lnd.xprv/watchtower/wtwire/wtwire_test.go

153 lines
4.1 KiB
Go

package wtwire_test
import (
"bytes"
"math/rand"
"reflect"
"testing"
"testing/quick"
"time"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/watchtower/wtwire"
)
func randRawFeatureVector(r *rand.Rand) *lnwire.RawFeatureVector {
featureVec := lnwire.NewRawFeatureVector()
for i := 0; i < 10000; i++ {
if r.Int31n(2) == 0 {
featureVec.Set(lnwire.FeatureBit(i))
}
}
return featureVec
}
// TestWatchtowerWireProtocol uses the testing/quick package to create a series
// of fuzz tests to attempt to break a primary scenario which is implemented as
// property based testing scenario.
func TestWatchtowerWireProtocol(t *testing.T) {
t.Parallel()
// mainScenario is the primary test that will programmatically be
// executed for all registered wire messages. The quick-checker within
// testing/quick will attempt to find an input to this function, s.t
// the function returns false, if so then we've found an input that
// violates our model of the system.
mainScenario := func(msg wtwire.Message) bool {
// Give a new message, we'll serialize the message into a new
// bytes buffer.
var b bytes.Buffer
if _, err := wtwire.WriteMessage(&b, msg, 0); err != nil {
t.Fatalf("unable to write msg: %v", err)
return false
}
// Next, we'll ensure that the serialized payload (subtracting
// the 2 bytes for the message type) is _below_ the specified
// max payload size for this message.
payloadLen := uint32(b.Len()) - 2
if payloadLen > msg.MaxPayloadLength(0) {
t.Fatalf("msg payload constraint violated: %v > %v",
payloadLen, msg.MaxPayloadLength(0))
return false
}
// Finally, we'll deserialize the message from the written
// buffer, and finally assert that the messages are equal.
newMsg, err := wtwire.ReadMessage(&b, 0)
if err != nil {
t.Fatalf("unable to read msg: %v", err)
return false
}
if !reflect.DeepEqual(msg, newMsg) {
t.Fatalf("messages don't match after re-encoding: %v "+
"vs %v", spew.Sdump(msg), spew.Sdump(newMsg))
return false
}
return true
}
customTypeGen := map[wtwire.MessageType]func([]reflect.Value, *rand.Rand){
wtwire.MsgInit: func(v []reflect.Value, r *rand.Rand) {
req := wtwire.NewInitMessage(
randRawFeatureVector(r),
randRawFeatureVector(r),
)
v[0] = reflect.ValueOf(*req)
},
}
// With the above types defined, we'll now generate a slice of
// scenarios to feed into quick.Check. The function scans in input
// space of the target function under test, so we'll need to create a
// series of wrapper functions to force it to iterate over the target
// types, but re-use the mainScenario defined above.
tests := []struct {
msgType wtwire.MessageType
scenario interface{}
}{
{
msgType: wtwire.MsgInit,
scenario: func(m wtwire.Init) bool {
return mainScenario(&m)
},
},
{
msgType: wtwire.MsgCreateSession,
scenario: func(m wtwire.CreateSession) bool {
return mainScenario(&m)
},
},
{
msgType: wtwire.MsgCreateSessionReply,
scenario: func(m wtwire.CreateSessionReply) bool {
return mainScenario(&m)
},
},
{
msgType: wtwire.MsgStateUpdate,
scenario: func(m wtwire.StateUpdate) bool {
return mainScenario(&m)
},
},
{
msgType: wtwire.MsgStateUpdateReply,
scenario: func(m wtwire.StateUpdateReply) bool {
return mainScenario(&m)
},
},
{
msgType: wtwire.MsgError,
scenario: func(m wtwire.Error) bool {
return mainScenario(&m)
},
},
}
for _, test := range tests {
var config *quick.Config
// If the type defined is within the custom type gen map above,
// the we'll modify the default config to use this Value
// function that knows how to generate the proper types.
if valueGen, ok := customTypeGen[test.msgType]; ok {
config = &quick.Config{
Values: valueGen,
}
}
t.Logf("Running fuzz tests for msgType=%v", test.msgType)
if err := quick.Check(test.scenario, config); err != nil {
t.Fatalf("fuzz checks for msg=%v failed: %v",
test.msgType, err)
}
}
}
func init() {
rand.Seed(time.Now().Unix())
}