lnd.xprv/lntest/harness.go
2021-05-07 14:18:56 +02:00

1543 lines
44 KiB
Go

package lntest
import (
"context"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"net/http"
"os"
"path/filepath"
"strings"
"sync"
"time"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd"
"github.com/lightningnetwork/lnd/kvdb/etcd"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"google.golang.org/grpc/grpclog"
)
// DefaultCSV is the CSV delay (remotedelay) we will start our test nodes with.
const DefaultCSV = 4
// NetworkHarness is an integration testing harness for the lightning network.
// The harness by default is created with two active nodes on the network:
// Alice and Bob.
type NetworkHarness struct {
netParams *chaincfg.Params
// currentTestCase holds the name for the currently run test case.
currentTestCase string
// lndBinary is the full path to the lnd binary that was specifically
// compiled with all required itest flags.
lndBinary string
// Miner is a reference to a running full node that can be used to create
// new blocks on the network.
Miner *rpctest.Harness
// BackendCfg houses the information necessary to use a node as LND
// chain backend, such as rpc configuration, P2P information etc.
BackendCfg BackendConfig
activeNodes map[int]*HarnessNode
nodesByPub map[string]*HarnessNode
// Alice and Bob are the initial seeder nodes that are automatically
// created to be the initial participants of the test network.
Alice *HarnessNode
Bob *HarnessNode
// embeddedEtcd is set to true if new nodes are to be created with an
// embedded etcd backend instead of just bbolt.
embeddedEtcd bool
// Channel for transmitting stderr output from failed lightning node
// to main process.
lndErrorChan chan error
// feeService is a web service that provides external fee estimates to
// lnd.
feeService *feeService
quit chan struct{}
mtx sync.Mutex
}
// NewNetworkHarness creates a new network test harness.
// TODO(roasbeef): add option to use golang's build library to a binary of the
// current repo. This will save developers from having to manually `go install`
// within the repo each time before changes
func NewNetworkHarness(r *rpctest.Harness, b BackendConfig, lndBinary string,
embeddedEtcd bool) (*NetworkHarness, error) {
feeService := startFeeService()
n := NetworkHarness{
activeNodes: make(map[int]*HarnessNode),
nodesByPub: make(map[string]*HarnessNode),
lndErrorChan: make(chan error),
netParams: r.ActiveNet,
Miner: r,
BackendCfg: b,
feeService: feeService,
quit: make(chan struct{}),
lndBinary: lndBinary,
embeddedEtcd: embeddedEtcd,
}
return &n, nil
}
// LookUpNodeByPub queries the set of active nodes to locate a node according
// to its public key. The second value will be true if the node was found, and
// false otherwise.
func (n *NetworkHarness) LookUpNodeByPub(pubStr string) (*HarnessNode, error) {
n.mtx.Lock()
defer n.mtx.Unlock()
node, ok := n.nodesByPub[pubStr]
if !ok {
return nil, fmt.Errorf("unable to find node")
}
return node, nil
}
// ProcessErrors returns a channel used for reporting any fatal process errors.
// If any of the active nodes within the harness' test network incur a fatal
// error, that error is sent over this channel.
func (n *NetworkHarness) ProcessErrors() <-chan error {
return n.lndErrorChan
}
// fakeLogger is a fake grpclog.Logger implementation. This is used to stop
// grpc's logger from printing directly to stdout.
type fakeLogger struct{}
func (f *fakeLogger) Fatal(args ...interface{}) {}
func (f *fakeLogger) Fatalf(format string, args ...interface{}) {}
func (f *fakeLogger) Fatalln(args ...interface{}) {}
func (f *fakeLogger) Print(args ...interface{}) {}
func (f *fakeLogger) Printf(format string, args ...interface{}) {}
func (f *fakeLogger) Println(args ...interface{}) {}
// SetUp starts the initial seeder nodes within the test harness. The initial
// node's wallets will be funded wallets with ten 1 BTC outputs each. Finally
// rpc clients capable of communicating with the initial seeder nodes are
// created. Nodes are initialized with the given extra command line flags, which
// should be formatted properly - "--arg=value".
func (n *NetworkHarness) SetUp(testCase string, lndArgs []string) error {
// Swap out grpc's default logger with out fake logger which drops the
// statements on the floor.
grpclog.SetLogger(&fakeLogger{})
n.currentTestCase = testCase
// Start the initial seeder nodes within the test network, then connect
// their respective RPC clients.
var wg sync.WaitGroup
errChan := make(chan error, 2)
wg.Add(2)
go func() {
defer wg.Done()
node, err := n.NewNode("Alice", lndArgs)
if err != nil {
errChan <- err
return
}
n.Alice = node
}()
go func() {
defer wg.Done()
node, err := n.NewNode("Bob", lndArgs)
if err != nil {
errChan <- err
return
}
n.Bob = node
}()
wg.Wait()
select {
case err := <-errChan:
return err
default:
}
// Load up the wallets of the seeder nodes with 10 outputs of 1 BTC
// each.
ctxb := context.Background()
addrReq := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
clients := []lnrpc.LightningClient{n.Alice, n.Bob}
for _, client := range clients {
for i := 0; i < 10; i++ {
resp, err := client.NewAddress(ctxb, addrReq)
if err != nil {
return err
}
addr, err := btcutil.DecodeAddress(resp.Address, n.netParams)
if err != nil {
return err
}
addrScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
output := &wire.TxOut{
PkScript: addrScript,
Value: btcutil.SatoshiPerBitcoin,
}
_, err = n.Miner.SendOutputs([]*wire.TxOut{output}, 7500)
if err != nil {
return err
}
}
}
// We generate several blocks in order to give the outputs created
// above a good number of confirmations.
if _, err := n.Miner.Client.Generate(10); err != nil {
return err
}
// Finally, make a connection between both of the nodes.
if err := n.ConnectNodes(ctxb, n.Alice, n.Bob); err != nil {
return err
}
// Now block until both wallets have fully synced up.
expectedBalance := int64(btcutil.SatoshiPerBitcoin * 10)
balReq := &lnrpc.WalletBalanceRequest{}
balanceTicker := time.NewTicker(time.Millisecond * 200)
defer balanceTicker.Stop()
balanceTimeout := time.After(DefaultTimeout)
out:
for {
select {
case <-balanceTicker.C:
aliceResp, err := n.Alice.WalletBalance(ctxb, balReq)
if err != nil {
return err
}
bobResp, err := n.Bob.WalletBalance(ctxb, balReq)
if err != nil {
return err
}
if aliceResp.ConfirmedBalance == expectedBalance &&
bobResp.ConfirmedBalance == expectedBalance {
break out
}
case <-balanceTimeout:
return fmt.Errorf("balances not synced after deadline")
}
}
return nil
}
// TearDown tears down all active nodes within the test lightning network.
func (n *NetworkHarness) TearDown() error {
for _, node := range n.activeNodes {
if err := n.ShutdownNode(node); err != nil {
return err
}
}
return nil
}
// Stop stops the test harness.
func (n *NetworkHarness) Stop() {
close(n.lndErrorChan)
close(n.quit)
n.feeService.stop()
}
// extraArgsEtcd returns extra args for configuring LND to use an external etcd
// database (for remote channel DB and wallet DB).
func extraArgsEtcd(etcdCfg *etcd.Config, name string, cluster bool) []string {
extraArgs := []string{
"--db.backend=etcd",
fmt.Sprintf("--db.etcd.host=%v", etcdCfg.Host),
fmt.Sprintf("--db.etcd.user=%v", etcdCfg.User),
fmt.Sprintf("--db.etcd.pass=%v", etcdCfg.Pass),
fmt.Sprintf("--db.etcd.namespace=%v", etcdCfg.Namespace),
}
if etcdCfg.InsecureSkipVerify {
extraArgs = append(extraArgs, "--db.etcd.insecure_skip_verify")
}
if cluster {
extraArgs = append(extraArgs, "--cluster.enable-leader-election")
extraArgs = append(
extraArgs, fmt.Sprintf("--cluster.id=%v", name),
)
}
return extraArgs
}
// NewNodeWithSeedEtcd starts a new node with seed that'll use an external
// etcd database as its (remote) channel and wallet DB. The passsed cluster
// flag indicates that we'd like the node to join the cluster leader election.
func (n *NetworkHarness) NewNodeWithSeedEtcd(name string, etcdCfg *etcd.Config,
password []byte, entropy []byte, statelessInit, cluster bool) (
*HarnessNode, []string, []byte, error) {
// We don't want to use the embedded etcd instance.
const embeddedEtcd = false
extraArgs := extraArgsEtcd(etcdCfg, name, cluster)
return n.newNodeWithSeed(
name, extraArgs, password, entropy, statelessInit, embeddedEtcd,
)
}
// NewNodeWithSeedEtcd starts a new node with seed that'll use an external
// etcd database as its (remote) channel and wallet DB. The passsed cluster
// flag indicates that we'd like the node to join the cluster leader election.
// If the wait flag is false then we won't wait until RPC is available (this is
// useful when the node is not expected to become the leader right away).
func (n *NetworkHarness) NewNodeEtcd(name string, etcdCfg *etcd.Config,
password []byte, cluster, wait bool) (*HarnessNode, error) {
// We don't want to use the embedded etcd instance.
const embeddedEtcd = false
extraArgs := extraArgsEtcd(etcdCfg, name, cluster)
return n.newNode(name, extraArgs, true, password, embeddedEtcd, wait)
}
// NewNode fully initializes a returns a new HarnessNode bound to the
// current instance of the network harness. The created node is running, but
// not yet connected to other nodes within the network.
func (n *NetworkHarness) NewNode(name string, extraArgs []string) (*HarnessNode,
error) {
return n.newNode(name, extraArgs, false, nil, n.embeddedEtcd, true)
}
// NewNodeWithSeed fully initializes a new HarnessNode after creating a fresh
// aezeed. The provided password is used as both the aezeed password and the
// wallet password. The generated mnemonic is returned along with the
// initialized harness node.
func (n *NetworkHarness) NewNodeWithSeed(name string, extraArgs []string,
password []byte, statelessInit bool) (*HarnessNode, []string, []byte,
error) {
return n.newNodeWithSeed(
name, extraArgs, password, nil, statelessInit, n.embeddedEtcd,
)
}
func (n *NetworkHarness) newNodeWithSeed(name string, extraArgs []string,
password, entropy []byte, statelessInit, embeddedEtcd bool) (
*HarnessNode, []string, []byte, error) {
node, err := n.newNode(
name, extraArgs, true, password, embeddedEtcd, true,
)
if err != nil {
return nil, nil, nil, err
}
ctxb := context.Background()
// Create a request to generate a new aezeed. The new seed will have the
// same password as the internal wallet.
genSeedReq := &lnrpc.GenSeedRequest{
AezeedPassphrase: password,
SeedEntropy: entropy,
}
ctxt, cancel := context.WithTimeout(ctxb, DefaultTimeout)
defer cancel()
var genSeedResp *lnrpc.GenSeedResponse
if err := wait.NoError(func() error {
genSeedResp, err = node.GenSeed(ctxt, genSeedReq)
return err
}, DefaultTimeout); err != nil {
return nil, nil, nil, err
}
// With the seed created, construct the init request to the node,
// including the newly generated seed.
initReq := &lnrpc.InitWalletRequest{
WalletPassword: password,
CipherSeedMnemonic: genSeedResp.CipherSeedMnemonic,
AezeedPassphrase: password,
StatelessInit: statelessInit,
}
// Pass the init request via rpc to finish unlocking the node. This will
// also initialize the macaroon-authenticated LightningClient.
response, err := node.Init(ctxb, initReq)
if err != nil {
return nil, nil, nil, err
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
// In stateless initialization mode we get a macaroon back that we have
// to return to the test, otherwise gRPC calls won't be possible since
// there are no macaroon files created in that mode.
// In stateful init the admin macaroon will just be nil.
return node, genSeedResp.CipherSeedMnemonic, response.AdminMacaroon, nil
}
// RestoreNodeWithSeed fully initializes a HarnessNode using a chosen mnemonic,
// password, recovery window, and optionally a set of static channel backups.
// After providing the initialization request to unlock the node, this method
// will finish initializing the LightningClient such that the HarnessNode can
// be used for regular rpc operations.
func (n *NetworkHarness) RestoreNodeWithSeed(name string, extraArgs []string,
password []byte, mnemonic []string, recoveryWindow int32,
chanBackups *lnrpc.ChanBackupSnapshot) (*HarnessNode, error) {
node, err := n.newNode(
name, extraArgs, true, password, n.embeddedEtcd, true,
)
if err != nil {
return nil, err
}
initReq := &lnrpc.InitWalletRequest{
WalletPassword: password,
CipherSeedMnemonic: mnemonic,
AezeedPassphrase: password,
RecoveryWindow: recoveryWindow,
ChannelBackups: chanBackups,
}
_, err = node.Init(context.Background(), initReq)
if err != nil {
return nil, err
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
return node, nil
}
// newNode initializes a new HarnessNode, supporting the ability to initialize a
// wallet with or without a seed. If hasSeed is false, the returned harness node
// can be used immediately. Otherwise, the node will require an additional
// initialization phase where the wallet is either created or restored.
func (n *NetworkHarness) newNode(name string, extraArgs []string, hasSeed bool,
password []byte, embeddedEtcd, wait bool) (
*HarnessNode, error) {
node, err := newNode(NodeConfig{
Name: name,
LogFilenamePrefix: n.currentTestCase,
HasSeed: hasSeed,
Password: password,
BackendCfg: n.BackendCfg,
NetParams: n.netParams,
ExtraArgs: extraArgs,
FeeURL: n.feeService.url,
Etcd: embeddedEtcd,
})
if err != nil {
return nil, err
}
// Put node in activeNodes to ensure Shutdown is called even if Start
// returns an error.
n.mtx.Lock()
n.activeNodes[node.NodeID] = node
n.mtx.Unlock()
err = node.start(n.lndBinary, n.lndErrorChan, wait)
if err != nil {
return nil, err
}
// If this node is to have a seed, it will need to be unlocked or
// initialized via rpc. Delay registering it with the network until it
// can be driven via an unlocked rpc connection.
if node.Cfg.HasSeed {
return node, nil
}
// With the node started, we can now record its public key within the
// global mapping.
n.RegisterNode(node)
return node, nil
}
// RegisterNode records a new HarnessNode in the NetworkHarnesses map of known
// nodes. This method should only be called with nodes that have successfully
// retrieved their public keys via FetchNodeInfo.
func (n *NetworkHarness) RegisterNode(node *HarnessNode) {
n.mtx.Lock()
n.nodesByPub[node.PubKeyStr] = node
n.mtx.Unlock()
}
func (n *NetworkHarness) connect(ctx context.Context,
req *lnrpc.ConnectPeerRequest, a *HarnessNode) error {
syncTimeout := time.After(DefaultTimeout)
tryconnect:
if _, err := a.ConnectPeer(ctx, req); err != nil {
// If the chain backend is still syncing, retry.
if strings.Contains(err.Error(), lnd.ErrServerNotActive.Error()) ||
strings.Contains(err.Error(), "i/o timeout") {
select {
case <-time.After(100 * time.Millisecond):
goto tryconnect
case <-syncTimeout:
return fmt.Errorf("chain backend did not " +
"finish syncing")
}
}
return err
}
return nil
}
// EnsureConnected will try to connect to two nodes, returning no error if they
// are already connected. If the nodes were not connected previously, this will
// behave the same as ConnectNodes. If a pending connection request has already
// been made, the method will block until the two nodes appear in each other's
// peers list, or until the 15s timeout expires.
func (n *NetworkHarness) EnsureConnected(ctx context.Context, a, b *HarnessNode) error {
// errConnectionRequested is used to signal that a connection was
// requested successfully, which is distinct from already being
// connected to the peer.
errConnectionRequested := errors.New("connection request in progress")
tryConnect := func(a, b *HarnessNode) error {
ctxt, cancel := context.WithTimeout(ctx, DefaultTimeout)
defer cancel()
bInfo, err := b.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.ConnectPeerRequest{
Addr: &lnrpc.LightningAddress{
Pubkey: bInfo.IdentityPubkey,
Host: b.Cfg.P2PAddr(),
},
}
var predErr error
err = wait.Predicate(func() bool {
ctx, cancel := context.WithTimeout(ctx, DefaultTimeout)
defer cancel()
err := n.connect(ctx, req, a)
switch {
// Request was successful, wait for both to display the
// connection.
case err == nil:
predErr = errConnectionRequested
return true
// If the two are already connected, we return early
// with no error.
case strings.Contains(
err.Error(), "already connected to peer",
):
predErr = nil
return true
default:
predErr = err
return false
}
}, DefaultTimeout)
if err != nil {
return fmt.Errorf("connection not succeeded within 15 "+
"seconds: %v", predErr)
}
return predErr
}
aErr := tryConnect(a, b)
bErr := tryConnect(b, a)
switch {
// If both reported already being connected to each other, we can exit
// early.
case aErr == nil && bErr == nil:
return nil
// Return any critical errors returned by either alice.
case aErr != nil && aErr != errConnectionRequested:
return aErr
// Return any critical errors returned by either bob.
case bErr != nil && bErr != errConnectionRequested:
return bErr
// Otherwise one or both requested a connection, so we wait for the
// peers lists to reflect the connection.
default:
}
findSelfInPeerList := func(a, b *HarnessNode) bool {
// If node B is seen in the ListPeers response from node A,
// then we can exit early as the connection has been fully
// established.
ctxt, cancel := context.WithTimeout(ctx, DefaultTimeout)
defer cancel()
resp, err := b.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
return false
}
for _, peer := range resp.Peers {
if peer.PubKey == a.PubKeyStr {
return true
}
}
return false
}
err := wait.Predicate(func() bool {
return findSelfInPeerList(a, b) && findSelfInPeerList(b, a)
}, DefaultTimeout)
if err != nil {
return fmt.Errorf("peers not connected within 15 seconds")
}
return nil
}
// ConnectNodes establishes an encrypted+authenticated p2p connection from node
// a towards node b. The function will return a non-nil error if the connection
// was unable to be established.
//
// NOTE: This function may block for up to 15-seconds as it will not return
// until the new connection is detected as being known to both nodes.
func (n *NetworkHarness) ConnectNodes(ctx context.Context, a, b *HarnessNode) error {
bobInfo, err := b.GetInfo(ctx, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.ConnectPeerRequest{
Addr: &lnrpc.LightningAddress{
Pubkey: bobInfo.IdentityPubkey,
Host: b.Cfg.P2PAddr(),
},
}
if err := n.connect(ctx, req, a); err != nil {
return err
}
err = wait.Predicate(func() bool {
// If node B is seen in the ListPeers response from node A,
// then we can exit early as the connection has been fully
// established.
resp, err := a.ListPeers(ctx, &lnrpc.ListPeersRequest{})
if err != nil {
return false
}
for _, peer := range resp.Peers {
if peer.PubKey == b.PubKeyStr {
return true
}
}
return false
}, DefaultTimeout)
if err != nil {
return fmt.Errorf("peers not connected within 15 seconds")
}
return nil
}
// DisconnectNodes disconnects node a from node b by sending RPC message
// from a node to b node
func (n *NetworkHarness) DisconnectNodes(ctx context.Context, a, b *HarnessNode) error {
bobInfo, err := b.GetInfo(ctx, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
req := &lnrpc.DisconnectPeerRequest{
PubKey: bobInfo.IdentityPubkey,
}
if _, err := a.DisconnectPeer(ctx, req); err != nil {
return err
}
return nil
}
// RestartNode attempts to restart a lightning node by shutting it down
// cleanly, then restarting the process. This function is fully blocking. Upon
// restart, the RPC connection to the node will be re-attempted, continuing iff
// the connection attempt is successful. If the callback parameter is non-nil,
// then the function will be executed after the node shuts down, but *before*
// the process has been started up again.
//
// This method can be useful when testing edge cases such as a node broadcast
// and invalidated prior state, or persistent state recovery, simulating node
// crashes, etc. Additionally, each time the node is restarted, the caller can
// pass a set of SCBs to pass in via the Unlock method allowing them to restore
// channels during restart.
func (n *NetworkHarness) RestartNode(node *HarnessNode, callback func() error,
chanBackups ...*lnrpc.ChanBackupSnapshot) error {
err := n.RestartNodeNoUnlock(node, callback)
if err != nil {
return err
}
// If the node doesn't have a password set, then we can exit here as we
// don't need to unlock it.
if len(node.Cfg.Password) == 0 {
return nil
}
// Otherwise, we'll unlock the wallet, then complete the final steps
// for the node initialization process.
unlockReq := &lnrpc.UnlockWalletRequest{
WalletPassword: node.Cfg.Password,
}
if len(chanBackups) != 0 {
unlockReq.ChannelBackups = chanBackups[0]
unlockReq.RecoveryWindow = 1000
}
return node.Unlock(context.Background(), unlockReq)
}
// RestartNodeNoUnlock attempts to restart a lightning node by shutting it down
// cleanly, then restarting the process. In case the node was setup with a seed,
// it will be left in the unlocked state. This function is fully blocking. If
// the callback parameter is non-nil, then the function will be executed after
// the node shuts down, but *before* the process has been started up again.
func (n *NetworkHarness) RestartNodeNoUnlock(node *HarnessNode,
callback func() error) error {
if err := node.stop(); err != nil {
return err
}
if callback != nil {
if err := callback(); err != nil {
return err
}
}
return node.start(n.lndBinary, n.lndErrorChan, true)
}
// SuspendNode stops the given node and returns a callback that can be used to
// start it again.
func (n *NetworkHarness) SuspendNode(node *HarnessNode) (func() error, error) {
if err := node.stop(); err != nil {
return nil, err
}
restart := func() error {
return node.start(n.lndBinary, n.lndErrorChan, true)
}
return restart, nil
}
// ShutdownNode stops an active lnd process and returns when the process has
// exited and any temporary directories have been cleaned up.
func (n *NetworkHarness) ShutdownNode(node *HarnessNode) error {
if err := node.shutdown(); err != nil {
return err
}
delete(n.activeNodes, node.NodeID)
return nil
}
// KillNode kills the node (but won't wait for the node process to stop).
func (n *NetworkHarness) KillNode(node *HarnessNode) error {
return node.kill()
}
// StopNode stops the target node, but doesn't yet clean up its directories.
// This can be used to temporarily bring a node down during a test, to be later
// started up again.
func (n *NetworkHarness) StopNode(node *HarnessNode) error {
return node.stop()
}
// SaveProfilesPages hits profiles pages of all active nodes and writes it to
// disk using a similar naming scheme as to the regular set of logs.
func (n *NetworkHarness) SaveProfilesPages() {
// Only write gorutine dumps if flag is active.
if !(*goroutineDump) {
return
}
for _, node := range n.activeNodes {
if err := saveProfilesPage(node); err != nil {
fmt.Printf("Error: %v\n", err)
}
}
}
// saveProfilesPage saves the profiles page for the given node to file.
func saveProfilesPage(node *HarnessNode) error {
resp, err := http.Get(
fmt.Sprintf(
"http://localhost:%d/debug/pprof/goroutine?debug=1",
node.Cfg.ProfilePort,
),
)
if err != nil {
return fmt.Errorf("failed to get profile page "+
"(node_id=%d, name=%s): %v",
node.NodeID, node.Cfg.Name, err)
}
defer resp.Body.Close()
body, err := ioutil.ReadAll(resp.Body)
if err != nil {
return fmt.Errorf("failed to read profile page "+
"(node_id=%d, name=%s): %v",
node.NodeID, node.Cfg.Name, err)
}
fileName := fmt.Sprintf(
"pprof-%d-%s-%s.log", node.NodeID, node.Cfg.Name,
hex.EncodeToString(node.PubKey[:logPubKeyBytes]),
)
logFile, err := os.Create(fileName)
if err != nil {
return fmt.Errorf("failed to create file for profile page "+
"(node_id=%d, name=%s): %v",
node.NodeID, node.Cfg.Name, err)
}
defer logFile.Close()
_, err = logFile.Write(body)
if err != nil {
return fmt.Errorf("failed to save profile page "+
"(node_id=%d, name=%s): %v",
node.NodeID, node.Cfg.Name, err)
}
return nil
}
// WaitForTxInMempool blocks until the target txid is seen in the mempool. If
// the transaction isn't seen within the network before the passed timeout,
// then an error is returned.
func (n *NetworkHarness) WaitForTxInMempool(ctx context.Context,
txid chainhash.Hash) error {
// Return immediately if harness has been torn down.
select {
case <-n.quit:
return fmt.Errorf("NetworkHarness has been torn down")
default:
}
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
var mempool []*chainhash.Hash
for {
select {
case <-ctx.Done():
return fmt.Errorf("wanted %v, found %v txs "+
"in mempool: %v", txid, len(mempool), mempool)
case <-ticker.C:
var err error
mempool, err = n.Miner.Client.GetRawMempool()
if err != nil {
return err
}
for _, mempoolTx := range mempool {
if *mempoolTx == txid {
return nil
}
}
}
}
}
// OpenChannelParams houses the params to specify when opening a new channel.
type OpenChannelParams struct {
// Amt is the local amount being put into the channel.
Amt btcutil.Amount
// PushAmt is the amount that should be pushed to the remote when the
// channel is opened.
PushAmt btcutil.Amount
// Private is a boolan indicating whether the opened channel should be
// private.
Private bool
// SpendUnconfirmed is a boolean indicating whether we can utilize
// unconfirmed outputs to fund the channel.
SpendUnconfirmed bool
// MinHtlc is the htlc_minimum_msat value set when opening the channel.
MinHtlc lnwire.MilliSatoshi
// RemoteMaxHtlcs is the remote_max_htlcs value set when opening the
// channel, restricting the number of concurrent HTLCs the remote party
// can add to a commitment.
RemoteMaxHtlcs uint16
// FundingShim is an optional funding shim that the caller can specify
// in order to modify the channel funding workflow.
FundingShim *lnrpc.FundingShim
// SatPerVByte is the amount of satoshis to spend in chain fees per virtual
// byte of the transaction.
SatPerVByte btcutil.Amount
}
// OpenChannel attempts to open a channel between srcNode and destNode with the
// passed channel funding parameters. If the passed context has a timeout, then
// if the timeout is reached before the channel pending notification is
// received, an error is returned. The confirmed boolean determines whether we
// should fund the channel with confirmed outputs or not.
func (n *NetworkHarness) OpenChannel(ctx context.Context,
srcNode, destNode *HarnessNode, p OpenChannelParams) (
lnrpc.Lightning_OpenChannelClient, error) {
// Wait until srcNode and destNode have the latest chain synced.
// Otherwise, we may run into a check within the funding manager that
// prevents any funding workflows from being kicked off if the chain
// isn't yet synced.
if err := srcNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("unable to sync srcNode chain: %v", err)
}
if err := destNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("unable to sync destNode chain: %v", err)
}
minConfs := int32(1)
if p.SpendUnconfirmed {
minConfs = 0
}
openReq := &lnrpc.OpenChannelRequest{
NodePubkey: destNode.PubKey[:],
LocalFundingAmount: int64(p.Amt),
PushSat: int64(p.PushAmt),
Private: p.Private,
MinConfs: minConfs,
SpendUnconfirmed: p.SpendUnconfirmed,
MinHtlcMsat: int64(p.MinHtlc),
RemoteMaxHtlcs: uint32(p.RemoteMaxHtlcs),
FundingShim: p.FundingShim,
SatPerByte: int64(p.SatPerVByte),
}
respStream, err := srcNode.OpenChannel(ctx, openReq)
if err != nil {
return nil, fmt.Errorf("unable to open channel between "+
"alice and bob: %v", err)
}
chanOpen := make(chan struct{})
errChan := make(chan error)
go func() {
// Consume the "channel pending" update. This waits until the node
// notifies us that the final message in the channel funding workflow
// has been sent to the remote node.
resp, err := respStream.Recv()
if err != nil {
errChan <- err
return
}
if _, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanPending); !ok {
errChan <- fmt.Errorf("expected channel pending update, "+
"instead got %v", resp)
return
}
close(chanOpen)
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before chan pending "+
"update sent: %v", err)
case err := <-errChan:
return nil, err
case <-chanOpen:
return respStream, nil
}
}
// OpenPendingChannel attempts to open a channel between srcNode and destNode with the
// passed channel funding parameters. If the passed context has a timeout, then
// if the timeout is reached before the channel pending notification is
// received, an error is returned.
func (n *NetworkHarness) OpenPendingChannel(ctx context.Context,
srcNode, destNode *HarnessNode, amt btcutil.Amount,
pushAmt btcutil.Amount) (*lnrpc.PendingUpdate, error) {
// Wait until srcNode and destNode have blockchain synced
if err := srcNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("unable to sync srcNode chain: %v", err)
}
if err := destNode.WaitForBlockchainSync(ctx); err != nil {
return nil, fmt.Errorf("unable to sync destNode chain: %v", err)
}
openReq := &lnrpc.OpenChannelRequest{
NodePubkey: destNode.PubKey[:],
LocalFundingAmount: int64(amt),
PushSat: int64(pushAmt),
Private: false,
}
respStream, err := srcNode.OpenChannel(ctx, openReq)
if err != nil {
return nil, fmt.Errorf("unable to open channel between "+
"alice and bob: %v", err)
}
chanPending := make(chan *lnrpc.PendingUpdate)
errChan := make(chan error)
go func() {
// Consume the "channel pending" update. This waits until the node
// notifies us that the final message in the channel funding workflow
// has been sent to the remote node.
resp, err := respStream.Recv()
if err != nil {
errChan <- err
return
}
pendingResp, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
if !ok {
errChan <- fmt.Errorf("expected channel pending update, "+
"instead got %v", resp)
return
}
chanPending <- pendingResp.ChanPending
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before chan pending " +
"update sent")
case err := <-errChan:
return nil, err
case pendingChan := <-chanPending:
return pendingChan, nil
}
}
// WaitForChannelOpen waits for a notification that a channel is open by
// consuming a message from the past open channel stream. If the passed context
// has a timeout, then if the timeout is reached before the channel has been
// opened, then an error is returned.
func (n *NetworkHarness) WaitForChannelOpen(ctx context.Context,
openChanStream lnrpc.Lightning_OpenChannelClient) (*lnrpc.ChannelPoint, error) {
errChan := make(chan error)
respChan := make(chan *lnrpc.ChannelPoint)
go func() {
resp, err := openChanStream.Recv()
if err != nil {
errChan <- fmt.Errorf("unable to read rpc resp: %v", err)
return
}
fundingResp, ok := resp.Update.(*lnrpc.OpenStatusUpdate_ChanOpen)
if !ok {
errChan <- fmt.Errorf("expected channel open update, "+
"instead got %v", resp)
return
}
respChan <- fundingResp.ChanOpen.ChannelPoint
}()
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached while waiting for " +
"channel open")
case err := <-errChan:
return nil, err
case chanPoint := <-respChan:
return chanPoint, nil
}
}
// CloseChannel attempts to close the channel indicated by the
// passed channel point, initiated by the passed lnNode. If the passed context
// has a timeout, an error is returned if that timeout is reached before the
// channel close is pending.
func (n *NetworkHarness) CloseChannel(ctx context.Context,
lnNode *HarnessNode, cp *lnrpc.ChannelPoint,
force bool) (lnrpc.Lightning_CloseChannelClient, *chainhash.Hash, error) {
// Create a channel outpoint that we can use to compare to channels
// from the ListChannelsResponse.
txidHash, err := getChanPointFundingTxid(cp)
if err != nil {
return nil, nil, err
}
fundingTxID, err := chainhash.NewHash(txidHash)
if err != nil {
return nil, nil, err
}
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: cp.OutputIndex,
}
// We'll wait for *both* nodes to read the channel as active if we're
// performing a cooperative channel closure.
if !force {
timeout := DefaultTimeout
listReq := &lnrpc.ListChannelsRequest{}
// We define two helper functions, one two locate a particular
// channel, and the other to check if a channel is active or
// not.
filterChannel := func(node *HarnessNode,
op wire.OutPoint) (*lnrpc.Channel, error) {
listResp, err := node.ListChannels(ctx, listReq)
if err != nil {
return nil, err
}
for _, c := range listResp.Channels {
if c.ChannelPoint == op.String() {
return c, nil
}
}
return nil, fmt.Errorf("unable to find channel")
}
activeChanPredicate := func(node *HarnessNode) func() bool {
return func() bool {
channel, err := filterChannel(node, chanPoint)
if err != nil {
return false
}
return channel.Active
}
}
// Next, we'll fetch the target channel in order to get the
// harness node that will be receiving the channel close request.
targetChan, err := filterChannel(lnNode, chanPoint)
if err != nil {
return nil, nil, err
}
receivingNode, err := n.LookUpNodeByPub(targetChan.RemotePubkey)
if err != nil {
return nil, nil, err
}
// Before proceeding, we'll ensure that the channel is active
// for both nodes.
err = wait.Predicate(activeChanPredicate(lnNode), timeout)
if err != nil {
return nil, nil, fmt.Errorf("channel of closing " +
"node not active in time")
}
err = wait.Predicate(activeChanPredicate(receivingNode), timeout)
if err != nil {
return nil, nil, fmt.Errorf("channel of receiving " +
"node not active in time")
}
}
closeReq := &lnrpc.CloseChannelRequest{
ChannelPoint: cp,
Force: force,
}
closeRespStream, err := lnNode.CloseChannel(ctx, closeReq)
if err != nil {
return nil, nil, fmt.Errorf("unable to close channel: %v", err)
}
errChan := make(chan error)
fin := make(chan *chainhash.Hash)
go func() {
// Consume the "channel close" update in order to wait for the closing
// transaction to be broadcast, then wait for the closing tx to be seen
// within the network.
closeResp, err := closeRespStream.Recv()
if err != nil {
errChan <- fmt.Errorf("unable to recv() from close "+
"stream: %v", err)
return
}
pendingClose, ok := closeResp.Update.(*lnrpc.CloseStatusUpdate_ClosePending)
if !ok {
errChan <- fmt.Errorf("expected channel close update, "+
"instead got %v", pendingClose)
return
}
closeTxid, err := chainhash.NewHash(pendingClose.ClosePending.Txid)
if err != nil {
errChan <- fmt.Errorf("unable to decode closeTxid: "+
"%v", err)
return
}
if err := n.WaitForTxInMempool(ctx, *closeTxid); err != nil {
errChan <- fmt.Errorf("error while waiting for "+
"broadcast tx: %v", err)
return
}
fin <- closeTxid
}()
// Wait until either the deadline for the context expires, an error
// occurs, or the channel close update is received.
select {
case err := <-errChan:
return nil, nil, err
case closeTxid := <-fin:
return closeRespStream, closeTxid, nil
}
}
// WaitForChannelClose waits for a notification from the passed channel close
// stream that the node has deemed the channel has been fully closed. If the
// passed context has a timeout, then if the timeout is reached before the
// notification is received then an error is returned.
func (n *NetworkHarness) WaitForChannelClose(ctx context.Context,
closeChanStream lnrpc.Lightning_CloseChannelClient) (*chainhash.Hash, error) {
errChan := make(chan error)
updateChan := make(chan *lnrpc.CloseStatusUpdate_ChanClose)
go func() {
closeResp, err := closeChanStream.Recv()
if err != nil {
errChan <- err
return
}
closeFin, ok := closeResp.Update.(*lnrpc.CloseStatusUpdate_ChanClose)
if !ok {
errChan <- fmt.Errorf("expected channel close update, "+
"instead got %v", closeFin)
return
}
updateChan <- closeFin
}()
// Wait until either the deadline for the context expires, an error
// occurs, or the channel close update is received.
select {
case <-ctx.Done():
return nil, fmt.Errorf("timeout reached before update sent")
case err := <-errChan:
return nil, err
case update := <-updateChan:
return chainhash.NewHash(update.ChanClose.ClosingTxid)
}
}
// AssertChannelExists asserts that an active channel identified by the
// specified channel point exists from the point-of-view of the node. It takes
// an optional set of check functions which can be used to make further
// assertions using channel's values. These functions are responsible for
// failing the test themselves if they do not pass.
// nolint: interfacer
func (n *NetworkHarness) AssertChannelExists(ctx context.Context,
node *HarnessNode, chanPoint *wire.OutPoint,
checks ...func(*lnrpc.Channel)) error {
req := &lnrpc.ListChannelsRequest{}
return wait.NoError(func() error {
resp, err := node.ListChannels(ctx, req)
if err != nil {
return fmt.Errorf("unable fetch node's channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint == chanPoint.String() {
// First check whether our channel is active,
// failing early if it is not.
if !channel.Active {
return fmt.Errorf("channel %s inactive",
chanPoint)
}
// Apply any additional checks that we would
// like to verify.
for _, check := range checks {
check(channel)
}
return nil
}
}
return fmt.Errorf("channel %s not found", chanPoint)
}, DefaultTimeout)
}
// DumpLogs reads the current logs generated by the passed node, and returns
// the logs as a single string. This function is useful for examining the logs
// of a particular node in the case of a test failure.
// Logs from lightning node being generated with delay - you should
// add time.Sleep() in order to get all logs.
func (n *NetworkHarness) DumpLogs(node *HarnessNode) (string, error) {
logFile := fmt.Sprintf("%v/simnet/lnd.log", node.Cfg.LogDir)
buf, err := ioutil.ReadFile(logFile)
if err != nil {
return "", err
}
return string(buf), nil
}
// SendCoins attempts to send amt satoshis from the internal mining node to the
// targeted lightning node using a P2WKH address. 6 blocks are mined after in
// order to confirm the transaction.
func (n *NetworkHarness) SendCoins(ctx context.Context, amt btcutil.Amount,
target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
true,
)
}
// SendCoinsUnconfirmed sends coins from the internal mining node to the target
// lightning node using a P2WPKH address. No blocks are mined after, so the
// transaction remains unconfirmed.
func (n *NetworkHarness) SendCoinsUnconfirmed(ctx context.Context,
amt btcutil.Amount, target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
false,
)
}
// SendCoinsNP2WKH attempts to send amt satoshis from the internal mining node
// to the targeted lightning node using a NP2WKH address.
func (n *NetworkHarness) SendCoinsNP2WKH(ctx context.Context,
amt btcutil.Amount, target *HarnessNode) error {
return n.sendCoins(
ctx, amt, target, lnrpc.AddressType_NESTED_PUBKEY_HASH,
true,
)
}
// sendCoins attempts to send amt satoshis from the internal mining node to the
// targeted lightning node. The confirmed boolean indicates whether the
// transaction that pays to the target should confirm.
func (n *NetworkHarness) sendCoins(ctx context.Context, amt btcutil.Amount,
target *HarnessNode, addrType lnrpc.AddressType,
confirmed bool) error {
balReq := &lnrpc.WalletBalanceRequest{}
initialBalance, err := target.WalletBalance(ctx, balReq)
if err != nil {
return err
}
// First, obtain an address from the target lightning node, preferring
// to receive a p2wkh address s.t the output can immediately be used as
// an input to a funding transaction.
addrReq := &lnrpc.NewAddressRequest{
Type: addrType,
}
resp, err := target.NewAddress(ctx, addrReq)
if err != nil {
return err
}
addr, err := btcutil.DecodeAddress(resp.Address, n.netParams)
if err != nil {
return err
}
addrScript, err := txscript.PayToAddrScript(addr)
if err != nil {
return err
}
// Generate a transaction which creates an output to the target
// pkScript of the desired amount.
output := &wire.TxOut{
PkScript: addrScript,
Value: int64(amt),
}
_, err = n.Miner.SendOutputs([]*wire.TxOut{output}, 7500)
if err != nil {
return err
}
// Encode the pkScript in hex as this the format that it will be
// returned via rpc.
expPkScriptStr := hex.EncodeToString(addrScript)
// Now, wait for ListUnspent to show the unconfirmed transaction
// containing the correct pkscript.
err = wait.NoError(func() error {
// Since neutrino doesn't support unconfirmed outputs, skip
// this check.
if target.Cfg.BackendCfg.Name() == "neutrino" {
return nil
}
req := &lnrpc.ListUnspentRequest{}
resp, err := target.ListUnspent(ctx, req)
if err != nil {
return err
}
// When using this method, there should only ever be on
// unconfirmed transaction.
if len(resp.Utxos) != 1 {
return fmt.Errorf("number of unconfirmed utxos "+
"should be 1, found %d", len(resp.Utxos))
}
// Assert that the lone unconfirmed utxo contains the same
// pkscript as the output generated above.
pkScriptStr := resp.Utxos[0].PkScript
if strings.Compare(pkScriptStr, expPkScriptStr) != 0 {
return fmt.Errorf("pkscript mismatch, want: %s, "+
"found: %s", expPkScriptStr, pkScriptStr)
}
return nil
}, DefaultTimeout)
if err != nil {
return fmt.Errorf("unconfirmed utxo was not found in "+
"ListUnspent: %v", err)
}
// If the transaction should remain unconfirmed, then we'll wait until
// the target node's unconfirmed balance reflects the expected balance
// and exit.
if !confirmed {
expectedBalance := btcutil.Amount(initialBalance.UnconfirmedBalance) + amt
return target.WaitForBalance(expectedBalance, false)
}
// Otherwise, we'll generate 6 new blocks to ensure the output gains a
// sufficient number of confirmations and wait for the balance to
// reflect what's expected.
if _, err := n.Miner.Client.Generate(6); err != nil {
return err
}
expectedBalance := btcutil.Amount(initialBalance.ConfirmedBalance) + amt
return target.WaitForBalance(expectedBalance, true)
}
func (n *NetworkHarness) SetFeeEstimate(fee chainfee.SatPerKWeight) {
n.feeService.setFee(fee)
}
// CopyFile copies the file src to dest.
func CopyFile(dest, src string) error {
s, err := os.Open(src)
if err != nil {
return err
}
defer s.Close()
d, err := os.Create(dest)
if err != nil {
return err
}
if _, err := io.Copy(d, s); err != nil {
d.Close()
return err
}
return d.Close()
}
// FileExists returns true if the file at path exists.
func FileExists(path string) bool {
if _, err := os.Stat(path); os.IsNotExist(err) {
return false
}
return true
}
// CopyAll copies all files and directories from srcDir to dstDir recursively.
// Note that this function does not support links.
func CopyAll(dstDir, srcDir string) error {
entries, err := ioutil.ReadDir(srcDir)
if err != nil {
return err
}
for _, entry := range entries {
srcPath := filepath.Join(srcDir, entry.Name())
dstPath := filepath.Join(dstDir, entry.Name())
info, err := os.Stat(srcPath)
if err != nil {
return err
}
if info.IsDir() {
err := os.Mkdir(dstPath, info.Mode())
if err != nil && !os.IsExist(err) {
return err
}
err = CopyAll(dstPath, srcPath)
if err != nil {
return err
}
} else if err := CopyFile(dstPath, srcPath); err != nil {
return err
}
}
return nil
}