rpcserver: implement new set of network/routing RPC's

This commit is contained in:
Olaoluwa Osuntokun 2016-12-26 23:51:47 -06:00
parent ea6f6d6069
commit 1210640e87
No known key found for this signature in database
GPG Key ID: 9CC5B105D03521A2

@ -6,6 +6,7 @@ import (
"encoding/hex"
"fmt"
"io"
"math"
"net"
"time"
@ -1151,30 +1152,285 @@ func (r *rpcServer) GetTransactions(context.Context,
return txDetails, nil
}
// ShowRoutingTable returns a table-formatted dump of the known routing
// topology from the PoV of the source node.
func (r *rpcServer) ShowRoutingTable(ctx context.Context,
in *lnrpc.ShowRoutingTableRequest) (*lnrpc.ShowRoutingTableResponse, error) {
// DescribeGraph returns a description of the latest graph state from the PoV
// of the node. The graph information is partitioned into two components: all
// the nodes/vertexes, and all the edges that connect the vertexes themselves.
// As this is a directed graph, the edges also contain the node directional
// specific routing policy which includes: the time lock delta, fee
// information, etc.
func (r *rpcServer) DescribeGraph(context.Context,
*lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) {
rpcsLog.Debugf("[ShowRoutingTable]")
resp := &lnrpc.ChannelGraph{}
rtCopy := r.server.routingMgr.GetRTCopy()
// Obtain the pinter to the global singleton channel graph, this will
// provide a consistent view of the graph due to bolt db's
// transactional model.
graph := r.server.chanDB.ChannelGraph()
var channels []*lnrpc.RoutingTableLink
for _, channel := range rtCopy.AllChannels() {
channels = append(channels,
&lnrpc.RoutingTableLink{
Id1: hex.EncodeToString(channel.Src.ToByte()),
Id2: hex.EncodeToString(channel.Tgt.ToByte()),
Outpoint: channel.Id.String(),
Capacity: channel.Info.Cpt,
Weight: channel.Info.Wgt,
},
)
// First iterate through all the known nodes (connected or unconnected
// within the graph), collating their current state into the RPC
// response.
err := graph.ForEachNode(func(node *channeldb.LightningNode) error {
resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: hex.EncodeToString(node.PubKey.SerializeCompressed()),
Address: node.Address.String(),
Alias: node.Alias,
})
return nil
})
if err != nil {
return nil, err
}
return &lnrpc.ShowRoutingTableResponse{
Channels: channels,
// Next, for each active channel we know of within the graph, create a
// similar response which details both the edge information as well as
// the routing policies of th nodes connecting the two edges.
err = graph.ForEachChannel(func(c1, c2 *channeldb.ChannelEdge) error {
edge := marshalDbEdge(c1, c2)
resp.Edges = append(resp.Edges, edge)
return nil
})
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return nil, err
}
return resp, nil
}
func marshalDbEdge(c1, c2 *channeldb.ChannelEdge) *lnrpc.ChannelEdge {
node1Pub := c2.Node.PubKey.SerializeCompressed()
node2Pub := c1.Node.PubKey.SerializeCompressed()
edge := &lnrpc.ChannelEdge{
ChannelId: c1.ChannelID,
ChanPoint: c1.ChannelPoint.String(),
LastUpdate: uint32(c1.LastUpdate.Unix()),
Node1Pub: hex.EncodeToString(node1Pub),
Node2Pub: hex.EncodeToString(node2Pub),
Capacity: int64(c1.Capacity),
}
edge.Node1Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c1.Expiry),
MinHtlc: int64(c1.MinHTLC),
FeeBaseMsat: int64(c1.FeeBaseMSat),
FeeRateMilliMsat: int64(c1.FeeProportionalMillionths),
}
edge.Node2Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c2.Expiry),
MinHtlc: int64(c2.MinHTLC),
FeeBaseMsat: int64(c2.FeeBaseMSat),
FeeRateMilliMsat: int64(c2.FeeProportionalMillionths),
}
return edge
}
// GetChainInfo returns the latest authenticated network announcement for the
// given channel identified by its channel ID: an 8-byte integer which uniquely
// identifies the location of transaction's funding output within the block
// chain.
func (r *rpcServer) GetChanInfo(_ context.Context, in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) {
graph := r.server.chanDB.ChannelGraph()
edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId)
if err != nil {
return nil, err
}
// Convert the database's edge format into the network/RPC edge format
// which couples the edge itself along with the directional node
// routing policies of each node involved within the channel.
channelEdge := marshalDbEdge(edge1, edge2)
return channelEdge, nil
}
// GetNodeInfo returns the latest advertised and aggregate authenticated
// channel information for the specified node identified by its public key.
func (r *rpcServer) GetNodeInfo(_ context.Context, in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) {
graph := r.server.chanDB.ChannelGraph()
// First, parse the hex-encoded public key into a full in-memory public
// key object we can work with for querying.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// With the public key decoded, attempt to fetch the node corresponding
// to this public key. If the node cannot be found, then an error will
// be returned.
node, err := graph.FetchLightningNode(pubKey)
if err != nil {
return nil, err
}
// With the node obtained, we'll now iterate through all its out going
// edges to gather some basic statistics about its out going channels.
var (
numChannels uint32
totalCapcity btcutil.Amount
)
if err := node.ForEachChannel(nil, func(edge *channeldb.ChannelEdge) error {
numChannels++
totalCapcity += edge.Capacity
return nil
}); err != nil {
return nil, err
}
return &lnrpc.NodeInfo{
Node: &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: in.PubKey,
Address: node.Address.String(),
Alias: node.Alias,
},
NumChannels: numChannels,
TotalCapacity: int64(totalCapcity),
}, nil
}
// QueryRoute attempts to query the daemons' Channel Router for a possible
// route to a target destination capable of carrying a specific amount of
// satoshis within the route's flow. The retuned route contains the full
// details required to craft and send an HTLC, also including the necessary
// information that should be present within the Sphinx packet encapsualted
// within the HTLC.
//
// TODO(roasbeef): should return a slice of routes in reality
// * create separate PR to send based on well formatted route
func (r *rpcServer) QueryRoute(_ context.Context, in *lnrpc.RouteRequest) (*lnrpc.Route, error) {
// First parse the hex-encdoed public key into a full public key objet
// we can properly manipulate.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// Query the channel router for a possible path to the destination that
// can carry `in.Amt` satoshis _including_ the total fee required on
// the route.
route, err := r.server.chanRouter.FindRoute(pubKey,
btcutil.Amount(in.Amt))
if err != nil {
return nil, err
}
// If a route exsits within the network that is able to support our
// request, then we'll convert the result into the format required by
// the RPC system.
resp := &lnrpc.Route{
TotalTimeLock: route.TotalTimeLock,
TotalFees: int64(route.TotalFees),
TotalAmt: int64(route.TotalAmount),
Hops: make([]*lnrpc.Hop, len(route.Hops)),
}
for i, hop := range route.Hops {
resp.Hops[i] = &lnrpc.Hop{
ChanId: hop.Channel.ChannelID,
ChanCapacity: int64(hop.Channel.Capacity),
AmtToForward: int64(hop.AmtToForward),
Fee: int64(hop.Fee),
}
}
return resp, nil
}
// GetNetworkInfo returns some basic stats about the known channel graph from
// the PoV of the node.
func (r *rpcServer) GetNetworkInfo(context.Context, *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) {
graph := r.server.chanDB.ChannelGraph()
var (
numNodes uint32
numChannels uint32
maxChanOut uint32
totalNetworkCapacity btcutil.Amount
minChannelSize btcutil.Amount = math.MaxInt64
maxChannelSize btcutil.Amount
)
// TODO(roasbeef): ideally all below is completed in a single
// transaction
// First run through all the known nodes in the within our view of the
// network, tallying up the total number of nodes, and also gathering
// each node so we can measure the graph diamter and degree stats
// below.
var nodes []*channeldb.LightningNode
if err := graph.ForEachNode(func(node *channeldb.LightningNode) error {
numNodes++
nodes = append(nodes, node)
return nil
}); err != nil {
return nil, err
}
// With all the nodes gathered, we can now perform a basic traversal to
// ascertain the graph's diameter, and also the max out-degree of a
// node.
for _, node := range nodes {
var outDegree uint32
err := node.ForEachChannel(nil, func(c *channeldb.ChannelEdge) error {
outDegree++
return nil
})
if err != nil {
return nil, err
}
if outDegree > maxChanOut {
outDegree = maxChanOut
}
}
// Finally, we traverse each channel visiting both channel edges at
// once to avoid double counting any stats we're attempting to gather.
if err := graph.ForEachChannel(func(c1, c2 *channeldb.ChannelEdge) error {
chanCapacity := c1.Capacity
if chanCapacity < minChannelSize {
minChannelSize = chanCapacity
}
if chanCapacity > maxChannelSize {
maxChannelSize = chanCapacity
}
totalNetworkCapacity += chanCapacity
numChannels++
return nil
}); err != nil {
return nil, err
}
// TODO(roasbeef): also add oldest channel?
return &lnrpc.NetworkInfo{
MaxOutDegree: maxChanOut,
AvgOutDegree: float64(numChannels) / float64(numNodes),
NumNodes: numNodes,
NumChannels: numChannels,
TotalNetworkCapacity: int64(totalNetworkCapacity),
AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels),
MinChannelSize: int64(minChannelSize),
MaxChannelSize: int64(maxChannelSize),
}, nil
}
@ -1218,3 +1474,8 @@ func (r *rpcServer) DeleteAllPayments(context.Context,
resp := &lnrpc.DeleteAllPaymentsResponse{}
return resp, err
}
// SetAlias...
func (r *rpcServer) SetAlias(context.Context, *lnrpc.SetAliasRequest) (*lnrpc.SetAliasResponse, error) {
return nil, nil
}