lnd.xprv/lnwallet/wallet.go
Olaoluwa Osuntokun c6eedafb9a
lnwallet: update reservation workflow to be segwitty
Only nested p2sh or pure witness outputs are used when selecting coins
for inputs to a funding transaction.

The funding transaction output now uses p2wsh rather than regular p2sh.

All tests have been updated accordingly.
2016-05-03 20:06:58 -07:00

1112 lines
38 KiB
Go

package lnwallet
import (
"encoding/hex"
"errors"
"fmt"
"math"
"sync"
"sync/atomic"
"github.com/btcsuite/btcd/btcjson"
"github.com/lightningnetwork/lnd/chainntfs"
"github.com/lightningnetwork/lnd/chainntfs/btcdnotify"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/elkrem"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcrpcclient"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/coinset"
"github.com/btcsuite/btcutil/txsort"
"github.com/btcsuite/btcwallet/chain"
"github.com/btcsuite/btcwallet/waddrmgr"
btcwallet "github.com/btcsuite/btcwallet/wallet"
)
const (
// The size of the buffered queue of requests to the wallet from the
// outside word.
msgBufferSize = 100
)
var (
// Error types
ErrInsufficientFunds = errors.New("not enough available outputs to " +
"create funding transaction")
// Namespace bucket keys.
lightningNamespaceKey = []byte("ln-wallet")
waddrmgrNamespaceKey = []byte("waddrmgr")
wtxmgrNamespaceKey = []byte("wtxmgr")
)
// initFundingReserveReq is the first message sent to initiate the workflow
// required to open a payment channel with a remote peer. The initial required
// paramters are configurable accross channels. These paramters are to be chosen
// depending on the fee climate within the network, and time value of funds to
// be locked up within the channel. Upon success a ChannelReservation will be
// created in order to track the lifetime of this pending channel. Outputs
// selected will be 'locked', making them unavailable, for any other pending
// reservations. Therefore, all channels in reservation limbo will be periodically
// after a timeout period in order to avoid "exhaustion" attacks.
// NOTE: The workflow currently assumes fully balanced symmetric channels.
// Meaning both parties must encumber the same amount of funds.
// TODO(roasbeef): zombie reservation sweeper goroutine.
type initFundingReserveMsg struct {
// The amount of funds requested for this channel.
fundingAmount btcutil.Amount
// The minimum accepted satoshis/KB fee for the funding transaction. In
// order to ensure timely confirmation, it is recomened that this fee
// should be generous, paying some multiple of the accepted base fee
// rate of the network.
// TODO(roasbeef): integrate fee estimation project...
minFeeRate btcutil.Amount
// The ID of the remote node we would like to open a channel with.
nodeID [32]byte
// The delay on the "pay-to-self" output(s) of the commitment transaction.
csvDelay uint32
// A channel in which all errors will be sent accross. Will be nil if
// this initial set is succesful.
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
// A ChannelReservation with our contributions filled in will be sent
// accross this channel in the case of a succesfully reservation
// initiation. In the case of an error, this will read a nil pointer.
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
resp chan *ChannelReservation
}
// fundingReserveCancelMsg is a message reserved for cancelling an existing
// channel reservation identified by its reservation ID. Cancelling a reservation
// frees its locked outputs up, for inclusion within further reservations.
type fundingReserveCancelMsg struct {
pendingFundingID uint64
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error // Buffered
}
// addContributionMsg represents a message executing the second phase of the
// channel reservation workflow. This message carries the counterparty's
// "contribution" to the payment channel. In the case that this message is
// processed without generating any errors, then channel reservation will then
// be able to construct the funding tx, both commitment transactions, and
// finally generate signatures for all our inputs to the funding transaction,
// and for the remote node's version of the commitment transaction.
type addContributionMsg struct {
pendingFundingID uint64
// TODO(roasbeef): Should also carry SPV proofs in we're in SPV mode
contribution *ChannelContribution
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// addCounterPartySigsMsg represents the final message required to complete,
// and 'open' a payment channel. This message carries the counterparty's
// signatures for each of their inputs to the funding transaction, and also a
// signature allowing us to spend our version of the commitment transaction.
// If we're able to verify all the signatures are valid, the funding transaction
// will be broadcast to the network. After the funding transaction gains a
// configurable number of confirmations, the channel is officially considered
// 'open'.
type addCounterPartySigsMsg struct {
pendingFundingID uint64
// Should be order of sorted inputs that are theirs. Sorting is done
// in accordance to BIP-69:
// https://github.com/bitcoin/bips/blob/master/bip-0069.mediawiki.
theirFundingInputScripts []*InputScript
// This should be 1/2 of the signatures needed to succesfully spend our
// version of the commitment transaction.
theirCommitmentSig []byte
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// LightningWallet is a domain specific, yet general Bitcoin wallet capable of
// executing workflow required to interact with the Lightning Network. It is
// domain specific in the sense that it understands all the fancy scripts used
// within the Lightning Network, channel lifetimes, etc. However, it embedds a
// general purpose Bitcoin wallet within it. Therefore, it is also able to serve
// as a regular Bitcoin wallet which uses HD keys. The wallet is highly concurrent
// internally. All communication, and requests towards the wallet are
// dispatched as messages over channels, ensuring thread safety across all
// operations. Interaction has been designed independant of any peer-to-peer
// communication protocol, allowing the wallet to be self-contained and embeddable
// within future projects interacting with the Lightning Network.
// NOTE: At the moment the wallet requires a btcd full node, as it's dependant
// on btcd's websockets notifications as even triggers during the lifetime of
// a channel. However, once the chainntnfs package is complete, the wallet
// will be compatible with multiple RPC/notification services such as Electrum,
// Bitcoin Core + ZeroMQ, etc. Eventually, the wallet won't require a full-node
// at all, as SPV support is integrated inot btcwallet.
type LightningWallet struct {
// This mutex is to be held when generating external keys to be used
// as multi-sig, and commitment keys within the channel.
KeyGenMtx sync.RWMutex
// This mutex MUST be held when performing coin selection in order to
// avoid inadvertently creating multiple funding transaction which
// double spend inputs accross each other.
coinSelectMtx sync.RWMutex
// A wrapper around a namespace within boltdb reserved for ln-based
// wallet meta-data. See the 'channeldb' package for further
// information.
channelDB *channeldb.DB
// Used by in order to obtain notifications about funding transaction
// reaching a specified confirmation depth, and to catch
// counterparty's broadcasting revoked commitment states.
chainNotifier chainntnfs.ChainNotifier
// The core wallet, all non Lightning Network specific interaction is
// proxied to the internal wallet.
*btcwallet.Wallet
// An active RPC connection to a full-node. In the case of a btcd node,
// websockets are used for notifications. If using Bitcoin Core,
// notifications are either generated via long-polling or the usage of
// ZeroMQ.
// TODO(roasbeef): make into interface need: getrawtransaction + gettxout
// * getrawtransaction -> verify proof of channel links
// * gettxout -> verify inputs to funding tx exist and are unspent
rpc *chain.RPCClient
// All messages to the wallet are to be sent accross this channel.
msgChan chan interface{}
// Incomplete payment channels are stored in the map below. An intent
// to create a payment channel is tracked as a "reservation" within
// limbo. Once the final signatures have been exchanged, a reservation
// is removed from limbo. Each reservation is tracked by a unique
// monotonically integer. All requests concerning the channel MUST
// carry a valid, active funding ID.
fundingLimbo map[uint64]*ChannelReservation
nextFundingID uint64
limboMtx sync.RWMutex
// TODO(roasbeef): zombie garbage collection routine to solve
// lost-object/starvation problem/attack.
cfg *Config
started int32
shutdown int32
quit chan struct{}
wg sync.WaitGroup
// TODO(roasbeef): handle wallet lock/unlock
}
// NewLightningWallet creates/opens and initializes a LightningWallet instance.
// If the wallet has never been created (according to the passed dataDir), first-time
// setup is executed.
// TODO(roasbeef): fin...add config
func NewLightningWallet(config *Config, cdb *channeldb.DB) (*LightningWallet, error) {
// Ensure the wallet exists or create it when the create flag is set.
netDir := networkDir(config.DataDir, config.NetParams)
var pubPass []byte
if config.PublicPass == nil {
pubPass = defaultPubPassphrase
} else {
pubPass = config.PublicPass
}
loader := btcwallet.NewLoader(config.NetParams, netDir)
walletExists, err := loader.WalletExists()
if err != nil {
return nil, err
}
var createID bool
var wallet *btcwallet.Wallet
if !walletExists {
// Wallet has never been created, perform initial set up.
wallet, err = loader.CreateNewWallet(pubPass, config.PrivatePass,
config.HdSeed)
if err != nil {
return nil, err
}
createID = true
} else {
// Wallet has been created and been initialized at this point, open it
// along with all the required DB namepsaces, and the DB itself.
wallet, err = loader.OpenExistingWallet(pubPass, false)
if err != nil {
return nil, err
}
}
if err := wallet.Manager.Unlock(config.PrivatePass); err != nil {
return nil, err
}
// If we just created the wallet, then reserve, and store a key for
// our ID within the Lightning Network.
if createID {
account := uint32(waddrmgr.DefaultAccountNum)
adrs, err := wallet.Manager.NextInternalAddresses(account, 1, waddrmgr.WitnessPubKey)
if err != nil {
return nil, err
}
idPubkeyHash := adrs[0].Address().ScriptAddress()
if err := cdb.PutIdKey(idPubkeyHash); err != nil {
return nil, err
}
log.Infof("stored identity key pubkey hash in channeldb")
}
// Create a special websockets rpc client for btcd which will be used
// by the wallet for notifications, calls, etc.
rpcc, err := chain.NewRPCClient(config.NetParams, config.RpcHost,
config.RpcUser, config.RpcPass, config.CACert, false, 20)
if err != nil {
return nil, err
}
// Using the same authentication info, create a config for a second
// rpcclient which will be used by the current default chain
// notifier implemenation.
rpcConfig := &btcrpcclient.ConnConfig{
Host: config.RpcHost,
Endpoint: "ws",
User: config.RpcUser,
Pass: config.RpcPass,
Certificates: config.CACert,
DisableTLS: false,
DisableConnectOnNew: true,
DisableAutoReconnect: false,
}
chainNotifier, err := btcdnotify.NewBtcdNotifier(rpcConfig)
if err != nil {
return nil, err
}
// TODO(roasbeef): logging
return &LightningWallet{
chainNotifier: chainNotifier,
rpc: rpcc,
Wallet: wallet,
channelDB: cdb,
msgChan: make(chan interface{}, msgBufferSize),
// TODO(roasbeef): make this atomic.Uint32 instead? Which is
// faster, locks or CAS? I'm guessing CAS because assembly:
// * https://golang.org/src/sync/atomic/asm_amd64.s
nextFundingID: 0,
cfg: config,
fundingLimbo: make(map[uint64]*ChannelReservation),
quit: make(chan struct{}),
}, nil
}
// Startup establishes a connection to the RPC source, and spins up all
// goroutines required to handle incoming messages.
func (l *LightningWallet) Startup() error {
// Already started?
if atomic.AddInt32(&l.started, 1) != 1 {
return nil
}
// Establish an RPC connection in additino to starting the goroutines
// in the underlying wallet.
if err := l.rpc.Start(); err != nil {
return err
}
l.Start()
// Start the notification server. This is used so channel managment
// goroutines can be notified when a funding transaction reaches a
// sufficient number of confirmations, or when the input for the funding
// transaction is spent in an attempt at an uncooperative close by the
// counter party.
if err := l.chainNotifier.Start(); err != nil {
return err
}
// Pass the rpc client into the wallet so it can sync up to the current
// main chain.
l.SynchronizeRPC(l.rpc)
l.wg.Add(1)
// TODO(roasbeef): multiple request handlers?
go l.requestHandler()
return nil
}
// Shutdown gracefully stops the wallet, and all active goroutines.
func (l *LightningWallet) Shutdown() error {
if atomic.AddInt32(&l.shutdown, 1) != 1 {
return nil
}
// Signal the underlying wallet controller to shutdown, waiting until
// all active goroutines have been shutdown.
l.Stop()
l.WaitForShutdown()
l.rpc.Shutdown()
l.chainNotifier.Stop()
close(l.quit)
l.wg.Wait()
return nil
}
// requestHandler is the primary goroutine(s) resposible for handling, and
// dispatching relies to all messages.
func (l *LightningWallet) requestHandler() {
out:
for {
select {
case m := <-l.msgChan:
switch msg := m.(type) {
case *initFundingReserveMsg:
l.handleFundingReserveRequest(msg)
case *fundingReserveCancelMsg:
l.handleFundingCancelRequest(msg)
case *addContributionMsg:
l.handleContributionMsg(msg)
case *addCounterPartySigsMsg:
l.handleFundingCounterPartySigs(msg)
}
case <-l.quit:
// TODO: do some clean up
break out
}
}
l.wg.Done()
}
// InitChannelReservation kicks off the 3-step workflow required to succesfully
// open a payment channel with a remote node. As part of the funding
// reservation, the inputs selected for the funding transaction are 'locked'.
// This ensures that multiple channel reservations aren't double spending the
// same inputs in the funding transaction. If reservation initialization is
// succesful, a ChannelReservation containing our completed contribution is
// returned. Our contribution contains all the items neccessary to allow the
// counter party to build the funding transaction, and both versions of the
// commitment transaction. Otherwise, an error occured a nil pointer along with
// an error are returned.
//
// Once a ChannelReservation has been obtained, two
// additional steps must be processed before a payment channel can be considered
// 'open'. The second step validates, and processes the counterparty's channel
// contribution. The third, and final step verifies all signatures for the inputs
// of the funding transaction, and that the signature we records for our version
// of the commitment transaction is valid.
func (l *LightningWallet) InitChannelReservation(a btcutil.Amount,
theirID [32]byte, csvDelay uint32) (*ChannelReservation, error) {
errChan := make(chan error, 1)
respChan := make(chan *ChannelReservation, 1)
l.msgChan <- &initFundingReserveMsg{
fundingAmount: a,
csvDelay: csvDelay,
nodeID: theirID,
err: errChan,
resp: respChan,
}
return <-respChan, <-errChan
}
// handleFundingReserveRequest processes a message intending to create, and
// validate a funding reservation request.
func (l *LightningWallet) handleFundingReserveRequest(req *initFundingReserveMsg) {
// Create a limbo and record entry for this newly pending funding request.
l.limboMtx.Lock()
id := l.nextFundingID
reservation := newChannelReservation(req.fundingAmount, req.minFeeRate, l, id)
l.nextFundingID++
l.fundingLimbo[id] = reservation
l.limboMtx.Unlock()
// Grab the mutex on the ChannelReservation to ensure thead-safety
reservation.Lock()
defer reservation.Unlock()
reservation.partialState.TheirLNID = req.nodeID
ourContribution := reservation.ourContribution
ourContribution.CsvDelay = req.csvDelay
reservation.partialState.LocalCsvDelay = req.csvDelay
// We hold the coin select mutex while querying for outputs, and
// performing coin selection in order to avoid inadvertent double spends
// accross funding transactions.
// NOTE: We don't use defer her so we can properly release the lock
// when we encounter an error condition.
l.coinSelectMtx.Lock()
// TODO(roasbeef): check if balance is insufficient, if so then select
// on two channels, one is a time.After that will bail out with
// insuffcient funds, the other is a notification that the balance has
// been updated make(chan struct{}, 1).
// Find all unlocked unspent witness outputs with greater than 6
// confirmations.
// TODO(roasbeef): make 6 a config paramter?
unspentOutputs, err := l.ListUnspentWitness(6)
if err != nil {
l.coinSelectMtx.Unlock()
req.err <- err
req.resp <- nil
return
}
// Convert the outputs to coins for coin selection below.
coins, err := outputsToCoins(unspentOutputs)
if err != nil {
l.coinSelectMtx.Unlock()
req.err <- err
req.resp <- nil
return
}
// Peform coin selection over our available, unlocked unspent outputs
// in order to find enough coins to meet the funding amount requirements.
//
// TODO(roasbeef): Should extend coinset with optimal coin selection
// heuristics for our use case.
// TODO(roasbeef): factor in fees..
// TODO(roasbeef): possibly integrate the fee prediction project? if
// results hold up...
// NOTE: this current selection assumes "priority" is still a thing.
selector := &coinset.MaxValueAgeCoinSelector{
MaxInputs: 10,
MinChangeAmount: 10000,
}
selectedCoins, err := selector.CoinSelect(req.fundingAmount, coins)
if err != nil {
l.coinSelectMtx.Unlock()
req.err <- err
req.resp <- nil
return
}
// Lock the selected coins. These coins are now "reserved", this
// prevents concurrent funding requests from referring to and this
// double-spending the same set of coins.
ourContribution.Inputs = make([]*wire.TxIn, len(selectedCoins.Coins()))
for i, coin := range selectedCoins.Coins() {
txout := wire.NewOutPoint(coin.Hash(), coin.Index())
l.LockOutpoint(*txout)
// Empty sig script, we'll actually sign if this reservation is
// queued up to be completed (the other side accepts).
outPoint := wire.NewOutPoint(coin.Hash(), coin.Index())
ourContribution.Inputs[i] = wire.NewTxIn(outPoint, nil, nil)
}
l.coinSelectMtx.Unlock()
// Create some possibly neccessary change outputs.
selectedTotalValue := coinset.NewCoinSet(selectedCoins.Coins()).TotalValue()
if selectedTotalValue > req.fundingAmount {
ourContribution.ChangeOutputs = make([]*wire.TxOut, 1)
// Change is necessary. Query for an available change address to
// send the remainder to.
changeAddr, err := l.NewChangeAddress(waddrmgr.DefaultAccountNum,
waddrmgr.WitnessPubKey)
if err != nil {
req.err <- err
req.resp <- nil
return
}
changeAddrScript, err := txscript.PayToAddrScript(changeAddr)
if err != nil {
req.err <- err
req.resp <- nil
return
}
changeAmount := selectedTotalValue - req.fundingAmount
ourContribution.ChangeOutputs[0] = wire.NewTxOut(int64(changeAmount),
changeAddrScript)
}
// TODO(roasbeef): re-calculate fees here to minFeePerKB, may need more inputs
// Grab two fresh keys from out HD chain, one will be used for the
// multi-sig funding transaction, and the other for the commitment
// transaction.
multiSigKey, err := l.getNextRawKey()
if err != nil {
req.err <- err
req.resp <- nil
return
}
commitKey, err := l.getNextRawKey()
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.partialState.MultiSigKey = multiSigKey
ourContribution.MultiSigKey = multiSigKey.PubKey()
reservation.partialState.OurCommitKey = commitKey
ourContribution.CommitKey = commitKey.PubKey()
// Generate a fresh address to be used in the case of a cooperative
// channel close.
deliveryAddress, err := l.NewAddress(waddrmgr.DefaultAccountNum,
waddrmgr.WitnessPubKey)
if err != nil {
req.err <- err
req.resp <- nil
return
}
deliveryScript, err := txscript.PayToAddrScript(deliveryAddress)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.partialState.OurDeliveryScript = deliveryScript
ourContribution.DeliveryAddress = deliveryAddress
// Create a new elkrem for verifiable transaction revocations. This
// will be used to generate revocation hashes for our past/current
// commitment transactions once we start to make payments within the
// channel.
// TODO(roabeef): should be HMAC based...REMOVE BEFORE ALPHA
var zero wire.ShaHash
elkremSender := elkrem.NewElkremSender(63, zero)
reservation.partialState.LocalElkrem = &elkremSender
firstPrimage, err := elkremSender.AtIndex(0)
if err != nil {
req.err <- err
req.resp <- nil
return
}
copy(ourContribution.RevocationHash[:], btcutil.Hash160(firstPrimage[:]))
// Funding reservation request succesfully handled. The funding inputs
// will be marked as unavailable until the reservation is either
// completed, or cancecled.
req.resp <- reservation
req.err <- nil
}
// handleFundingReserveCancel cancels an existing channel reservation. As part
// of the cancellation, outputs previously selected as inputs for the funding
// transaction via coin selection are freed allowing future reservations to
// include them.
func (l *LightningWallet) handleFundingCancelRequest(req *fundingReserveCancelMsg) {
// TODO(roasbeef): holding lock too long
// RLOCK?
l.limboMtx.Lock()
defer l.limboMtx.Unlock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
if !ok {
// TODO(roasbeef): make new error, "unkown funding state" or something
req.err <- fmt.Errorf("attempted to cancel non-existant funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thead-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
// Mark all previously locked outpoints as usuable for future funding
// requests.
for _, unusedInput := range pendingReservation.ourContribution.Inputs {
l.UnlockOutpoint(unusedInput.PreviousOutPoint)
}
// TODO(roasbeef): is it even worth it to keep track of unsed keys?
// TODO(roasbeef): Is it possible to mark the unused change also as
// available?
delete(l.fundingLimbo, req.pendingFundingID)
req.err <- nil
}
// handleFundingCounterPartyFunds processes the second workflow step for the
// lifetime of a channel reservation. Upon completion, the reservation will
// carry a completed funding transaction (minus the counterparty's input
// signatures), both versions of the commitment transaction, and our signature
// for their version of the commitment transaction.
func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) {
l.limboMtx.Lock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
l.limboMtx.Unlock()
if !ok {
req.err <- fmt.Errorf("attempted to update non-existant funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thead-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
// Create a blank, fresh transaction. Soon to be a complete funding
// transaction which will allow opening a lightning channel.
pendingReservation.partialState.FundingTx = wire.NewMsgTx()
fundingTx := pendingReservation.partialState.FundingTx
// Some temporary variables to cut down on the resolution verbosity.
pendingReservation.theirContribution = req.contribution
theirContribution := req.contribution
ourContribution := pendingReservation.ourContribution
// Add all multi-party inputs and outputs to the transaction.
for _, ourInput := range ourContribution.Inputs {
fundingTx.AddTxIn(ourInput)
}
for _, theirInput := range theirContribution.Inputs {
fundingTx.AddTxIn(theirInput)
}
for _, ourChangeOutput := range ourContribution.ChangeOutputs {
fundingTx.AddTxOut(ourChangeOutput)
}
for _, theirChangeOutput := range theirContribution.ChangeOutputs {
fundingTx.AddTxOut(theirChangeOutput)
}
ourKey := pendingReservation.partialState.MultiSigKey
theirKey := theirContribution.MultiSigKey
// Finally, add the 2-of-2 multi-sig output which will set up the lightning
// channel.
channelCapacity := int64(pendingReservation.partialState.Capacity)
redeemScript, multiSigOut, err := genFundingPkScript(ourKey.PubKey().SerializeCompressed(),
theirKey.SerializeCompressed(), channelCapacity)
if err != nil {
req.err <- err
return
}
// Register intent for notifications related to the funding output.
// This'll allow us to properly track the number of confirmations the
// funding tx has once it has been broadcasted.
lastBlock := l.Manager.SyncedTo()
scriptAddr, err := l.Manager.ImportScript(redeemScript, &lastBlock)
if err != nil {
req.err <- err
return
}
if err := l.rpc.NotifyReceived([]btcutil.Address{scriptAddr.Address()}); err != nil {
req.err <- err
return
}
pendingReservation.partialState.FundingRedeemScript = redeemScript
fundingTx.AddTxOut(multiSigOut)
// Sort the transaction. Since both side agree to a cannonical
// ordering, by sorting we no longer need to send the entire
// transaction. Only signatures will be exchanged.
txsort.InPlaceSort(pendingReservation.partialState.FundingTx)
// Next, sign all inputs that are ours, collecting the signatures in
// order of the inputs.
pendingReservation.ourFundingInputScripts = make([]*InputScript, 0, len(ourContribution.Inputs))
hashCache := txscript.NewTxSigHashes(fundingTx)
for i, txIn := range fundingTx.TxIn {
// Does the wallet know about the txin?
txDetail, _ := l.TxStore.TxDetails(&txIn.PreviousOutPoint.Hash)
if txDetail == nil {
continue
}
// Is this our txin?
prevIndex := txIn.PreviousOutPoint.Index
prevOut := txDetail.TxRecord.MsgTx.TxOut[prevIndex]
_, addrs, _, _ := txscript.ExtractPkScriptAddrs(prevOut.PkScript, l.cfg.NetParams)
apkh := addrs[0]
ai, err := l.Manager.Address(apkh)
if err != nil {
req.err <- fmt.Errorf("cannot get address info: %v", err)
return
}
pka := ai.(waddrmgr.ManagedPubKeyAddress)
privKey, err := pka.PrivKey()
if err != nil {
req.err <- fmt.Errorf("cannot get private key: %v", err)
return
}
var witnessProgram []byte
inputScript := &InputScript{}
// If we're spending p2wkh output nested within a p2sh output,
// then we'll need to attach a sigScript in addition to witness
// data.
if pka.IsNestedWitness() {
witnessProgram, err = txscript.PayToAddrScript(pka.Address())
if err != nil {
req.err <- fmt.Errorf("unable to create witness program: %v", err)
return
}
bldr := txscript.NewScriptBuilder()
bldr.AddData(witnessProgram)
scriptSig, err := bldr.Script()
if err != nil {
req.err <- fmt.Errorf("unable to create scriptsig: %v", err)
return
}
txIn.SignatureScript = scriptSig
inputScript.ScriptSig = scriptSig
} else {
witnessProgram = prevOut.PkScript
}
// Generate a valid witness stack for the input.
inputValue := prevOut.Value
witnessScript, err := txscript.WitnessScript(fundingTx, hashCache, i,
inputValue, witnessProgram, txscript.SigHashAll, privKey, true)
if err != nil {
req.err <- fmt.Errorf("cannot create witnessscript: %s", err)
return
}
txIn.Witness = witnessScript
inputScript.Witness = witnessScript
pendingReservation.ourFundingInputScripts = append(
pendingReservation.ourFundingInputScripts,
inputScript,
)
}
// Initialize an empty sha-chain for them, tracking the current pending
// revocation hash (we don't yet know the pre-image so we can't add it
// to the chain).
e := elkrem.NewElkremReceiver(63)
// TODO(roasbeef): this is incorrect!! fix before lnstate integration
var zero wire.ShaHash
if err := e.AddNext(&zero); err != nil {
req.err <- nil
return
}
pendingReservation.partialState.RemoteElkrem = &e
pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationHash
// Grab the hash of the current pre-image in our chain, this is needed
// for our commitment tx.
// TODO(roasbeef): grab partial state above to avoid long attr chain
ourCurrentRevokeHash := pendingReservation.ourContribution.RevocationHash
// Create the txIn to our commitment transaction. In the process, we
// need to locate the index of the multi-sig output on the funding tx
// since the outputs are cannonically sorted.
fundingNTxid := fundingTx.TxSha() // NOTE: assumes testnet-L
_, multiSigIndex := findScriptOutputIndex(fundingTx, multiSigOut.PkScript)
fundingTxIn := wire.NewTxIn(wire.NewOutPoint(&fundingNTxid, multiSigIndex), nil, nil)
// With the funding tx complete, create both commitment transactions.
initialBalance := ourContribution.FundingAmount
pendingReservation.fundingLockTime = theirContribution.CsvDelay
ourCommitKey := ourContribution.CommitKey
theirCommitKey := theirContribution.CommitKey
ourCommitTx, err := createCommitTx(fundingTxIn, ourCommitKey, theirCommitKey,
ourCurrentRevokeHash[:], theirContribution.CsvDelay,
initialBalance, initialBalance)
if err != nil {
req.err <- err
return
}
theirCommitTx, err := createCommitTx(fundingTxIn, theirCommitKey, ourCommitKey,
theirContribution.RevocationHash[:], theirContribution.CsvDelay,
initialBalance, initialBalance)
if err != nil {
req.err <- err
return
}
// Sort both transactions according to the agreed upon cannonical
// ordering. This lets us skip sending the entire transaction over,
// instead we'll just send signatures.
txsort.InPlaceSort(ourCommitTx)
txsort.InPlaceSort(theirCommitTx)
deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress)
if err != nil {
req.err <- err
return
}
// Record newly available information witin the open channel state.
pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay
pendingReservation.partialState.TheirDeliveryScript = deliveryScript
pendingReservation.partialState.ChanID = fundingNTxid
pendingReservation.partialState.TheirCommitKey = theirCommitKey
pendingReservation.partialState.TheirCommitTx = theirCommitTx
pendingReservation.partialState.OurCommitTx = ourCommitTx
// Generate a signature for their version of the initial commitment
// transaction.
sigTheirCommit, err := txscript.RawTxInSignature(theirCommitTx, 0, redeemScript,
txscript.SigHashAll, ourKey)
if err != nil {
req.err <- err
return
}
pendingReservation.ourCommitmentSig = sigTheirCommit
req.err <- nil
}
// handleFundingCounterPartySigs is the final step in the channel reservation
// workflow. During this setp, we validate *all* the received signatures for
// inputs to the funding transaction. If any of these are invalid, we bail,
// and forcibly cancel this funding request. Additionally, we ensure that the
// signature we received from the counterparty for our version of the commitment
// transaction allows us to spend from the funding output with the addition of
// our signature.
func (l *LightningWallet) handleFundingCounterPartySigs(msg *addCounterPartySigsMsg) {
l.limboMtx.RLock()
pendingReservation, ok := l.fundingLimbo[msg.pendingFundingID]
l.limboMtx.RUnlock()
if !ok {
msg.err <- fmt.Errorf("attempted to update non-existant funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thead-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
// Now we can complete the funding transaction by adding their
// signatures to their inputs.
pendingReservation.theirFundingInputScripts = msg.theirFundingInputScripts
fundingTx := pendingReservation.partialState.FundingTx
sigIndex := 0
fundingHashCache := txscript.NewTxSigHashes(fundingTx)
for i, txin := range fundingTx.TxIn {
if len(txin.Witness) == 0 {
// Attach the input scripts so we can verify it below.
inputScripts := pendingReservation.theirFundingInputScripts
txin.Witness = inputScripts[sigIndex].Witness
txin.SignatureScript = inputScripts[sigIndex].ScriptSig
// Fetch the alleged previous output along with the
// pkscript referenced by this input.
prevOut := txin.PreviousOutPoint
output, err := l.rpc.GetTxOut(&prevOut.Hash, prevOut.Index, false)
if output == nil {
msg.err <- fmt.Errorf("input to funding tx does not exist: %v", err)
return
}
pkScript, err := hex.DecodeString(output.ScriptPubKey.Hex)
if err != nil {
msg.err <- err
return
}
// Sadly, gettxout returns the output value in BTC
// instead of satoshis.
inputValue := int64(output.Value) * 1e8
// Ensure that the witness+sigScript combo is valid.
vm, err := txscript.NewEngine(pkScript,
fundingTx, i, txscript.StandardVerifyFlags, nil,
fundingHashCache, inputValue)
if err != nil {
// TODO(roasbeef): cancel at this stage if invalid sigs?
msg.err <- fmt.Errorf("cannot create script engine: %s", err)
return
}
if err = vm.Execute(); err != nil {
msg.err <- fmt.Errorf("cannot validate transaction: %s", err)
return
}
sigIndex++
}
}
// At this point, we can also record and verify their signature for our
// commitment transaction.
pendingReservation.theirCommitmentSig = msg.theirCommitmentSig
commitTx := pendingReservation.partialState.OurCommitTx
theirKey := pendingReservation.theirContribution.MultiSigKey
ourKey := pendingReservation.partialState.MultiSigKey
// Re-generate both the redeemScript and p2sh output. We sign the
// redeemScript script, but include the p2sh output as the subscript
// for verification.
redeemScript := pendingReservation.partialState.FundingRedeemScript
p2wsh, err := witnessScriptHash(redeemScript)
if err != nil {
msg.err <- err
return
}
// First, we sign our copy of the commitment transaction ourselves.
channelValue := int64(pendingReservation.partialState.Capacity)
hashCache := txscript.NewTxSigHashes(commitTx)
ourCommitSig, err := txscript.RawTxInWitnessSignature(commitTx, hashCache, 0,
channelValue, redeemScript, txscript.SigHashAll, ourKey)
if err != nil {
msg.err <- err
return
}
// Next, create the spending scriptSig, and then verify that the script
// is complete, allowing us to spend from the funding transaction.
theirCommitSig := msg.theirCommitmentSig
ourKeySer := ourKey.PubKey().SerializeCompressed()
theirKeySer := theirKey.SerializeCompressed()
witness := spendMultiSig(redeemScript, ourKeySer, ourCommitSig,
theirKeySer, theirCommitSig)
// Finally, create an instance of a Script VM, and ensure that the
// Script executes succesfully.
inputValue := pendingReservation.partialState.Capacity
fmt.Println(inputValue)
commitTx.TxIn[0].Witness = witness
vm, err := txscript.NewEngine(p2wsh,
commitTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(inputValue))
if err != nil {
msg.err <- err
return
}
if err := vm.Execute(); err != nil {
msg.err <- fmt.Errorf("counterparty's commitment signature is invalid: %v", err)
return
}
// Funding complete, this entry can be removed from limbo.
l.limboMtx.Lock()
delete(l.fundingLimbo, pendingReservation.reservationID)
// TODO(roasbeef): unlock outputs here, Store.InsertTx will handle marking
// input in unconfirmed tx, so future coin selects don't pick it up
// * also record location of change address so can use AddCredit
l.limboMtx.Unlock()
// Add the complete funding transaction to the DB, in it's open bucket
// which will be used for the lifetime of this channel.
if err := pendingReservation.partialState.FullSync(); err != nil {
msg.err <- err
return
}
// Create a goroutine to watch the chain so we can open the channel once
// the funding tx has enough confirmations.
// TODO(roasbeef): add number of confs to the confi
go l.openChannelAfterConfirmations(pendingReservation, 3)
msg.err <- nil
}
// openChannelAfterConfirmations creates, and opens a payment channel after
// the funding transaction created within the passed channel reservation
// obtains the specified number of confirmations.
func (l *LightningWallet) openChannelAfterConfirmations(res *ChannelReservation, numConfs uint32) {
// Register with the ChainNotifier for a notification once the funding
// transaction reaches `numConfs` confirmations.
txid := res.partialState.FundingTx.TxSha()
confNtfn, _ := l.chainNotifier.RegisterConfirmationsNtfn(&txid, numConfs)
// Wait until the specified number of confirmations has been reached,
// or the wallet signals a shutdown.
out:
select {
case <-confNtfn.Confirmed:
break out
case <-l.quit:
res.chanOpen <- nil
return
}
// Finally, create and officially open the payment channel!
// TODO(roasbeef): CreationTime once tx is 'open'
channel, _ := newLightningChannel(l, l.chainNotifier, l.channelDB,
res.partialState)
res.chanOpen <- channel
}
// getNextRawKey retrieves the next key within our HD key-chain for use within
// as a multi-sig key within the funding transaction, or within the commitment
// transaction's outputs.
// TODO(roasbeef): on shutdown, write state of pending keys, then read back?
func (l *LightningWallet) getNextRawKey() (*btcec.PrivateKey, error) {
l.KeyGenMtx.Lock()
defer l.KeyGenMtx.Unlock()
nextAddr, err := l.Manager.NextExternalAddresses(waddrmgr.DefaultAccountNum,
1, waddrmgr.WitnessPubKey)
if err != nil {
return nil, err
}
pkAddr := nextAddr[0].(waddrmgr.ManagedPubKeyAddress)
return pkAddr.PrivKey()
}
// ListUnspentWitness returns a slice of all the unspent outputs the wallet
// controls which pay to witness programs either directly or indirectly.
func (l *LightningWallet) ListUnspentWitness(minConfs int32) ([]*btcjson.ListUnspentResult, error) {
// First, grab all the unfiltered currently unspent outputs.
maxConfs := int32(math.MaxInt32)
unspentOutputs, err := l.ListUnspent(minConfs, maxConfs, nil)
if err != nil {
return nil, err
}
// Next, we'll run through all the regular outputs, only saving those
// which are p2wkh outputs or a p2wsh output nested within a p2sh output.
witnessOutputs := make([]*btcjson.ListUnspentResult, 0, len(unspentOutputs))
for _, output := range unspentOutputs {
pkScript, err := hex.DecodeString(output.ScriptPubKey)
if err != nil {
return nil, err
}
// TODO(roasbeef): this assumes all p2sh outputs returned by
// the wallet are nested p2sh...
if txscript.IsPayToWitnessPubKeyHash(pkScript) ||
txscript.IsPayToScriptHash(pkScript) {
witnessOutputs = append(witnessOutputs, output)
}
}
return witnessOutputs, nil
}
type WaddrmgrEncryptorDecryptor struct {
M *waddrmgr.Manager
}
func (w *WaddrmgrEncryptorDecryptor) Encrypt(p []byte) ([]byte, error) {
return w.M.Encrypt(waddrmgr.CKTPrivate, p)
}
func (w *WaddrmgrEncryptorDecryptor) Decrypt(c []byte) ([]byte, error) {
return w.M.Decrypt(waddrmgr.CKTPrivate, c)
}
func (w *WaddrmgrEncryptorDecryptor) OverheadSize() uint32 {
return 24
}