lnd.xprv/lnd_test.go
Conner Fromknecht b64d4356c1
lnd_test: adds breach test for remote hodl
This commit alters the existing retribution
  post breach conf test case with the intention
  of testing the correct response in event that
  the remote party broadcasts a prior state
  while HTLCs have been extended. This serves
  as a preliminary integration for an expansion
  of the breach arbiter integration tests.

  The primary change involves using the new
  htlchodl mode for debugging, which causes the
  remote peer to ignore any intent to settle
  incoming HTLCs. The result is that any
  payments sent to the remote party are held in
  limbo, allowing us to test for these
  conditions more accurately.

  Currently the test case only tests that the
  justice transaction is mined. After we have
  fully integrated the breach arbiter to sweep
  2nd layer HTLCs, this test will be altered
  to check for spends from the appropriate
  inputs.
2017-09-19 19:18:20 -07:00

3641 lines
118 KiB
Go

// +build rpctest
package main
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"os"
"path/filepath"
"strings"
"sync"
"testing"
"time"
"sync/atomic"
"encoding/hex"
"reflect"
"crypto/rand"
prand "math/rand"
"github.com/btcsuite/btclog"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/integration/rpctest"
"github.com/roasbeef/btcd/rpcclient"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
"golang.org/x/net/context"
"google.golang.org/grpc"
)
// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aid in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
t *testing.T
// testCase is populated during test execution and represents the
// current test case.
testCase *testCase
}
// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
return &harnessTest{t, nil}
}
// Fatalf causes the current active test case to fail with a fatal error. All
// integration tests should mark test failures solely with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()
if h.testCase != nil {
h.t.Fatalf("Failed: (%v): exited with error: \n"+
"%v", h.testCase.name, stacktrace)
} else {
h.t.Fatalf("Error outside of test: %v", stacktrace)
}
}
// RunTestCase executes a harness test case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase, net *networkHarness) {
h.testCase = testCase
defer func() {
h.testCase = nil
}()
defer func() {
if err := recover(); err != nil {
description := errors.Wrap(err, 2).ErrorStack()
h.t.Fatalf("Failed: (%v) paniced with: \n%v",
h.testCase.name, description)
}
}()
testCase.test(net, h)
return
}
func (h *harnessTest) Logf(format string, args ...interface{}) {
h.t.Logf(format, args...)
}
func (h *harnessTest) Log(args ...interface{}) {
h.t.Log(args...)
}
func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
for _, tx := range block.Transactions {
sha := tx.TxHash()
if bytes.Equal(txid[:], sha[:]) {
return
}
}
t.Fatalf("funding tx was not included in block")
}
// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain.
func mineBlocks(t *harnessTest, net *networkHarness, num uint32) []*wire.MsgBlock {
blocks := make([]*wire.MsgBlock, num)
blockHashes, err := net.Miner.Node.Generate(num)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
for i, blockHash := range blockHashes {
block, err := net.Miner.Node.GetBlock(blockHash)
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
blocks[i] = block
}
return blocks
}
// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
alice, bob *lightningNode, fundingAmt btcutil.Amount,
pushAmt btcutil.Amount) *lnrpc.ChannelPoint {
chanOpenUpdate, err := net.OpenChannel(ctx, alice, bob, fundingAmt,
pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
assertTxInBlock(t, block, fundingTxID)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
return fundingChanPoint
}
// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed lighting node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block.
func closeChannelAndAssert(ctx context.Context, t *harnessTest, net *networkHarness,
node *lightningNode, fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {
closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
txid, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to convert to chainhash: %v", err)
}
chanPointStr := fmt.Sprintf("%v:%v", txid, fundingChanPoint.OutputIndex)
// If we didn't force close the transaction, at this point, the channel
// should now be marked as being in the state of "pending close".
if !force {
pendingChansRequest := &lnrpc.PendingChannelRequest{}
pendingChanResp, err := node.PendingChannels(ctx, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
for _, pendingClose := range pendingChanResp.PendingClosingChannels {
if pendingClose.Channel.ChannelPoint == chanPointStr {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as pending close")
}
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, closingTxid)
return closingTxid
}
// numOpenChannelsPending sends an RPC request to a node to get a count of the
// node's channels that are currently in a pending state (with a broadcast, but
// not confirmed funding transaction).
func numOpenChannelsPending(ctxt context.Context, node *lightningNode) (int, error) {
pendingChansRequest := &lnrpc.PendingChannelRequest{}
resp, err := node.PendingChannels(ctxt, pendingChansRequest)
if err != nil {
return 0, err
}
return len(resp.PendingOpenChannels), nil
}
// assertNumOpenChannelsPending asserts that a pair of nodes have the expected
// number of pending channels between them.
func assertNumOpenChannelsPending(ctxt context.Context, t *harnessTest,
alice, bob *lightningNode, expected int) {
aliceNumChans, err := numOpenChannelsPending(ctxt, alice)
if err != nil {
t.Fatalf("error fetching alice's node (%v) pending channels %v",
alice.nodeID, err)
}
bobNumChans, err := numOpenChannelsPending(ctxt, bob)
if err != nil {
t.Fatalf("error fetching bob's node (%v) pending channels %v",
bob.nodeID, err)
}
if aliceNumChans != expected {
t.Fatalf("number of pending channels for alice incorrect. "+
"expected %v, got %v", expected, aliceNumChans)
}
if bobNumChans != expected {
t.Fatalf("number of pending channels for bob incorrect. "+
"expected %v, got %v",
expected, bobNumChans)
}
}
//assertNumConnections asserts number current connections between two peers
func assertNumConnections(
ctxt context.Context,
t *harnessTest,
alice, bob *lightningNode,
expected int) {
const nPolls = 10
tick := time.Tick(300 * time.Millisecond)
for i := nPolls - 1; i >= 0; i-- {
select {
case <-tick:
aNumPeers, err := alice.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch alice's node (%v) list peers %v",
alice.nodeID, err)
}
bNumPeers, err := bob.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("unable to fetch bob's node (%v) list peers %v",
bob.nodeID, err)
}
if len(aNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to alice is incorrect: "+
"expected %v, got %v", expected, len(aNumPeers.Peers))
}
if len(bNumPeers.Peers) != expected {
// Continue polling if this is not the final
// loop.
if i > 0 {
continue
}
t.Fatalf("number of peers connected to bob is incorrect: "+
"expected %v, got %v", expected, len(bNumPeers.Peers))
}
// Alice and Bob both have the required number of
// peers, stop polling and return to caller.
return
}
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
//
// TODO(bvu): Refactor when dynamic fee estimation is added.
//
// TODO(roasbeef): can remove as fee info now exposed in listchannels?
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(50/4) * 1000
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(100000)
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob with Alice pushing 100k satoshis to Bob's side during
// funding. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
ctxt, _ = context.WithTimeout(ctxb, time.Second*15)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't report channel: %v", err)
}
// With then channel open, ensure that the amount specified above has
// properly been pushed to Bob.
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get alice's balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get bobs's balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
t.Fatalf("alice's balance is incorrect: expected %v got %v",
chanAmt-pushAmt-calcStaticFee(0), aliceBal)
}
if bobBal.Balance != int64(pushAmt) {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
pushAmt, bobBal.Balance)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testDisconnectingTargetPeer performs a test which
// disconnects Alice-peer from Bob-peer and then re-connects them again
func testDisconnectingTargetPeer(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
ctxt, _ := context.WithTimeout(ctxb, timeout)
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 1
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have
// been broadcast, but not confirmed. Alice and Bob's nodes
// should reflect this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)
// Disconnect Alice-peer from Bob-peer and get error
// causes by one pending channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one pending channel is existing: err %v", err)
}
time.Sleep(time.Millisecond * 300)
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Millisecond * 300)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: pendingUpdate.Txid,
OutputIndex: pendingUpdate.OutputIndex,
}
// Disconnect Alice-peer from Bob-peer and get error
// causes by one active channel with detach node is existing.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
t.Fatalf("Bob's peer was disconnected from Alice's"+
" while one active channel is existing: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, true)
// Disconnect Alice-peer from Bob-peer without getting error
// about existing channels.
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect Bob's peer from Alice's: err %v", err)
}
// Check zero peer connections.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 0)
// Finally, re-connect both nodes.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect Alice's peer to Bob's: err %v", err)
}
// Check existing connection.
assertNumConnections(ctxb, t, net.Alice, net.Bob, 1)
}
// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(0)
timeout := time.Duration(time.Second * 10)
// As we need to create a channel that requires more than 1
// confirmation before it's open, with the current set of defaults,
// we'll need to create a new node instance.
const numConfs = 5
carolArgs := []string{fmt.Sprintf("--defaultchanconfs=%v", numConfs)}
carol, err := net.NewNode(carolArgs)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// Create a new channel that requires 5 confs before it's considered
// open, then broadcast the funding transaction
ctxt, _ = context.WithTimeout(ctxb, timeout)
pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, carol,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed. Alice and Bob's nodes should reflect
// this when queried via RPC.
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
if err != nil {
t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
" %v", err)
}
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := mineBlocks(t, net, 1)[0]
assertTxInBlock(t, block, fundingTxID)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if err := net.RestartNode(carol, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// The following block ensures that after both nodes have restarted,
// they have reconnected before the execution of the next test.
peersTimeout := time.After(15 * time.Second)
checkPeersTick := time.NewTicker(100 * time.Millisecond)
defer checkPeersTick.Stop()
peersPoll:
for {
select {
case <-peersTimeout:
t.Fatalf("peers unable to reconnect after restart")
case <-checkPeersTick.C:
peers, err := carol.ListPeers(ctxb,
&lnrpc.ListPeersRequest{})
if err != nil {
t.Fatalf("ListPeers error: %v\n", err)
}
if len(peers.Peers) > 0 {
break peersPoll
}
}
}
// Next, mine enough blocks s.t the channel will open with a single
// additional block mined.
if _, err := net.Miner.Node.Generate(3); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Both nodes should still show a single channel as pending.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)
// Finally, mine the last block which should mark the channel as open.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
time.Sleep(time.Second * 1)
ctxt, _ = context.WithTimeout(ctxb, timeout)
assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 0)
// The channel should be listed in the peer information returned by
// both peers.
outPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: pendingUpdate.OutputIndex,
}
// Check both nodes to ensure that the channel is ready for operation.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.AssertChannelExists(ctxt, carol, &outPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: pendingUpdate.Txid,
OutputIndex: pendingUpdate.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Clean up carol's node.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testChannelBalance creates a new channel between Alice and Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
// Open a channel with 0.16 BTC between Alice and Bob, ensuring the
// channel has been opened properly.
amount := maxFundingAmount
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node lnrpc.LightningClient,
amount btcutil.Amount) {
response, err := node.ChannelBalance(ctx, &lnrpc.ChannelBalanceRequest{})
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
balance := btcutil.Amount(response.Balance)
if balance != amount {
t.Fatalf("channel balance wrong: %v != %v", balance,
amount)
}
}
chanPoint := openChannelAndAssert(ctx, t, net, net.Alice, net.Bob,
amount, 0)
// Wait for both Alice and Bob to recognize this new channel.
ctxt, _ := context.WithTimeout(context.Background(), timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// As this is a single funder channel, Alice's balance should be
// exactly 0.5 BTC since now state transitions have taken place yet.
checkChannelBalance(net.Alice, amount-calcStaticFee(0))
// Ensure Bob currently has no available balance within the channel.
checkChannelBalance(net.Bob, 0)
// Finally close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
ctx, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Bob, then
// force closes the channel after some cursory assertions. Within the test, two
// transactions should be broadcast on-chain, the commitment transaction itself
// (which closes the channel), and the sweep transaction a few blocks later
// once the output(s) become mature. This test also includes several restarts
// to ensure that the transaction output states are persisted throughout
// the forced closure process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 10)
ctxb := context.Background()
// Before we start, obtain Bob's current wallet balance, we'll check to
// ensure that at the end of the force closure by Alice, Bob recognizes
// his new on-chain output.
bobBalReq := &lnrpc.WalletBalanceRequest{}
bobBalResp, err := net.Bob.WalletBalance(ctxb, bobBalReq)
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
}
bobStartingBalance := btcutil.Amount(bobBalResp.Balance * 1e8)
// First establish a channel with a capacity of 100k satoshis between
// Alice and Bob. We also push 50k satoshis of the initial amount
// towards Bob.
numFundingConfs := uint32(1)
chanAmt := btcutil.Amount(10e4)
pushAmt := btcutil.Amount(5e4)
chanOpenUpdate, err := net.OpenChannel(ctxb, net.Alice, net.Bob,
chanAmt, pushAmt)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
if _, err := net.Miner.Node.Generate(numFundingConfs); err != nil {
t.Fatalf("unable to mine block: %v", err)
}
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel to open: %v", err)
}
// Now that the channel is open, immediately execute a force closure of
// the channel. This will also assert that the commitment transaction
// was immediately broadcast in order to fulfill the force closure
// request.
_, closingTxID, err := net.CloseChannel(ctxb, net.Alice, chanPoint, true)
if err != nil {
t.Fatalf("unable to execute force channel closure: %v", err)
}
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the force close section.
pendingChansRequest := &lnrpc.PendingChannelRequest{}
pendingChanResp, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
var found bool
txid, _ := chainhash.NewHash(chanPoint.FundingTxid[:])
op := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
for _, forceClose := range pendingChanResp.PendingForceClosingChannels {
if forceClose.Channel.ChannelPoint == op.String() {
found = true
break
}
}
if !found {
t.Fatalf("channel not marked as force close for alice")
}
// TODO(roasbeef): should check default value in config here instead,
// or make delay a param
const defaultCSV = 4
// The several restarts in this test are intended to ensure that when a
// channel is force-closed, the UTXO nursery has persisted the state of
// the channel in the closure process and will recover the correct state
// when the system comes back on line. This restart tests state
// persistence at the beginning of the process, when the commitment
// transaction has been broadcast but not yet confirmed in a block.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Mine a block which should confirm the commitment transaction
// broadcast as a result of the force closure.
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// The following sleep provides time for the UTXO nursery to move the
// output from the preschool to the kindergarten database buckets
// prior to RestartNode() being triggered. Without this sleep, the
// database update may fail, causing the UTXO nursery to retry the move
// operation upon restart. This will change the blockheights from what
// is expected by the test.
// TODO(bvu): refactor out this sleep.
duration := time.Millisecond * 300
time.Sleep(duration)
// Now that the channel has been force closed, it should now have the
// height and number of blocks to confirm populated.
pendingChan, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChan.PendingForceClosingChannels) == 0 {
t.Fatalf("channel not marked as force close for alice")
}
forceClosedChan := pendingChan.PendingForceClosingChannels[0]
if forceClosedChan.MaturityHeight == 0 {
t.Fatalf("force close channel marked as not confirmed")
}
if forceClosedChan.BlocksTilMaturity != defaultCSV {
t.Fatalf("force closed channel has incorrect maturity time: "+
"expected %v, got %v", forceClosedChan.BlocksTilMaturity,
defaultCSV)
}
// The following restart is intended to ensure that outputs from the
// force close commitment transaction have been persisted once the
// transaction has been confirmed, but before the outputs are spendable
// (the "kindergarten" bucket.)
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
// Currently within the codebase, the default CSV is 4 relative blocks.
// For the persistence test, we generate three blocks, then trigger
// a restart and then generate the final block that should trigger
// the creation of the sweep transaction.
if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// The following restart checks to ensure that outputs in the kindergarten
// bucket are persisted while waiting for the required number of
// confirmations to be reported.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("Node restart failed: %v", err)
}
if _, err := net.Miner.Node.Generate(1); err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// At this point, the sweeping transaction should now be broadcast. So
// we fetch the node's mempool to ensure it has been properly
// broadcast.
var sweepingTXID *chainhash.Hash
var mempool []*chainhash.Hash
mempoolTimeout := time.After(3 * time.Second)
checkMempoolTick := time.NewTicker(100 * time.Millisecond)
defer checkMempoolTick.Stop()
mempoolPoll:
for {
select {
case <-mempoolTimeout:
t.Fatalf("sweep tx not found in mempool")
case <-checkMempoolTick.C:
mempool, err = net.Miner.Node.GetRawMempool()
if err != nil {
t.Fatalf("unable to fetch node's mempool: %v", err)
}
if len(mempool) != 0 {
break mempoolPoll
}
}
}
// There should be exactly one transaction within the mempool at this
// point.
// TODO(roasbeef): assertion may not necessarily hold with concurrent
// test executions
if len(mempool) != 1 {
t.Fatalf("node's mempool is wrong size, expected 1 got %v",
len(mempool))
}
sweepingTXID = mempool[0]
// Fetch the sweep transaction, all input it's spending should be from
// the commitment transaction which was broadcast on-chain.
sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
if err != nil {
t.Fatalf("unable to fetch sweep tx: %v", err)
}
for _, txIn := range sweepTx.MsgTx().TxIn {
if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
t.Fatalf("sweep transaction not spending from commit "+
"tx %v, instead spending %v",
closingTxID, txIn.PreviousOutPoint)
}
}
// Finally, we mine an additional block which should include the sweep
// transaction as the input scripts and the sequence locks on the
// inputs should be properly met.
blockHash, err := net.Miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := net.Miner.Node.GetBlock(blockHash[0])
if err != nil {
t.Fatalf("unable to get block: %v", err)
}
assertTxInBlock(t, block, sweepTx.Hash())
// Now that the channel has been fully swept, it should no longer show
// up within the pending channels RPC.
time.Sleep(time.Millisecond * 300)
pendingChans, err := net.Alice.PendingChannels(ctxb, pendingChansRequest)
if err != nil {
t.Fatalf("unable to query for pending channels: %v", err)
}
if len(pendingChans.PendingForceClosingChannels) != 0 {
t.Fatalf("no channels should be shown as force closed")
}
// At this point, Bob should now be aware of his new immediately
// spendable on-chain balance, as it was Alice who broadcast the
// commitment transaction.
bobBalResp, err = net.Bob.WalletBalance(ctxb, bobBalReq)
if err != nil {
t.Fatalf("unable to get bob's balance: %v", err)
}
bobExpectedBalance := bobStartingBalance + pushAmt
if btcutil.Amount(bobBalResp.Balance*1e8) < bobExpectedBalance {
t.Fatalf("bob's balance is incorrect: expected %v got %v",
bobExpectedBalance, btcutil.Amount(bobBalResp.Balance*1e8))
}
}
func testSingleHopInvoice(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice being
// the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
assertAmountSent := func(amt btcutil.Amount) {
// Both channels should also have properly accounted from the
// amount that has been sent/received over the channel.
listReq := &lnrpc.ListChannelsRequest{}
aliceListChannels, err := net.Alice.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for alice's channel list: %v", err)
}
aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
if aliceSatoshisSent != int64(amt) {
t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
aliceSatoshisSent, amt)
}
bobListChannels, err := net.Bob.ListChannels(ctxb, listReq)
if err != nil {
t.Fatalf("unable to query for bob's channel list: %v", err)
}
bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
if bobSatoshisReceived != int64(amt) {
t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
bobSatoshisReceived, amt)
}
}
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("A"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Ensure we obtain the proper preimage in the response.
if resp, err := sendStream.Recv(); err != nil {
t.Fatalf("payment stream has been close: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v", err)
} else if !bytes.Equal(preimage, resp.PaymentPreimage) {
t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
resp.GetPaymentPreimage())
}
// Bob's invoice should now be found and marked as settled.
payHash := &lnrpc.PaymentHash{
RHash: invoiceResp.RHash,
}
dbInvoice, err := net.Bob.LookupInvoice(ctxb, payHash)
if err != nil {
t.Fatalf("unable to lookup invoice: %v", err)
}
if !dbInvoice.Settled {
t.Fatalf("bob's invoice should be marked as settled: %v",
spew.Sdump(dbInvoice))
}
// With the payment completed all balance related stats should be
// properly updated.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt)
// Create another invoice for Bob, this time leaving off the preimage
// to one will be randomly generated. We'll test the proper
// encoding/decoding of the zpay32 payment requests.
invoice = &lnrpc.Invoice{
Memo: "test3",
Value: paymentAmt,
}
invoiceResp, err = net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Next send another payment, but this time using a zpay32 encoded
// invoice rather than manually specifying the payment details.
if err := sendStream.Send(&lnrpc.SendRequest{
PaymentRequest: invoiceResp.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := sendStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v",
resp.PaymentError)
}
// The second payment should also have succeeded, with the balances
// being update accordingly.
time.Sleep(time.Millisecond * 200)
assertAmountSent(paymentAmt * 2)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testListPayments(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// First start by deleting all payments that Alice knows of. This will
// allow us to execute the test with a clean state for Alice.
delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
if _, err := net.Alice.DeleteAllPayments(ctxb, delPaymentsReq); err != nil {
t.Fatalf("unable to delete payments: %v", err)
}
// Check that there are no payments before test.
reqInit := &lnrpc.ListPaymentsRequest{}
paymentsRespInit, err := net.Alice.ListPayments(ctxb, reqInit)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsRespInit.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Now that the channel is open, create an invoice for Bob which
// expects a payment of 1000 satoshis from Alice paid via a particular
// preimage.
const paymentAmt = 1000
preimage := bytes.Repeat([]byte("B"), 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
addInvoiceCtxt, _ := context.WithTimeout(ctxb, timeout)
invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Wait for Alice to recognize and advertise the new channel generated
// above.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't advertise channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't advertise channel before "+
"timeout: %v", err)
}
// With the invoice for Bob added, send a payment towards Alice paying
// to the above generated invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := sendStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v",
resp.PaymentError)
}
// Grab Alice's list of payments, she should show the existence of
// exactly one payment.
req := &lnrpc.ListPaymentsRequest{}
paymentsResp, err := net.Alice.ListPayments(ctxb, req)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 1 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsResp.Payments), 1)
}
p := paymentsResp.Payments[0]
// Ensure that the stored path shows a direct payment to Bob with no
// other nodes in-between.
expectedPath := []string{
net.Bob.PubKeyStr,
}
if !reflect.DeepEqual(p.Path, expectedPath) {
t.Fatalf("incorrect path, got %v, want %v",
p.Path, expectedPath)
}
// The payment amount should also match our previous payment directly.
if p.Value != paymentAmt {
t.Fatalf("incorrect amount, got %v, want %v",
p.Value, paymentAmt)
}
// The payment hash (or r-hash) should have been stored correctly.
correctRHash := hex.EncodeToString(invoiceResp.RHash)
if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
t.Fatalf("incorrect RHash, got %v, want %v",
p.PaymentHash, correctRHash)
}
// Finally, as we made a single-hop direct payment, there should have
// been no fee applied.
if p.Fee != 0 {
t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
}
// Delete all payments from Alice. DB should have no payments.
delReq := &lnrpc.DeleteAllPaymentsRequest{}
_, err = net.Alice.DeleteAllPayments(ctxb, delReq)
if err != nil {
t.Fatalf("Can't delete payments at the end: %v", err)
}
// Check that there are no payments before test.
listReq := &lnrpc.ListPaymentsRequest{}
paymentsResp, err = net.Alice.ListPayments(ctxb, listReq)
if err != nil {
t.Fatalf("error when obtaining Alice payments: %v", err)
}
if len(paymentsResp.Payments) != 0 {
t.Fatalf("incorrect number of payments, got %v, want %v",
len(paymentsRespInit.Payments), 0)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
func testMultiHopPayments(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(100000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice,
net.Bob, chanAmt, 0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("alice didn't advertise her channel: %v", err)
}
aliceChanTXID, err := chainhash.NewHash(chanPointAlice.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// Create a new node (Carol), load her with some funds, then establish
// a connection between Carol and Alice with a channel that has
// identical capacity to the one created above.
//
// The network topology should now look like: Carol -> Alice -> Bob
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, carol, net.Alice); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
err = net.SendCoins(ctxb, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPointCarol := openChannelAndAssert(ctxt, t, net, carol,
net.Alice, chanAmt, 0)
carolChanTXID, err := chainhash.NewHash(chanPointCarol.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
rHashes := make([][]byte, numPayments)
for i := 0; i < numPayments; i++ {
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
rHashes[i] = resp.RHash
}
// Wait for carol to recognize both the Channel from herself to Carol,
// and also the channel from Alice to Bob.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
if err != nil {
t.Fatalf("carol didn't see the alice->bob channel before timeout: %v", err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created above.
carolPayStream, err := carol.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for carol: %v", err)
}
// Concurrently pay off all 5 of Bob's invoices. Each of the goroutines
// will unblock on the recv once the HTLC it sent has been fully
// settled.
var wg sync.WaitGroup
for _, rHash := range rHashes {
sendReq := &lnrpc.SendRequest{
PaymentHash: rHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := carolPayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := carolPayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("unable to recv pay resp: %v",
resp.PaymentError)
}
}
finClear := make(chan struct{})
go func() {
wg.Wait()
close(finClear)
}()
select {
case <-time.After(time.Second * 10):
t.Fatalf("HTLCs not cleared after 10 seconds")
case <-finClear:
}
// When asserting the amount of satoshis moved, we'll factor in the
// default base fee, as we didn't modify the fee structure when
// creating the seed nodes in the network.
const baseFee = 1
assertAmountPaid := func(node *lightningNode,
chanPoint wire.OutPoint, amountSent,
amountReceived int64) {
channelName := ""
switch chanPoint {
case carolFundPoint:
channelName = "Carol(local) => Alice(remote)"
case aliceFundPoint:
channelName = "Alice(local) => Bob(remote)"
}
checkAmountPaid := func() error {
listReq := &lnrpc.ListChannelsRequest{}
resp, err := node.ListChannels(ctxb, listReq)
if err != nil {
return fmt.Errorf("unable to for node's "+
"channels: %v", err)
}
for _, channel := range resp.Channels {
if channel.ChannelPoint != chanPoint.String() {
continue
}
if channel.TotalSatoshisSent != amountSent {
return fmt.Errorf("%v: incorrect amount"+
" sent: %v != %v", channelName,
channel.TotalSatoshisSent,
amountSent)
}
if channel.TotalSatoshisReceived !=
amountReceived {
return fmt.Errorf("%v: incorrect amount"+
" received: %v != %v",
channelName,
channel.TotalSatoshisReceived,
amountReceived)
}
return nil
}
return fmt.Errorf("channel not found")
}
// As far as HTLC inclusion in commitment transaction might be
// postponed we will try to check the balance couple of
// times, and then if after some period of time we receive wrong
// balance return the error.
// TODO(roasbeef): remove sleep after invoice notification hooks
// are in place
var timeover uint32
go func() {
<-time.After(time.Second * 20)
atomic.StoreUint32(&timeover, 1)
}()
for {
isTimeover := atomic.LoadUint32(&timeover) == 1
if err := checkAmountPaid(); err != nil {
if isTimeover {
t.Fatalf("Check amount Paid failed: %v", err)
}
} else {
break
}
}
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->Alice->Bob, order is Bob,Alice,Carol.
const amountPaid = int64(5000)
assertAmountPaid(net.Bob, aliceFundPoint, int64(0), amountPaid)
assertAmountPaid(net.Alice, aliceFundPoint, amountPaid, int64(0))
assertAmountPaid(net.Alice, carolFundPoint, int64(0),
amountPaid+(baseFee*numPayments))
assertAmountPaid(carol, carolFundPoint, amountPaid+(baseFee*numPayments),
int64(0))
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
// Finally, shutdown the node we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
func testInvoiceSubscriptions(net *networkHarness, t *harnessTest) {
const chanAmt = btcutil.Amount(500000)
ctxb := context.Background()
timeout := time.Duration(time.Second * 5)
// Open a channel with 500k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// Next create a new invoice for Bob requesting 1k satoshis.
// TODO(roasbeef): make global list of invoices for each node to re-use
// and avoid collisions
const paymentAmt = 1000
preimage := bytes.Repeat([]byte{byte(90)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
// Create a new invoice subscription client for Bob, the notification
// should be dispatched shortly below.
req := &lnrpc.InvoiceSubscription{}
bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctxb, req)
if err != nil {
t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
}
updateSent := make(chan struct{})
go func() {
invoiceUpdate, err := bobInvoiceSubscription.Recv()
if err != nil {
t.Fatalf("unable to recv invoice update: %v", err)
}
// The invoice update should exactly match the invoice created
// above, but should now be settled.
if !invoiceUpdate.Settled {
t.Fatalf("invoice not settled but shoudl be")
}
if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
t.Fatalf("payment preimages don't match: expected %v, got %v",
invoice.RPreimage, invoiceUpdate.RPreimage)
}
close(updateSent)
}()
// Wait for the channel to be recognized by both Alice and Bob before
// continuing the rest of the test.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
// TODO(roasbeef): will need to make num blocks to advertise a
// node param
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// With the assertion above set up, send a payment from Alice to Bob
// which should finalize and settle the invoice.
sendStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create alice payment stream: %v", err)
}
sendReq := &lnrpc.SendRequest{
PaymentHash: invoiceResp.RHash,
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := sendStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := sendStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v",
resp.PaymentError)
}
select {
case <-time.After(time.Second * 5):
t.Fatalf("update not sent after 5 seconds")
case <-updateSent: // Fall through on success
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBasicChannelCreation test multiple channel opening and closing.
func testBasicChannelCreation(net *networkHarness, t *harnessTest) {
const (
numChannels = 2
timeout = time.Duration(time.Second * 5)
amount = maxFundingAmount
)
// Open the channel between Alice and Bob, asserting that the
// channel has been properly open on-chain.
chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
for i := 0; i < numChannels; i++ {
ctx, _ := context.WithTimeout(context.Background(), timeout)
chanPoints[i] = openChannelAndAssert(ctx, t, net, net.Alice,
net.Bob, amount, 0)
// We need to give Bob a bit of time to make sure the newly
// opened channel is not still pending.
if i != numChannels-1 {
time.Sleep(time.Millisecond * 500)
}
}
// Close the channel between Alice and Bob, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctx, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, false)
}
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *networkHarness, t *harnessTest) {
maxPendingChannels := defaultMaxPendingChannels + 1
amount := maxFundingAmount
timeout := time.Duration(time.Second * 10)
ctx, _ := context.WithTimeout(context.Background(), timeout)
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol, err := net.NewNode(args)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
if err := net.ConnectNodes(ctx, net.Alice, carol); err != nil {
t.Fatalf("unable to connect carol to alice: %v", err)
}
ctx, _ = context.WithTimeout(context.Background(), timeout)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
if err := net.SendCoins(ctx, carolBalance, carol); err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't open
// the channel if the number of pending channels exceed max value.
openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
for i := 0; i < maxPendingChannels; i++ {
ctx, _ = context.WithTimeout(context.Background(), timeout)
stream, err := net.OpenChannel(ctx, net.Alice, carol, amount,
0)
if err != nil {
t.Fatalf("unable to open channel: %v", err)
}
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ctx, _ = context.WithTimeout(context.Background(), timeout)
_, err = net.OpenChannel(ctx, net.Alice, carol, amount, 0)
if err == nil {
t.Fatalf("error wasn't received")
} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
t.Fatalf("not expected error was received: %v", err)
}
// For now our channels are in pending state, in order to not interfere
// with other tests we should clean up - complete opening of the
// channel and then close it.
// Mine a block, then wait for node's to notify us that the channel has
// been opened. The funding transactions should be found within the
// newly mined block.
block := mineBlocks(t, net, 1)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
fundingTxID, err := chainhash.NewHash(fundingChanPoint.FundingTxid)
if err != nil {
t.Fatalf("unable to create sha hash: %v", err)
}
// Ensure that the funding transaction enters a block, and is
// properly advertised by Alice.
assertTxInBlock(t, block, fundingTxID)
ctxt, _ = context.WithTimeout(context.Background(), timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, fundingChanPoint)
if err != nil {
t.Fatalf("channel not seen on network before "+
"timeout: %v", err)
}
// The channel should be listed in the peer information
// returned by both peers.
chanPoint := wire.OutPoint{
Hash: *fundingTxID,
Index: fundingChanPoint.OutputIndex,
}
if err := net.AssertChannelExists(ctx, net.Alice, &chanPoint); err != nil {
t.Fatalf("unable to assert channel existence: %v", err)
}
chanPoints[i] = fundingChanPoint
}
// Next, close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ctxt, _ := context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// Finally, shutdown the node we created for the duration of the tests,
// only leaving the two seed nodes (Alice and Bob) within our test
// network.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
func copyFile(dest, src string) error {
s, err := os.Open(src)
if err != nil {
return err
}
defer s.Close()
d, err := os.Create(dest)
if err != nil {
return err
}
if _, err := io.Copy(d, s); err != nil {
d.Close()
return err
}
return d.Close()
}
func waitForTxInMempool(miner *rpcclient.Client,
timeout time.Duration) (*chainhash.Hash, error) {
var txid *chainhash.Hash
breakTimeout := time.After(timeout)
ticker := time.NewTicker(50 * time.Millisecond)
defer ticker.Stop()
poll:
for {
select {
case <-breakTimeout:
return nil, errors.New("no tx found in mempool")
case <-ticker.C:
mempool, err := miner.GetRawMempool()
if err != nil {
return nil, err
}
if len(mempool) == 0 {
continue
}
txid = mempool[0]
break poll
}
}
return txid, nil
}
// testRevokedCloseRetributinPostBreachConf tests that Alice is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = maxFundingAmount
paymentAmt = 10000
numInvoices = 6
)
// In order to test Alice's response to an uncooperative channel
// closure by Bob, we'll first open up a channel between them with a
// 0.5 BTC value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// With the channel open, we'll create a few invoices for Bob that
// Alice will pay to in order to advance the state of the channel.
bobPaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(255 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPaymentHashes[i] = resp.RHash
}
// As we'll be querying the state of bob's channels frequently we'll
// create a closure helper function for the purpose.
getBobChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
bobChannelInfo, err := net.Bob.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(bobChannelInfo.Channels) != 1 {
t.Fatalf("bob should only have a single channel, instead he has %v",
len(bobChannelInfo.Channels))
}
return bobChannelInfo.Channels[0], nil
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Bob. We also create a small helper function to send payments to Bob,
// consuming the payment hashes we generated above.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendPayments := func(start, stop int) error {
for i := start; i < stop; i++ {
sendReq := &lnrpc.SendRequest{
PaymentHash: bobPaymentHashes[i],
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
return err
}
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v",
resp.PaymentError)
}
}
return nil
}
// Send payments from Alice to Bob using 3 of Bob's payment hashes
// generated above.
if err := sendPayments(0, numInvoices/2); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// Next query for Bob's channel state, as we sent 3 payments of 10k
// satoshis each, Bob should now see his balance as being 30k satoshis.
time.Sleep(time.Millisecond * 200)
bobChan, err := getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bobChan.LocalBalance != 30000 {
t.Fatalf("bob's balance is incorrect, got %v, expected %v",
bobChan.LocalBalance, 30000)
}
// Grab Bob's current commitment height (update number), we'll later
// revert him to this state after additional updates to force him to
// broadcast this soon to be revoked state.
bobStateNumPreCopy := bobChan.NumUpdates
// Create a temporary file to house Bob's database state at this
// particular point in history.
bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
defer os.Remove(bobTempDbPath)
// With the temporary file created, copy Bob's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
bobDbPath := filepath.Join(net.Bob.cfg.DataDir, "simnet/bitcoin/channel.db")
if err := copyFile(bobTempDbFile, bobDbPath); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Bob, consuming Bob's remaining
// payment hashes.
if err := sendPayments(numInvoices/2, numInvoices); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
// Now we shutdown Bob, copying over the his temporary database state
// which has the *prior* channel state over his current most up to date
// state. With this, we essentially force Bob to travel back in time
// within the channel's history.
if err = net.RestartNode(net.Bob, func() error {
return os.Rename(bobTempDbFile, bobDbPath)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
// Now query for Bob's channel state, it should show that he's at a
// state number in the past, not the *latest* state.
bobChan, err = getBobChanInfo()
if err != nil {
t.Fatalf("unable to get bob chan info: %v", err)
}
if bobChan.NumUpdates != bobStateNumPreCopy {
t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
}
// Now force Bob to execute a *force* channel closure by unilaterally
// broadcasting his current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so he'll soon
// feel the wrath of Alice's retribution.
force := true
closeUpdates, _, err := net.CloseChannel(ctxb, net.Bob, chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Wait for Bob's breach transaction to show up in the mempool to ensure
// that Alice's node has started waiting for confirmations.
_, err = waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
}
// Here, Alice sees Bob's breach transaction in the mempool, but is waiting
// for it to confirm before continuing her retribution. We restart Alice to
// ensure that she is persisting her retribution state and continues
// watching for the breach transaction to confirm even after her node
// restarts.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Finally, generate a single block, wait for the final close status
// update, then ensure that the closing transaction was included in the
// block.
block := mineBlocks(t, net, 1)[0]
breachTXID, err := net.WaitForChannelClose(ctxb, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// Query for the mempool transaction found above. Then assert that all
// the inputs of this transaction are spending outputs generated by
// Bob's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// We restart Alice here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Alice has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Alice restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Finally, obtain Alice's channel state, she shouldn't report any
// channel as she just successfully brought Bob to justice by sweeping
// all the channel funds.
req := &lnrpc.ListChannelsRequest{}
aliceChanInfo, err := net.Alice.ListChannels(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's channels: %v", err)
}
if len(aliceChanInfo.Channels) != 0 {
t.Fatalf("alice shouldn't have a channel: %v",
spew.Sdump(aliceChanInfo.Channels))
}
}
// testRevokedCloseRetributionRemoteHodl tests that Alice properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(
net *networkHarness,
t *harnessTest) {
ctxb := context.Background()
const (
timeout = time.Duration(time.Second * 10)
chanAmt = maxFundingAmount
pushAmt = 20000
paymentAmt = 10000
numInvoices = 6
)
// Since this test will result in the counterparty being left in a weird
// state, we will introduce another node into our test network: Carol.
carol, err := net.NewNode([]string{"--debughtlc", "--hodlhtlc"})
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Alice communicate with Carol before they are able to
// open channel, so we connect Alice and Carol,
if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
t.Fatalf("unable to connect alice to carol: %v", err)
}
// In order to test Alice's response to an uncooperative channel
// closure by Carol, we'll first open up a channel between them with a
// maxFundingAmount (2^24) satoshis value.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, carol,
chanAmt, pushAmt)
// With the channel open, we'll create a few invoices for Carol that
// Alice will pay to in order to advance the state of the channel.
carolPaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := bytes.Repeat([]byte{byte(192 - i)}, 32)
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := carol.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
carolPaymentHashes[i] = resp.RHash
}
// As we'll be querying the state of Carol's channels frequently we'll
// create a closure helper function for the purpose.
getCarolChanInfo := func() (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
carolChannelInfo, err := carol.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(carolChannelInfo.Channels) != 1 {
t.Fatalf("carol should only have a single channel, instead he has %v",
len(carolChannelInfo.Channels))
}
return carolChannelInfo.Channels[0], nil
}
// We'll introduce a closure to validate that Carol's current balance
// matches the given expected amount.
checkCarolBalance := func(expectedAmt int64) {
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.LocalBalance != expectedAmt {
t.Fatalf("carol's balance is incorrect, "+
"got %v, expected %v", carolChan.LocalBalance,
expectedAmt)
}
}
// We'll introduce another closure to validate that Carol's current
// number of updates is at least as large as the provided minimum
// number.
checkCarolNumUpdatesAtleast := func(minimum uint64) {
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
if carolChan.NumUpdates < minimum {
t.Fatalf("carol's numupdates is incorrect, want %v "+
"to be atleast %v", carolChan.NumUpdates,
minimum)
}
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->carol channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Carol. We also create a small helper function to send payments to
// Carol, consuming the payment hashes we generated above.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
sendPayments := func(start, stop int, isHodl bool) error {
for i := start; i < stop; i++ {
sendReq := &lnrpc.SendRequest{
PaymentHash: carolPaymentHashes[i],
Dest: carol.PubKey[:],
Amt: paymentAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
return err
}
// If the remote peer is in hodl mode, we should not
// attempt to receive a message, otherwise the test will
// block.
if isHodl {
continue
}
// Otherwise, the peer is not in hodl mode, and we will
// expect a response.
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("error when attempting recv: %v",
resp.PaymentError)
}
}
return nil
}
// Ensure that carol's balance starts with the amount we pushed to her.
checkCarolBalance(pushAmt)
// Send payments from Alice to Carol using 3 of Carol's payment hashes
// generated above.
if err := sendPayments(0, numInvoices/2, true); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(time.Millisecond * 200)
// Next query for Carol's channel state, as we sent 3 payments of 10k
// satoshis each, however Carol should now see her balance as being
// equal to the push amount in satoshis since she has not settled.
carolChan, err := getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol's channel info: %v", err)
}
// Grab Carol's current commitment height (update number), we'll later
// revert her to this state after additional updates to force her to
// broadcast this soon to be revoked state.
carolStateNumPreCopy := carolChan.NumUpdates
// Ensure that carol's balance still reflects the original amount we
// pushed to her.
checkCarolBalance(pushAmt)
// Since Carol has not settled, she should only see at least one update
// to her channel.
checkCarolNumUpdatesAtleast(1)
// Create a temporary file to house Carol's database state at this
// particular point in history.
carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
if err != nil {
t.Fatalf("unable to create temp db folder: %v", err)
}
carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
defer os.Remove(carolTempDbPath)
// With the temporary file created, copy Carol's current state into the
// temporary file we created above. Later after more updates, we'll
// restore this state.
carolDbPath := filepath.Join(carol.cfg.DataDir, "simnet/bitcoin/channel.db")
if err := copyFile(carolTempDbFile, carolDbPath); err != nil {
t.Fatalf("unable to copy database files: %v", err)
}
// Finally, send payments from Alice to Carol, consuming Carol's remaining
// payment hashes.
if err := sendPayments(numInvoices/2, numInvoices, true); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that carol's balance still shows the amount we originally
// pushed to her, and that at least one more update has occurred.
checkCarolBalance(pushAmt)
checkCarolNumUpdatesAtleast(carolStateNumPreCopy + 1)
// Now we shutdown Carol, copying over the her temporary database state
// which has the *prior* channel state over her current most up to date
// state. With this, we essentially force Carol to travel back in time
// within the channel's history.
if err = net.RestartNode(carol, func() error {
return os.Rename(carolTempDbFile, carolDbPath)
}); err != nil {
t.Fatalf("unable to restart node: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Ensure that Carol's view of the channel is consistent with the
// state of the channel just before it was snapshotted.
checkCarolBalance(pushAmt)
checkCarolNumUpdatesAtleast(1)
// Now query for Carol's channel state, it should show that she's at a
// state number in the past, *not* the latest state.
carolChan, err = getCarolChanInfo()
if err != nil {
t.Fatalf("unable to get carol chan info: %v", err)
}
if carolChan.NumUpdates != carolStateNumPreCopy {
t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
}
// Now force Carol to execute a *force* channel closure by unilaterally
// broadcasting her current channel state. This is actually the
// commitment transaction of a prior *revoked* state, so she'll soon
// feel the wrath of Alice's retribution.
force := true
closeUpdates, _, err := net.CloseChannel(ctxb, carol, chanPoint, force)
if err != nil {
t.Fatalf("unable to close channel: %v", err)
}
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Bob's contract breaching transaction gets confirmed
// above.
_, err = waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(200 * time.Millisecond)
// Generate a single block to mine the breach transaction.
block := mineBlocks(t, net, 1)[0]
// Wait so Alice receives a confirmation of Carol's breach transaction.
time.Sleep(200 * time.Millisecond)
// We restart Alice to ensure that she is persisting her retribution
// state and continues exacting justice after her node restarts.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to stop Alice's node: %v", err)
}
// Finally, Wait for the final close status update, then ensure that the
// closing transaction was included in the block.
breachTXID, err := net.WaitForChannelClose(ctxb, closeUpdates)
if err != nil {
t.Fatalf("error while waiting for channel close: %v", err)
}
assertTxInBlock(t, block, breachTXID)
// Query the mempool for Alice's justice transaction, this should be
// broadcast as Carol's contract breaching transaction gets confirmed
// above.
justiceTXID, err := waitForTxInMempool(net.Miner.Node, 5*time.Second)
if err != nil {
t.Fatalf("unable to find Alice's justice tx in mempool: %v", err)
}
time.Sleep(100 * time.Millisecond)
// We restart Alice here to ensure that she persists her retribution state
// and successfully continues exacting retribution after restarting. At
// this point, Alice has broadcast the justice transaction, but it hasn't
// been confirmed yet; when Alice restarts, she should start waiting for
// the justice transaction to confirm again.
if err := net.RestartNode(net.Alice, nil); err != nil {
t.Fatalf("unable to restart Alice's node: %v", err)
}
// Query for the mempool transaction found above. Then assert that (1)
// the justice tx has the appropriate number of inputs, and (2) all
// the inputs of this transaction are spending outputs generated by
// Carol's breach transaction above.
justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
if err != nil {
t.Fatalf("unable to query for justice tx: %v", err)
}
exNumInputs := 2 + numInvoices/2
if len(justiceTx.MsgTx().TxIn) != exNumInputs {
t.Fatalf("justice tx should have exactly 2 commitment inputs"+
"and %v htlc inputs, expected %v in total, got %v",
numInvoices/2, exNumInputs,
len(justiceTx.MsgTx().TxIn))
}
for _, txIn := range justiceTx.MsgTx().TxIn {
if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
t.Fatalf("justice tx not spending commitment utxo "+
"instead is: %v", txIn.PreviousOutPoint)
}
}
// Now mine a block, this transaction should include Alice's justice
// transaction which was just accepted into the mempool.
block = mineBlocks(t, net, 1)[0]
// The block should have exactly *two* transactions, one of which is
// the justice transaction.
if len(block.Transactions) != 2 {
t.Fatalf("transaction wasn't mined")
}
justiceSha := block.Transactions[1].TxHash()
if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
t.Fatalf("justice tx wasn't mined")
}
// Finally, obtain Alice's channel state, she shouldn't report any
// channel as she just successfully brought Carol to justice by sweeping
// all the channel funds.
req := &lnrpc.ListChannelsRequest{}
aliceChanInfo, err := net.Alice.ListChannels(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's channels: %v", err)
}
if len(aliceChanInfo.Channels) != 0 {
t.Fatalf("alice shouldn't have a channel: %v",
spew.Sdump(aliceChanInfo.Channels))
}
}
func testHtlcErrorPropagation(net *networkHarness, t *harnessTest) {
// In this test we wish to exercise the daemon's correct parsing,
// handling, and propagation of errors that occur while processing a
// multi-hop payment.
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
const chanAmt = maxFundingAmount
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPointAlice := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
commitFee := calcStaticFee(0)
assertBaseBalance := func() {
balReq := &lnrpc.ChannelBalanceRequest{}
aliceBal, err := net.Alice.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
bobBal, err := net.Bob.ChannelBalance(ctxb, balReq)
if err != nil {
t.Fatalf("unable to get channel balance: %v", err)
}
if aliceBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("alice has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), aliceBal)
}
if bobBal.Balance != int64(chanAmt-commitFee) {
t.Fatalf("bob has an incorrect balance: expected %v got %v",
int64(chanAmt-commitFee), bobBal)
}
}
// Since we'd like to test some multi-hop failure scenarios, we'll
// introduce another node into our test network: Carol.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// Next, we'll create a connection from Bob to Carol, and open a
// channel between them so we have the topology: Alice -> Bob -> Carol.
// The channel created will be of lower capacity that the one created
// above.
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
const bobChanAmt = maxFundingAmount
chanPointBob := openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, 0)
// Ensure that Alice has Carol in her routing table before proceeding.
nodeInfoReq := &lnrpc.NodeInfoRequest{
PubKey: carol.PubKeyStr,
}
checkTableTimeout := time.After(time.Second * 10)
checkTableTicker := time.NewTicker(100 * time.Millisecond)
defer checkTableTicker.Stop()
out:
// TODO(roasbeef): make into async hook for node announcements
for {
select {
case <-checkTableTicker.C:
_, err := net.Alice.GetNodeInfo(ctxb, nodeInfoReq)
if err != nil && strings.Contains(err.Error(),
"unable to find") {
continue
}
break out
case <-checkTableTimeout:
t.Fatalf("carol's node announcement didn't propagate within " +
"the timeout period")
}
}
// With the channels, open we can now start to test our multi-hop error
// scenarios. First, we'll generate an invoice from carol that we'll
// use to test some error cases.
const payAmt = 10000
invoiceReq := &lnrpc.Invoice{
Memo: "kek99",
Value: payAmt,
}
carolInvoice, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
// Before we send the payment, ensure that the announcement of the new
// channel has been processed by Alice.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
t.Fatalf("channel not seen by alice before timeout: %v", err)
}
// TODO(roasbeef): return failure response rather than failing entire
// stream on payment error.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// For the first scenario, we'll test the cancellation of an HTLC with
// an unknown payment hash.
sendReq := &lnrpc.SendRequest{
PaymentHash: bytes.Repeat([]byte("Z"), 32), // Wrong hash.
Dest: carol.PubKey[:],
Amt: payAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should've resulted in an error since we went it with the
// wrong payment hash.
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to invalid " +
"payment hash")
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeUnknownPaymentHash.String()) {
// TODO(roasbeef): make into proper gRPC error code
t.Fatalf("payment should have failed due to unknown payment hash, "+
"instead failed due to: %v", resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// We need to create another payment stream since the first one was
// closed due to an error.
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// Next, we'll test the case of a recognized payHash but, an incorrect
// value on the extended HTLC.
sendReq = &lnrpc.SendRequest{
PaymentHash: carolInvoice.RHash,
Dest: carol.PubKey[:],
Amt: 1000, // 10k satoshis are expected.
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
// The payment should fail with an error since we sent 1k satoshis
// isn't of 10k as was requested.
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError == "" {
t.Fatalf("payment should have been rejected due to wrong " +
"HTLC amount")
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeIncorrectPaymentAmount.String()) {
t.Fatalf("payment should have failed due to wrong amount, "+
"instead failed due to: %v", resp.PaymentError)
}
// The balances of all parties should be the same as initially since
// the HTLC was cancelled.
assertBaseBalance()
// Next we'll test an error that occurs mid-route due to an outgoing
// link having insufficient capacity. In order to do so, we'll first
// need to unbalance the link connecting Bob<->Carol.
bobPayStream, err := net.Bob.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
// To do so, we'll push most of the funds in the channel over to
// Alice's side, leaving on 10k satoshis of available balance for bob.
// There's a max payment amount, so we'll have to do this
// incrementally.
amtToSend := int64(chanAmt) - 10000
amtSent := int64(0)
for amtSent != amtToSend {
// We'll send in chunks of the max payment amount. If we're
// about to send too much, then we'll only send the amount
// remaining.
toSend := int64(maxPaymentMSat.ToSatoshis())
if toSend+amtSent > amtToSend {
toSend = amtToSend - amtSent
}
invoiceReq = &lnrpc.Invoice{
Value: toSend,
}
carolInvoice2, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := bobPayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice2.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := bobPayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError != "" {
t.Fatalf("bob's payment failed: %v", resp.PaymentError)
}
amtSent += toSend
}
// At this point, Alice has 50mil satoshis on her side of the channel,
// but Bob only has 10k available on his side of the channel. So a
// payment from Alice to Carol worth 100k satoshis should fail.
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
invoiceReq = &lnrpc.Invoice{
Value: 100000,
}
carolInvoice3, err := carol.AddInvoice(ctxb, invoiceReq)
if err != nil {
t.Fatalf("unable to generate carol invoice: %v", err)
}
if err := alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice3.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError == "" {
t.Fatalf("payment should fail due to insufficient "+
"capacity: %v", err)
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeTemporaryChannelFailure.String()) {
t.Fatalf("payment should fail due to insufficient capacity, "+
"instead: %v", resp.PaymentError)
}
// For our final test, we'll ensure that if a target link isn't
// available for what ever reason then the payment fails accordingly.
//
// We'll attempt to complete the original invoice we created with Carol
// above, but before we do so, Carol will go offline, resulting in a
// failed payment.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
time.Sleep(time.Second * 2)
alicePayStream, err = net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream: %v", err)
}
if err := alicePayStream.Send(&lnrpc.SendRequest{
PaymentRequest: carolInvoice.PaymentRequest,
}); err != nil {
t.Fatalf("unable to send payment: %v", err)
}
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream has been closed: %v", err)
} else if resp.PaymentError == "" {
t.Fatalf("payment should have failed")
} else if !strings.Contains(resp.PaymentError,
lnwire.CodeUnknownNextPeer.String()) {
t.Fatalf("payment should fail due to unknown hop, instead: %v",
resp.PaymentError)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
// Force close Bob's final channel, also mining enough blocks to
// trigger a sweep of the funds by the utxoNursery.
// TODO(roasbeef): use config value for default CSV here.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)
if _, err := net.Miner.Node.Generate(5); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
}
func testGraphTopologyNotifications(net *networkHarness, t *harnessTest) {
const chanAmt = maxFundingAmount
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
// We'll first start by establishing a notification client to Alice
// which'll send us notifications upon detected changes in the channel
// graph.
req := &lnrpc.GraphTopologySubscription{}
topologyClient, err := net.Alice.SubscribeChannelGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to create topology client: %v", err)
}
// Open a new channel between Alice and Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, 0)
// We'll launch a goroutine that'll be responsible for proxying all
// notifications recv'd from the client into the channel below.
quit := make(chan struct{})
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate, 4)
go func() {
for {
select {
case <-quit:
return
default:
graphUpdate, err := topologyClient.Recv()
select {
case <-quit:
return
default:
}
if err == io.EOF {
return
} else if err != nil {
t.Fatalf("unable to recv graph update: %v", err)
}
select {
case graphUpdates <- graphUpdate:
case <-quit:
return
}
}
}
}()
// The channel opening above should've triggered a few notifications
// sent to the notification client. We'll expect two channel updates,
// and two node announcements.
const numExpectedUpdates = 4
for i := 0; i < numExpectedUpdates; i++ {
select {
// Ensure that a new update for both created edges is properly
// dispatched to our registered client.
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ChannelUpdates) > 0 {
chanUpdate := graphUpdate.ChannelUpdates[0]
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
switch chanUpdate.AdvertisingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
}
if len(graphUpdate.NodeUpdates) > 0 {
nodeUpdate := graphUpdate.NodeUpdates[0]
switch nodeUpdate.IdentityKey {
case net.Alice.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node: %v",
nodeUpdate.IdentityKey)
}
}
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notification %v", i)
}
}
_, blockHeight, err := net.Miner.Node.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// Now we'll test that updates upon a channel closure are properly sent
// when channels are closed within the network.
ctxt, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
// Similar to the case above, we should receive another notification
// detailing the channel closure.
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.ClosedChans) != 1 {
t.Fatalf("expected a single update, instead "+
"have %v", len(graphUpdate.ClosedChans))
}
closedChan := graphUpdate.ClosedChans[0]
if closedChan.ClosedHeight != uint32(blockHeight+1) {
t.Fatalf("close heights of channel mismatch: expected "+
"%v, got %v", blockHeight+1, closedChan.ClosedHeight)
}
if !bytes.Equal(closedChan.ChanPoint.FundingTxid,
chanPoint.FundingTxid) {
t.Fatalf("channel point hash mismatch: expected %v, "+
"got %v", chanPoint.FundingTxid,
closedChan.ChanPoint.FundingTxid)
}
if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
t.Fatalf("output index mismatch: expected %v, got %v",
chanPoint.OutputIndex, closedChan.ChanPoint)
}
case <-time.After(time.Second * 10):
t.Fatalf("notification for channel closure not " +
"sent")
}
// For the final portion of the test, we'll ensure that once a new node
// appears in the network, the proper notification is dispatched. Note
// that a node that does not have any channels open is ignored, so first
// we disconnect Alice and Bob, open a channel between Bob and Carol,
// and finally connect Alice to Bob again.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to disconnect alice and bob: %v", err)
}
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
if err := net.ConnectNodes(ctxb, net.Bob, carol); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, timeout)
chanPoint = openChannelAndAssert(ctxt, t, net, net.Bob, carol,
chanAmt, 0)
time.Sleep(time.Millisecond * 300)
// Reconnect Alice and Bob. This should result in the nodes syncing up
// their respective graph state, with the new addition being the
// existence of Carol in the graph, and also the channel between Bob
// and Carol. Note that we will also receive a node announcement from
// Bob, since a node will update its node announcement after a new
// channel is opened.
if err := net.ConnectNodes(ctxb, net.Alice, net.Bob); err != nil {
t.Fatalf("unable to connect alice to bob: %v", err)
}
// We should receive an update advertising the newly connected node,
// Bob's new node announcement, and the channel between Bob and Carol.
for i := 0; i < 3; i++ {
select {
case graphUpdate := <-graphUpdates:
if len(graphUpdate.NodeUpdates) > 0 {
nodeUpdate := graphUpdate.NodeUpdates[0]
switch nodeUpdate.IdentityKey {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown node update pubey: %v",
nodeUpdate.IdentityKey)
}
}
if len(graphUpdate.ChannelUpdates) > 0 {
chanUpdate := graphUpdate.ChannelUpdates[0]
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
switch chanUpdate.AdvertisingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case carol.PubKeyStr:
case net.Bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
}
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notification %v", i)
}
}
// Close the channel between Bob and Carol.
ctxt, _ = context.WithTimeout(context.Background(), timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
close(quit)
// Finally, shutdown carol as our test has concluded successfully.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
}
// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
ipAddresses := map[string]bool{
"192.168.1.1:8333": true,
"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337": true,
}
var lndArgs []string
for address := range ipAddresses {
lndArgs = append(lndArgs, "--externalip="+address)
}
dave, err := net.NewNode(lndArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
// We must let Dave have an open channel before he can send a node
// announcement, so we open a channel with Bob,
if err := net.ConnectNodes(ctxb, net.Bob, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
timeout := time.Duration(time.Second * 5)
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Bob, dave,
1000000, 0)
time.Sleep(time.Millisecond * 300)
// When Alice now connects with Dave, Alice will get his node announcement.
if err := net.ConnectNodes(ctxb, net.Alice, dave); err != nil {
t.Fatalf("unable to connect bob to carol: %v", err)
}
time.Sleep(time.Millisecond * 200)
req := &lnrpc.ChannelGraphRequest{}
chanGraph, err := net.Alice.DescribeGraph(ctxb, req)
if err != nil {
t.Fatalf("unable to query for alice's routing table: %v", err)
}
for _, node := range chanGraph.Nodes {
if node.PubKey == dave.PubKeyStr {
for _, address := range node.Addresses {
addrStr := address.String()
// parse the IP address from the string
// representation of the TCPAddr
parts := strings.Split(addrStr, "\"")
if ipAddresses[parts[3]] {
delete(ipAddresses, parts[3])
} else {
if !strings.HasPrefix(parts[3],
"127.0.0.1:") {
t.Fatalf("unexpected IP: %v",
parts[3])
}
}
}
}
}
if len(ipAddresses) != 0 {
t.Fatalf("expected IP addresses not in channel "+
"graph: %v", ipAddresses)
}
// Close the channel between Bob and Dave.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
if err := dave.Shutdown(); err != nil {
t.Fatalf("unable to shutdown dave: %v", err)
}
}
func testNodeSignVerify(net *networkHarness, t *harnessTest) {
timeout := time.Duration(time.Second * 5)
ctxb := context.Background()
chanAmt := maxFundingAmount
pushAmt := btcutil.Amount(100000)
// Create a channel between alice and bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
aliceBobCh := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
chanAmt, pushAmt)
aliceMsg := []byte("alice msg")
// alice signs "alice msg" and sends her signature to bob.
sigReq := &lnrpc.SignMessageRequest{Msg: aliceMsg}
sigResp, err := net.Alice.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
aliceSig := sigResp.Signature
// bob verifying alice's signature should succeed since alice and bob are
// connected.
verifyReq := &lnrpc.VerifyMessageRequest{Msg: aliceMsg, Signature: aliceSig}
verifyResp, err := net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if !verifyResp.Valid {
t.Fatalf("alice's signature didn't validate")
}
if verifyResp.Pubkey != net.Alice.PubKeyStr {
t.Fatalf("alice's signature doesn't contain alice's pubkey.")
}
// carol is a new node that is unconnected to alice or bob.
carol, err := net.NewNode(nil)
if err != nil {
t.Fatalf("unable to create new node: %v", err)
}
carolMsg := []byte("carol msg")
// carol signs "carol msg" and sends her signature to bob.
sigReq = &lnrpc.SignMessageRequest{Msg: carolMsg}
sigResp, err = carol.SignMessage(ctxb, sigReq)
if err != nil {
t.Fatalf("SignMessage rpc call failed: %v", err)
}
carolSig := sigResp.Signature
// bob verifying carol's signature should fail since they are not connected.
verifyReq = &lnrpc.VerifyMessageRequest{Msg: carolMsg, Signature: carolSig}
verifyResp, err = net.Bob.VerifyMessage(ctxb, verifyReq)
if err != nil {
t.Fatalf("VerifyMessage failed: %v", err)
}
if verifyResp.Valid {
t.Fatalf("carol's signature should not be valid")
}
if verifyResp.Pubkey != carol.PubKeyStr {
t.Fatalf("carol's signature doesn't contain her pubkey")
}
// Clean up carol's node.
if err := carol.Shutdown(); err != nil {
t.Fatalf("unable to shutdown carol: %v", err)
}
// Close the channel between alice and bob.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, aliceBobCh, false)
}
// testAsyncPayments tests the performance of the async payments, and also
// checks that balances of both sides can't be become negative under stress
// payment strikes.
func testAsyncPayments(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
// As we'll be querying the channels state frequently we'll
// create a closure helper function for the purpose.
getChanInfo := func(node *lightningNode) (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
channelInfo, err := node.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(channelInfo.Channels) != 1 {
t.Fatalf("node should only have a single channel, "+
"instead he has %v",
len(channelInfo.Channels))
}
return channelInfo.Channels[0], nil
}
const (
timeout = time.Duration(time.Second * 5)
paymentAmt = 100
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
paymentAmt*2000, 0)
info, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices.
numInvoices := int(info.LocalBalance / paymentAmt)
bobAmt := int64(numInvoices * paymentAmt)
aliceAmt := info.LocalBalance - bobAmt
// Send one more payment in order to cause insufficient capacity error.
numInvoices++
// Initialize seed random in order to generate invoices.
prand.Seed(time.Now().UnixNano())
// With the channel open, we'll create a invoices for Bob that
// Alice will pay to in order to advance the state of the channel.
bobPaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPaymentHashes[i] = resp.RHash
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
// Open up a payment stream to Alice that we'll use to send payment to
// Bob. We also create a small helper function to send payments to Bob,
// consuming the payment hashes we generated above.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
// Send payments from Alice to Bob using of Bob's payment hashes
// generated above.
now := time.Now()
for i := 0; i < numInvoices; i++ {
sendReq := &lnrpc.SendRequest{
PaymentHash: bobPaymentHashes[i],
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
if err := alicePayStream.Send(sendReq); err != nil {
t.Fatalf("unable to send payment: "+
"stream has been closed: %v", err)
}
}
// We should receive one insufficient capacity error, because we are
// sending on one invoice bigger.
errorReceived := false
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
t.Fatalf("payment stream have been closed: %v", err)
} else if resp.PaymentError != "" {
if strings.Contains(resp.PaymentError,
lnwire.CodeTemporaryChannelFailure.String()) {
if errorReceived {
t.Fatalf("redundant payment "+
"error: %v", resp.PaymentError)
}
errorReceived = true
continue
}
t.Fatalf("unable to send payment: %v", resp.PaymentError)
}
}
if !errorReceived {
t.Fatalf("insufficient capacity error haven't been received")
}
// All payments have been sent, mark the finish time.
timeTaken := time.Since(now)
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
aliceChan, err := getChanInfo(net.Alice)
if len(aliceChan.PendingHtlcs) != 0 {
t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
"expected %v", len(aliceChan.PendingHtlcs), 0)
}
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if aliceChan.RemoteBalance != bobAmt {
t.Fatalf("alice's remote balance is incorrect, got %v, "+
"expected %v", aliceChan.RemoteBalance, bobAmt)
}
if aliceChan.LocalBalance != aliceAmt {
t.Fatalf("alice's local balance is incorrect, got %v, "+
"expected %v", aliceChan.LocalBalance, aliceAmt)
}
// Wait for Bob to receive revocation from Alice.
time.Sleep(2 * time.Second)
bobChan, err := getChanInfo(net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if len(bobChan.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobChan.PendingHtlcs), 0)
}
if bobChan.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobChan.LocalBalance, bobAmt)
}
if bobChan.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobChan.RemoteBalance, aliceAmt)
}
t.Log("\tBenchmark info: Elapsed time: ", timeTaken)
t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/float64(timeTaken.Seconds()))
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
// testBidirectionalAsyncPayments tests that nodes are able to send the
// payments to each other in async manner without blocking.
func testBidirectionalAsyncPayments(net *networkHarness, t *harnessTest) {
ctxb := context.Background()
// As we'll be querying the channels state frequently we'll
// create a closure helper function for the purpose.
getChanInfo := func(node *lightningNode) (*lnrpc.ActiveChannel, error) {
req := &lnrpc.ListChannelsRequest{}
channelInfo, err := node.ListChannels(ctxb, req)
if err != nil {
return nil, err
}
if len(channelInfo.Channels) != 1 {
t.Fatalf("node should only have a single channel, "+
"instead he has %v",
len(channelInfo.Channels))
}
return channelInfo.Channels[0], nil
}
const (
timeout = time.Duration(time.Second * 5)
paymentAmt = 100
)
// First establish a channel with a capacity equals to the overall
// amount of payments, between Alice and Bob, at the end of the test
// Alice should send all money from her side to Bob.
ctxt, _ := context.WithTimeout(ctxb, timeout)
chanPoint := openChannelAndAssert(ctxt, t, net, net.Alice, net.Bob,
paymentAmt*2000, paymentAmt*1000)
info, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get alice channel info: %v", err)
}
// Calculate the number of invoices.
numInvoices := int(info.LocalBalance / paymentAmt)
// Nodes should exchange the same amount of money and because of this
// at the end balances should remain the same.
aliceAmt := info.LocalBalance
bobAmt := info.RemoteBalance
// Initialize seed random in order to generate invoices.
prand.Seed(time.Now().UnixNano())
// With the channel open, we'll create a invoices for Bob that
// Alice will pay to in order to advance the state of the channel.
bobPaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Bob.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
bobPaymentHashes[i] = resp.RHash
}
// With the channel open, we'll create a invoices for Alice that
// Bob will pay to in order to advance the state of the channel.
alicePaymentHashes := make([][]byte, numInvoices)
for i := 0; i < numInvoices; i++ {
preimage := make([]byte, 32)
_, err := rand.Read(preimage)
if err != nil {
t.Fatalf("unable to generate preimage: %v", err)
}
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
resp, err := net.Alice.AddInvoice(ctxb, invoice)
if err != nil {
t.Fatalf("unable to add invoice: %v", err)
}
alicePaymentHashes[i] = resp.RHash
}
// Wait for Alice to receive the channel edge from the funding manager.
ctxt, _ = context.WithTimeout(ctxb, timeout)
if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
t.Fatalf("bob didn't see the bob->alice channel before "+
"timeout: %v", err)
}
// Open up a payment streams to Alice and to Bob, that we'll use to
// send payment between nodes.
alicePayStream, err := net.Alice.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for alice: %v", err)
}
bobPayStream, err := net.Bob.SendPayment(ctxb)
if err != nil {
t.Fatalf("unable to create payment stream for bob: %v", err)
}
// Send payments from Alice to Bob and from Bob to Alice in async
// manner.
for i := 0; i < numInvoices; i++ {
aliceSendReq := &lnrpc.SendRequest{
PaymentHash: bobPaymentHashes[i],
Dest: net.Bob.PubKey[:],
Amt: paymentAmt,
}
bobSendReq := &lnrpc.SendRequest{
PaymentHash: alicePaymentHashes[i],
Dest: net.Alice.PubKey[:],
Amt: paymentAmt,
}
if err := alicePayStream.Send(aliceSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
if err := bobPayStream.Send(bobSendReq); err != nil {
t.Fatalf("unable to send payment: "+
"%v", err)
}
}
errChan := make(chan error)
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := alicePayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from alice to bob: %v",
resp.PaymentError)
}
}
errChan <- nil
}()
go func() {
for i := 0; i < numInvoices; i++ {
if resp, err := bobPayStream.Recv(); err != nil {
errChan <- errors.Errorf("payment stream has"+
" been closed: %v", err)
} else if resp.PaymentError != "" {
errChan <- errors.Errorf("unable to send "+
"payment from bob to alice: %v",
resp.PaymentError)
}
}
errChan <- nil
}()
// Wait for Alice and Bob receive their payments, and throw and error
// if something goes wrong.
maxTime := 20 * time.Second
for i := 0; i < 2; i++ {
select {
case err := <-errChan:
if err != nil {
t.Fatalf(err.Error())
}
case <-time.After(maxTime):
t.Fatalf("waiting for payments to finish too long "+
"(%v)", maxTime)
}
}
// Wait for Alice and Bob to receive revocations messages, and update
// states, i.e. balance info.
time.Sleep(1 * time.Second)
aliceInfo, err := getChanInfo(net.Alice)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if aliceInfo.RemoteBalance != bobAmt {
t.Fatalf("alice's remote balance is incorrect, got %v, "+
"expected %v", aliceInfo.RemoteBalance, bobAmt)
}
if aliceInfo.LocalBalance != aliceAmt {
t.Fatalf("alice's local balance is incorrect, got %v, "+
"expected %v", aliceInfo.LocalBalance, aliceAmt)
}
if len(aliceInfo.PendingHtlcs) != 0 {
t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
"expected %v", len(aliceInfo.PendingHtlcs), 0)
}
// Next query for Bob's and Alice's channel states, in order to confirm
// that all payment have been successful transmitted.
bobInfo, err := getChanInfo(net.Bob)
if err != nil {
t.Fatalf("unable to get bob's channel info: %v", err)
}
if bobInfo.LocalBalance != bobAmt {
t.Fatalf("bob's local balance is incorrect, got %v, expected"+
" %v", bobInfo.LocalBalance, bobAmt)
}
if bobInfo.RemoteBalance != aliceAmt {
t.Fatalf("bob's remote balance is incorrect, got %v, "+
"expected %v", bobInfo.RemoteBalance, aliceAmt)
}
if len(bobInfo.PendingHtlcs) != 0 {
t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
"expected %v", len(bobInfo.PendingHtlcs), 0)
}
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ctxt, _ = context.WithTimeout(ctxb, timeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}
type testCase struct {
name string
test func(net *networkHarness, t *harnessTest)
}
var testsCases = []*testCase{
{
name: "basic funding flow",
test: testBasicChannelFunding,
},
{
name: "disconnecting target peer",
test: testDisconnectingTargetPeer,
},
{
name: "graph topology notifications",
test: testGraphTopologyNotifications,
},
{
name: "funding flow persistence",
test: testChannelFundingPersistence,
},
{
name: "channel force closure",
test: testChannelForceClosure,
},
{
name: "channel balance",
test: testChannelBalance,
},
{
name: "single hop invoice",
test: testSingleHopInvoice,
},
{
name: "list outgoing payments",
test: testListPayments,
},
{
name: "max pending channel",
test: testMaxPendingChannels,
},
{
name: "multi-hop payments",
test: testMultiHopPayments,
},
{
name: "multiple channel creation",
test: testBasicChannelCreation,
},
{
name: "invoice update subscription",
test: testInvoiceSubscriptions,
},
{
name: "multi-hop htlc error propagation",
test: testHtlcErrorPropagation,
},
// TODO(roasbeef): multi-path integration test
{
name: "node announcement",
test: testNodeAnnouncement,
},
{
name: "node sign verify",
test: testNodeSignVerify,
},
{
name: "async payments benchmark",
test: testAsyncPayments,
},
{
name: "async bidirectional payments",
test: testBidirectionalAsyncPayments,
},
{
// TODO(roasbeef): test always needs to be last as Bob's state
// is borked since we trick him into attempting to cheat Alice?
name: "revoked uncooperative close retribution",
test: testRevokedCloseRetribution,
},
{
name: "revoked uncooperative close retribution remote hodl",
test: testRevokedCloseRetributionRemoteHodl,
},
}
// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
ht := newHarnessTest(t)
// First create the network harness to gain access to its
// 'OnTxAccepted' call back.
lndHarness, err := newNetworkHarness()
if err != nil {
ht.Fatalf("unable to create lightning network harness: %v", err)
}
// Set up teardowns. While it's easier to set up the lnd harness before
// the btcd harness, they should be torn down in reverse order to
// prevent certain types of hangs.
var btcdHarness *rpctest.Harness
defer func() {
if lndHarness != nil {
lndHarness.TearDownAll()
}
if btcdHarness != nil {
btcdHarness.TearDown()
}
}()
handlers := &rpcclient.NotificationHandlers{
OnTxAccepted: lndHarness.OnTxAccepted,
}
// Spawn a new goroutine to watch for any fatal errors that any of the
// running lnd processes encounter. If an error occurs, then the test
// fails immediately with a fatal error, as far as fatal is happening
// inside goroutine main goroutine would not be finished at the same
// time as we receive fatal error from lnd process.
testsFin := make(chan struct{})
go func() {
select {
case err := <-lndHarness.ProcessErrors():
ht.Fatalf("lnd finished with error (stderr): "+
"\n%v", err)
case <-testsFin:
return
}
}()
// First create an instance of the btcd's rpctest.Harness. This will be
// used to fund the wallets of the nodes within the test network and to
// drive blockchain related events within the network. Revert the default
// setting of accepting non-standard transactions on simnet to reject them.
// Transactions on the lightning network should always be standard to get
// better guarantees of getting included in to blocks.
args := []string{"--rejectnonstd"}
btcdHarness, err = rpctest.New(harnessNetParams, handlers, args)
if err != nil {
ht.Fatalf("unable to create mining node: %v", err)
}
// Turn off the btcd rpc logging, otherwise it will lead to panic.
// TODO(andrew.shvv|roasbeef) Remove the hack after re-work the way the log
// rotator os work.
rpcclient.UseLogger(btclog.Disabled)
if err := btcdHarness.SetUp(true, 50); err != nil {
ht.Fatalf("unable to set up mining node: %v", err)
}
if err := btcdHarness.Node.NotifyNewTransactions(false); err != nil {
ht.Fatalf("unable to request transaction notifications: %v", err)
}
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on SimNet.
numBlocks := chaincfg.SimNetParams.MinerConfirmationWindow * 2
if _, err := btcdHarness.Node.Generate(numBlocks); err != nil {
ht.Fatalf("unable to generate blocks: %v", err)
}
// With the btcd harness created, we can now complete the
// initialization of the network. args - list of lnd arguments,
// example: "--debuglevel=debug"
// TODO(roasbeef): create master balanced channel with all the monies?
if err := lndHarness.InitializeSeedNodes(btcdHarness, nil); err != nil {
ht.Fatalf("unable to initialize seed nodes: %v", err)
}
if err = lndHarness.SetUp(); err != nil {
ht.Fatalf("unable to set up test lightning network: %v", err)
}
t.Logf("Running %v integration tests", len(testsCases))
for _, testCase := range testsCases {
success := t.Run(testCase.name, func(t1 *testing.T) {
ht := newHarnessTest(t1)
ht.RunTestCase(testCase, lndHarness)
})
// Stop at the first failure. Mimic behavior of original test
// framework.
if !success {
break
}
}
close(testsFin)
}