedHeight: closedChan.ClosedHeight,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: closedChan.ChanPoint.Hash[:],
},
OutputIndex: closedChan.ChanPoint.Index,
},
}
}
return &lnrpc.GraphTopologyUpdate{
NodeUpdates: nodeUpdates,
ChannelUpdates: channelUpdates,
ClosedChans: closedChans,
}
}
// ListPayments returns a list of all outgoing payments.
func (r *rpcServer) ListPayments(ctx context.Context,
_ *lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) {
rpcsLog.Debugf("[ListPayments]")
payments, err := r.server.chanDB.FetchAllPayments()
if err != nil && err != channeldb.ErrNoPaymentsCreated {
return nil, err
}
paymentsResp := &lnrpc.ListPaymentsResponse{
Payments: make([]*lnrpc.Payment, len(payments)),
}
for i, payment := range payments {
path := make([]string, len(payment.Path))
for i, hop := range payment.Path {
path[i] = hex.EncodeToString(hop[:])
}
msatValue := int64(payment.Terms.Value)
satValue := int64(payment.Terms.Value.ToSatoshis())
paymentHash := sha256.Sum256(payment.PaymentPreimage[:])
paymentsResp.Payments[i] = &lnrpc.Payment{
PaymentHash: hex.EncodeToString(paymentHash[:]),
Value: satValue,
ValueMsat: msatValue,
ValueSat: satValue,
CreationDate: payment.CreationDate.Unix(),
Path: path,
Fee: int64(payment.Fee.ToSatoshis()),
PaymentPreimage: hex.EncodeToString(payment.PaymentPreimage[:]),
}
}
return paymentsResp, nil
}
// DeleteAllPayments deletes all outgoing payments from DB.
func (r *rpcServer) DeleteAllPayments(ctx context.Context,
_ *lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) {
rpcsLog.Debugf("[DeleteAllPayments]")
if err := r.server.chanDB.DeleteAllPayments(); err != nil {
return nil, err
}
return &lnrpc.DeleteAllPaymentsResponse{}, nil
}
2017-01-15 05:16:53 +03:00
// DebugLevel allows a caller to programmatically set the logging verbosity of
// lnd. The logging can be targeted according to a coarse daemon-wide logging
// level, or in a granular fashion to specify the logging for a target
// sub-system.
func (r *rpcServer) DebugLevel(ctx context.Context,
req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) {
2017-01-15 05:16:53 +03:00
// If show is set, then we simply print out the list of available
// sub-systems.
if req.Show {
return &lnrpc.DebugLevelResponse{
SubSystems: strings.Join(supportedSubsystems(), " "),
}, nil
}
rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec)
// Otherwise, we'll attempt to set the logging level using the
// specified level spec.
if err := parseAndSetDebugLevels(req.LevelSpec); err != nil {
return nil, err
}
return &lnrpc.DebugLevelResponse{}, nil
}
// DecodePayReq takes an encoded payment request string and attempts to decode
// it, returning a full description of the conditions encoded within the
// payment request.
func (r *rpcServer) DecodePayReq(ctx context.Context,
req *lnrpc.PayReqString) (*lnrpc.PayReq, error) {
rpcsLog.Tracef("[decodepayreq] decoding: %v", req.PayReq)
// Fist we'll attempt to decode the payment request string, if the
// request is invalid or the checksum doesn't match, then we'll exit
// here with an error.
payReq, err := zpay32.Decode(req.PayReq, activeNetParams.Params)
if err != nil {
return nil, err
}
// Let the fields default to empty strings.
desc := ""
if payReq.Description != nil {
desc = *payReq.Description
}
descHash := []byte("")
if payReq.DescriptionHash != nil {
descHash = payReq.DescriptionHash[:]
}
fallbackAddr := ""
if payReq.FallbackAddr != nil {
fallbackAddr = payReq.FallbackAddr.String()
}
// Expiry time will default to 3600 seconds if not specified
// explicitly.
expiry := int64(payReq.Expiry().Seconds())
// Convert between the `lnrpc` and `routing` types.
routeHints := createRPCRouteHints(payReq.RouteHints)
amt := int64(0)
if payReq.MilliSat != nil {
amt = int64(payReq.MilliSat.ToSatoshis())
}
dest := payReq.Destination.SerializeCompressed()
return &lnrpc.PayReq{
Destination: hex.EncodeToString(dest),
PaymentHash: hex.EncodeToString(payReq.PaymentHash[:]),
NumSatoshis: amt,
Timestamp: payReq.Timestamp.Unix(),
Description: desc,
DescriptionHash: hex.EncodeToString(descHash[:]),
FallbackAddr: fallbackAddr,
Expiry: expiry,
CltvExpiry: int64(payReq.MinFinalCLTVExpiry()),
RouteHints: routeHints,
}, nil
}
// feeBase is the fixed point that fee rate computation are performed over.
// Nodes on the network advertise their fee rate using this point as a base.
// This means that the minimal possible fee rate if 1e-6, or 0.000001, or
// 0.0001%.
const feeBase = 1000000
// FeeReport allows the caller to obtain a report detailing the current fee
// schedule enforced by the node globally for each channel.
func (r *rpcServer) FeeReport(ctx context.Context,
_ *lnrpc.FeeReportRequest) (*lnrpc.FeeReportResponse, error) {
// TODO(roasbeef): use UnaryInterceptor to add automated logging
rpcsLog.Debugf("[feereport]")
channelGraph := r.server.chanDB.ChannelGraph()
selfNode, err := channelGraph.SourceNode()
if err != nil {
return nil, err
}
var feeReports []*lnrpc.ChannelFeeReport
err = selfNode.ForEachChannel(nil, func(_ *bolt.Tx, chanInfo *channeldb.ChannelEdgeInfo,
edgePolicy, _ *channeldb.ChannelEdgePolicy) error {
// Self node should always have policies for its channels.
if edgePolicy == nil {
return fmt.Errorf("no policy for outgoing channel %v ",
chanInfo.ChannelID)
}
// We'll compute the effective fee rate by converting from a
// fixed point fee rate to a floating point fee rate. The fee
// rate field in the database the amount of mSAT charged per
// 1mil mSAT sent, so will divide by this to get the proper fee
// rate.
feeRateFixedPoint := edgePolicy.FeeProportionalMillionths
feeRate := float64(feeRateFixedPoint) / float64(feeBase)
// TODO(roasbeef): also add stats for revenue for each channel
feeReports = append(feeReports, &lnrpc.ChannelFeeReport{
ChanPoint: chanInfo.ChannelPoint.String(),
BaseFeeMsat: int64(edgePolicy.FeeBaseMSat),
FeePerMil: int64(feeRateFixedPoint),
FeeRate: feeRate,
})
return nil
})
if err != nil {
return nil, err
}
fwdEventLog := r.server.chanDB.ForwardingLog()
// computeFeeSum is a helper function that computes the total fees for
// a particular time slice described by a forwarding event query.
computeFeeSum := func(query channeldb.ForwardingEventQuery) (lnwire.MilliSatoshi, error) {
var totalFees lnwire.MilliSatoshi
// We'll continue to fetch the next query and accumulate the
// fees until the next query returns no events.
for {
timeSlice, err := fwdEventLog.Query(query)
if err != nil {
return 0, nil
}
// If the timeslice is empty, then we'll return as
// we've retrieved all the entries in this range.
if len(timeSlice.ForwardingEvents) == 0 {
break
}
// Otherwise, we'll tally up an accumulate the total
// fees for this time slice.
for _, event := range timeSlice.ForwardingEvents {
fee := event.AmtIn - event.AmtOut
totalFees += fee
}
// We'll now take the last offset index returned as
// part of this response, and modify our query to start
// at this index. This has a pagination effect in the
// case that our query bounds has more than 100k
// entries.
query.IndexOffset = timeSlice.LastIndexOffset
}
return totalFees, nil
}
now := time.Now()
// Before we perform the queries below, we'll instruct the switch to
// flush any pending events to disk. This ensure we get a complete
// snapshot at this particular time.
if r.server.htlcSwitch.FlushForwardingEvents(); err != nil {
return nil, fmt.Errorf("unable to flush forwarding "+
"events: %v", err)
}
// In addition to returning the current fee schedule for each channel.
// We'll also perform a series of queries to obtain the total fees
// earned over the past day, week, and month.
dayQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24),
EndTime: now,
NumMaxEvents: 1000,
}
dayFees, err := computeFeeSum(dayQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
weekQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24 * 7),
EndTime: now,
NumMaxEvents: 1000,
}
weekFees, err := computeFeeSum(weekQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
monthQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24 * 30),
EndTime: now,
NumMaxEvents: 1000,
}
monthFees, err := computeFeeSum(monthQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
2017-08-22 11:00:07 +03:00
return &lnrpc.FeeReportResponse{
ChannelFees: feeReports,
DayFeeSum: uint64(dayFees.ToSatoshis()),
WeekFeeSum: uint64(weekFees.ToSatoshis()),
MonthFeeSum: uint64(monthFees.ToSatoshis()),
2017-08-22 11:00:07 +03:00
}, nil
}
// minFeeRate is the smallest permitted fee rate within the network. This is
// derived by the fact that fee rates are computed using a fixed point of
// 1,000,000. As a result, the smallest representable fee rate is 1e-6, or
// 0.000001, or 0.0001%.
const minFeeRate = 1e-6
// UpdateChannelPolicy allows the caller to update the channel forwarding policy
// for all channels globally, or a particular channel.
func (r *rpcServer) UpdateChannelPolicy(ctx context.Context,
req *lnrpc.PolicyUpdateRequest) (*lnrpc.PolicyUpdateResponse, error) {
var targetChans []wire.OutPoint
switch scope := req.Scope.(type) {
// If the request is targeting all active channels, then we don't need
// target any channels by their channel point.
case *lnrpc.PolicyUpdateRequest_Global:
// Otherwise, we're targeting an individual channel by its channel
// point.
case *lnrpc.PolicyUpdateRequest_ChanPoint:
txidHash, err := getChanPointFundingTxid(scope.ChanPoint)
if err != nil {
return nil, err
}
txid, err := chainhash.NewHash(txidHash)
if err != nil {
return nil, err
}
targetChans = append(targetChans, wire.OutPoint{
Hash: *txid,
Index: scope.ChanPoint.OutputIndex,
})
default:
return nil, fmt.Errorf("unknown scope: %v", scope)
}
// As a sanity check, we'll ensure that the passed fee rate is below
// 1e-6, or the lowest allowed fee rate, and that the passed timelock
// is large enough.
if req.FeeRate < minFeeRate {
return nil, fmt.Errorf("fee rate of %v is too small, min fee "+
"rate is %v", req.FeeRate, minFeeRate)
}
if req.TimeLockDelta < minTimeLockDelta {
return nil, fmt.Errorf("time lock delta of %v is too small, "+
"minimum supported is %v", req.TimeLockDelta,
minTimeLockDelta)
}
// We'll also need to convert the floating point fee rate we accept
// over RPC to the fixed point rate that we use within the protocol. We
// do this by multiplying the passed fee rate by the fee base. This
// gives us the fixed point, scaled by 1 million that's used within the
// protocol.
feeRateFixed := uint32(req.FeeRate * feeBase)
baseFeeMsat := lnwire.MilliSatoshi(req.BaseFeeMsat)
feeSchema := routing.FeeSchema{
BaseFee: baseFeeMsat,
FeeRate: feeRateFixed,
}
chanPolicy := routing.ChannelPolicy{
FeeSchema: feeSchema,
TimeLockDelta: req.TimeLockDelta,
}
rpcsLog.Debugf("[updatechanpolicy] updating channel policy base_fee=%v, "+
"rate_float=%v, rate_fixed=%v, time_lock_delta: %v, targets=%v",
req.BaseFeeMsat, req.FeeRate, feeRateFixed, req.TimeLockDelta,
spew.Sdump(targetChans))
// With the scope resolved, we'll now send this to the
// AuthenticatedGossiper so it can propagate the new policy for our
// target channel(s).
err := r.server.authGossiper.PropagateChanPolicyUpdate(
chanPolicy, targetChans...,
)
if err != nil {
return nil, err
}
// Finally, we'll apply the set of active links amongst the target
// channels.
//
// We create a partially policy as the logic won't overwrite a valid
// sub-policy with a "nil" one.
p := htlcswitch.ForwardingPolicy{
BaseFee: baseFeeMsat,
FeeRate: lnwire.MilliSatoshi(feeRateFixed),
TimeLockDelta: req.TimeLockDelta,
}
err = r.server.htlcSwitch.UpdateForwardingPolicies(p, targetChans...)
if err != nil {
// If we're unable update the fees due to the links not being
// online, then we don't need to fail the call. We'll simply
// log the failure.
rpcsLog.Warnf("Unable to update link fees: %v", err)
}
return &lnrpc.PolicyUpdateResponse{}, nil
}
// ForwardingHistory allows the caller to query the htlcswitch for a record of
// all HTLC's forwarded within the target time range, and integer offset within
// that time range. If no time-range is specified, then the first chunk of the
// past 24 hrs of forwarding history are returned.
// A list of forwarding events are returned. The size of each forwarding event
// is 40 bytes, and the max message size able to be returned in gRPC is 4 MiB.
// In order to safely stay under this max limit, we'll return 50k events per
// response. Each response has the index offset of the last entry. The index
// offset can be provided to the request to allow the caller to skip a series
// of records.
func (r *rpcServer) ForwardingHistory(ctx context.Context,
req *lnrpc.ForwardingHistoryRequest) (*lnrpc.ForwardingHistoryResponse, error) {
rpcsLog.Debugf("[forwardinghistory]")
// Before we perform the queries below, we'll instruct the switch to
// flush any pending events to disk. This ensure we get a complete
// snapshot at this particular time.
if err := r.server.htlcSwitch.FlushForwardingEvents(); err != nil {
return nil, fmt.Errorf("unable to flush forwarding "+
"events: %v", err)
}
var (
startTime, endTime time.Time
numEvents uint32
)
// If the start and end time were not set, then we'll just return the
// records over the past 24 hours.
if req.StartTime == 0 && req.EndTime == 0 {
now := time.Now()
startTime = now.Add(-time.Hour * 24)
endTime = now
} else {
startTime = time.Unix(int64(req.StartTime), 0)
endTime = time.Unix(int64(req.EndTime), 0)
}
// If the number of events wasn't specified, then we'll default to
// returning the last 100 events.
numEvents = req.NumMaxEvents
if numEvents == 0 {
numEvents = 100
}
// Next, we'll map the proto request into a format the is understood by
// the forwarding log.
eventQuery := channeldb.ForwardingEventQuery{
StartTime: startTime,
EndTime: endTime,
IndexOffset: req.IndexOffset,
NumMaxEvents: numEvents,
}
timeSlice, err := r.server.chanDB.ForwardingLog().Query(eventQuery)
if err != nil {
return nil, fmt.Errorf("unable to query forwarding log: %v", err)
}
// TODO(roasbeef): add settlement latency?
// * use FPE on all records?
// With the events retrieved, we'll now map them into the proper proto
// response.
//
// TODO(roasbeef): show in ns for the outside?
resp := &lnrpc.ForwardingHistoryResponse{
ForwardingEvents: make([]*lnrpc.ForwardingEvent, len(timeSlice.ForwardingEvents)),
LastOffsetIndex: timeSlice.LastIndexOffset,
}
for i, event := range timeSlice.ForwardingEvents {
amtInSat := event.AmtIn.ToSatoshis()
amtOutSat := event.AmtOut.ToSatoshis()
resp.ForwardingEvents[i] = &lnrpc.ForwardingEvent{
Timestamp: uint64(event.Timestamp.Unix()),
ChanIdIn: event.IncomingChanID.ToUint64(),
ChanIdOut: event.OutgoingChanID.ToUint64(),
AmtIn: uint64(amtInSat),
AmtOut: uint64(amtOutSat),
Fee: uint64(amtInSat - amtOutSat),
}
}
return resp, nil
}