946 lines
31 KiB
Go
946 lines
31 KiB
Go
package routing
|
|
|
|
import (
|
|
"container/heap"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"time"
|
|
|
|
"github.com/coreos/bbolt"
|
|
sphinx "github.com/lightningnetwork/lightning-onion"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/feature"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/record"
|
|
"github.com/lightningnetwork/lnd/routing/route"
|
|
)
|
|
|
|
const (
|
|
// infinity is used as a starting distance in our shortest path search.
|
|
infinity = math.MaxInt64
|
|
|
|
// RiskFactorBillionths controls the influence of time lock delta
|
|
// of a channel on route selection. It is expressed as billionths
|
|
// of msat per msat sent through the channel per time lock delta
|
|
// block. See edgeWeight function below for more details.
|
|
// The chosen value is based on the previous incorrect weight function
|
|
// 1 + timelock + fee * fee. In this function, the fee penalty
|
|
// diminishes the time lock penalty for all but the smallest amounts.
|
|
// To not change the behaviour of path finding too drastically, a
|
|
// relatively small value is chosen which is still big enough to give
|
|
// some effect with smaller time lock values. The value may need
|
|
// tweaking and/or be made configurable in the future.
|
|
RiskFactorBillionths = 15
|
|
|
|
// estimatedNodeCount is used to preallocate the path finding structures
|
|
// to avoid resizing and copies. It should be number on the same order as
|
|
// the number of active nodes in the network.
|
|
estimatedNodeCount = 10000
|
|
)
|
|
|
|
// pathFinder defines the interface of a path finding algorithm.
|
|
type pathFinder = func(g *graphParams, r *RestrictParams,
|
|
cfg *PathFindingConfig, source, target route.Vertex,
|
|
amt lnwire.MilliSatoshi, finalHtlcExpiry int32) (
|
|
[]*channeldb.ChannelEdgePolicy, error)
|
|
|
|
var (
|
|
// DefaultPaymentAttemptPenalty is the virtual cost in path finding weight
|
|
// units of executing a payment attempt that fails. It is used to trade
|
|
// off potentially better routes against their probability of
|
|
// succeeding.
|
|
DefaultPaymentAttemptPenalty = lnwire.NewMSatFromSatoshis(100)
|
|
|
|
// DefaultMinRouteProbability is the default minimum probability for routes
|
|
// returned from findPath.
|
|
DefaultMinRouteProbability = float64(0.01)
|
|
|
|
// DefaultAprioriHopProbability is the default a priori probability for
|
|
// a hop.
|
|
DefaultAprioriHopProbability = float64(0.6)
|
|
|
|
// errNoTlvPayload is returned when the destination hop does not support
|
|
// a tlv payload.
|
|
errNoTlvPayload = errors.New("destination hop doesn't " +
|
|
"understand new TLV payloads")
|
|
|
|
// errNoPaymentAddr is returned when the destination hop does not
|
|
// support payment addresses.
|
|
errNoPaymentAddr = errors.New("destination hop doesn't " +
|
|
"understand payment addresses")
|
|
|
|
// errNoPathFound is returned when a path to the target destination does
|
|
// not exist in the graph.
|
|
errNoPathFound = errors.New("unable to find a path to destination")
|
|
|
|
// errInsufficientLocalBalance is returned when none of the local
|
|
// channels have enough balance for the payment.
|
|
errInsufficientBalance = errors.New("insufficient local balance")
|
|
)
|
|
|
|
// edgePolicyWithSource is a helper struct to keep track of the source node
|
|
// of a channel edge. ChannelEdgePolicy only contains to destination node
|
|
// of the edge.
|
|
type edgePolicyWithSource struct {
|
|
sourceNode route.Vertex
|
|
edge *channeldb.ChannelEdgePolicy
|
|
}
|
|
|
|
// finalHopParams encapsulates various parameters for route construction that
|
|
// apply to the final hop in a route. These features include basic payment data
|
|
// such as amounts and cltvs, as well as more complex features like destination
|
|
// custom records and payment address.
|
|
type finalHopParams struct {
|
|
amt lnwire.MilliSatoshi
|
|
cltvDelta uint16
|
|
records record.CustomSet
|
|
paymentAddr *[32]byte
|
|
}
|
|
|
|
// newRoute constructs a route using the provided path and final hop constraints.
|
|
// Any destination specific fields from the final hop params will be attached
|
|
// assuming the destination's feature vector signals support, otherwise this
|
|
// method will fail. If the route is too long, or the selected path cannot
|
|
// support the fully payment including fees, then a non-nil error is returned.
|
|
//
|
|
// NOTE: The passed slice of ChannelHops MUST be sorted in forward order: from
|
|
// the source to the target node of the path finding attempt. It is assumed that
|
|
// any feature vectors on all hops have been validated for transitive
|
|
// dependencies.
|
|
func newRoute(sourceVertex route.Vertex,
|
|
pathEdges []*channeldb.ChannelEdgePolicy, currentHeight uint32,
|
|
finalHop finalHopParams) (*route.Route, error) {
|
|
|
|
var (
|
|
hops []*route.Hop
|
|
|
|
// totalTimeLock will accumulate the cumulative time lock
|
|
// across the entire route. This value represents how long the
|
|
// sender will need to wait in the *worst* case.
|
|
totalTimeLock = currentHeight
|
|
|
|
// nextIncomingAmount is the amount that will need to flow into
|
|
// the *next* hop. Since we're going to be walking the route
|
|
// backwards below, this next hop gets closer and closer to the
|
|
// sender of the payment.
|
|
nextIncomingAmount lnwire.MilliSatoshi
|
|
)
|
|
|
|
pathLength := len(pathEdges)
|
|
for i := pathLength - 1; i >= 0; i-- {
|
|
// Now we'll start to calculate the items within the per-hop
|
|
// payload for the hop this edge is leading to.
|
|
edge := pathEdges[i]
|
|
|
|
// We'll calculate the amounts, timelocks, and fees for each hop
|
|
// in the route. The base case is the final hop which includes
|
|
// their amount and timelocks. These values will accumulate
|
|
// contributions from the preceding hops back to the sender as
|
|
// we compute the route in reverse.
|
|
var (
|
|
amtToForward lnwire.MilliSatoshi
|
|
fee lnwire.MilliSatoshi
|
|
outgoingTimeLock uint32
|
|
tlvPayload bool
|
|
customRecords record.CustomSet
|
|
mpp *record.MPP
|
|
)
|
|
|
|
// Define a helper function that checks this edge's feature
|
|
// vector for support for a given feature. We assume at this
|
|
// point that the feature vectors transitive dependencies have
|
|
// been validated.
|
|
supports := edge.Node.Features.HasFeature
|
|
|
|
// We start by assuming the node doesn't support TLV. We'll now
|
|
// inspect the node's feature vector to see if we can promote
|
|
// the hop. We assume already that the feature vector's
|
|
// transitive dependencies have already been validated by path
|
|
// finding or some other means.
|
|
tlvPayload = supports(lnwire.TLVOnionPayloadOptional)
|
|
|
|
if i == len(pathEdges)-1 {
|
|
// If this is the last hop, then the hop payload will
|
|
// contain the exact amount. In BOLT #4: Onion Routing
|
|
// Protocol / "Payload for the Last Node", this is
|
|
// detailed.
|
|
amtToForward = finalHop.amt
|
|
|
|
// Fee is not part of the hop payload, but only used for
|
|
// reporting through RPC. Set to zero for the final hop.
|
|
fee = lnwire.MilliSatoshi(0)
|
|
|
|
// As this is the last hop, we'll use the specified
|
|
// final CLTV delta value instead of the value from the
|
|
// last link in the route.
|
|
totalTimeLock += uint32(finalHop.cltvDelta)
|
|
outgoingTimeLock = totalTimeLock
|
|
|
|
// Attach any custom records to the final hop if the
|
|
// receiver supports TLV.
|
|
if !tlvPayload && finalHop.records != nil {
|
|
return nil, errors.New("cannot attach " +
|
|
"custom records")
|
|
}
|
|
customRecords = finalHop.records
|
|
|
|
// If we're attaching a payment addr but the receiver
|
|
// doesn't support both TLV and payment addrs, fail.
|
|
payAddr := supports(lnwire.PaymentAddrOptional)
|
|
if !payAddr && finalHop.paymentAddr != nil {
|
|
return nil, errors.New("cannot attach " +
|
|
"payment addr")
|
|
}
|
|
|
|
// Otherwise attach the mpp record if it exists.
|
|
if finalHop.paymentAddr != nil {
|
|
mpp = record.NewMPP(
|
|
finalHop.amt, *finalHop.paymentAddr,
|
|
)
|
|
}
|
|
} else {
|
|
// The amount that the current hop needs to forward is
|
|
// equal to the incoming amount of the next hop.
|
|
amtToForward = nextIncomingAmount
|
|
|
|
// The fee that needs to be paid to the current hop is
|
|
// based on the amount that this hop needs to forward
|
|
// and its policy for the outgoing channel. This policy
|
|
// is stored as part of the incoming channel of
|
|
// the next hop.
|
|
fee = pathEdges[i+1].ComputeFee(amtToForward)
|
|
|
|
// We'll take the total timelock of the preceding hop as
|
|
// the outgoing timelock or this hop. Then we'll
|
|
// increment the total timelock incurred by this hop.
|
|
outgoingTimeLock = totalTimeLock
|
|
totalTimeLock += uint32(pathEdges[i+1].TimeLockDelta)
|
|
}
|
|
|
|
// Since we're traversing the path backwards atm, we prepend
|
|
// each new hop such that, the final slice of hops will be in
|
|
// the forwards order.
|
|
currentHop := &route.Hop{
|
|
PubKeyBytes: edge.Node.PubKeyBytes,
|
|
ChannelID: edge.ChannelID,
|
|
AmtToForward: amtToForward,
|
|
OutgoingTimeLock: outgoingTimeLock,
|
|
LegacyPayload: !tlvPayload,
|
|
CustomRecords: customRecords,
|
|
MPP: mpp,
|
|
}
|
|
|
|
hops = append([]*route.Hop{currentHop}, hops...)
|
|
|
|
// Finally, we update the amount that needs to flow into the
|
|
// *next* hop, which is the amount this hop needs to forward,
|
|
// accounting for the fee that it takes.
|
|
nextIncomingAmount = amtToForward + fee
|
|
}
|
|
|
|
// With the base routing data expressed as hops, build the full route
|
|
newRoute, err := route.NewRouteFromHops(
|
|
nextIncomingAmount, totalTimeLock, route.Vertex(sourceVertex),
|
|
hops,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return newRoute, nil
|
|
}
|
|
|
|
// edgeWeight computes the weight of an edge. This value is used when searching
|
|
// for the shortest path within the channel graph between two nodes. Weight is
|
|
// is the fee itself plus a time lock penalty added to it. This benefits
|
|
// channels with shorter time lock deltas and shorter (hops) routes in general.
|
|
// RiskFactor controls the influence of time lock on route selection. This is
|
|
// currently a fixed value, but might be configurable in the future.
|
|
func edgeWeight(lockedAmt lnwire.MilliSatoshi, fee lnwire.MilliSatoshi,
|
|
timeLockDelta uint16) int64 {
|
|
// timeLockPenalty is the penalty for the time lock delta of this channel.
|
|
// It is controlled by RiskFactorBillionths and scales proportional
|
|
// to the amount that will pass through channel. Rationale is that it if
|
|
// a twice as large amount gets locked up, it is twice as bad.
|
|
timeLockPenalty := int64(lockedAmt) * int64(timeLockDelta) *
|
|
RiskFactorBillionths / 1000000000
|
|
|
|
return int64(fee) + timeLockPenalty
|
|
}
|
|
|
|
// graphParams wraps the set of graph parameters passed to findPath.
|
|
type graphParams struct {
|
|
// tx can be set to an existing db transaction. If not set, a new
|
|
// transaction will be started.
|
|
tx *bbolt.Tx
|
|
|
|
// graph is the ChannelGraph to be used during path finding.
|
|
graph *channeldb.ChannelGraph
|
|
|
|
// additionalEdges is an optional set of edges that should be
|
|
// considered during path finding, that is not already found in the
|
|
// channel graph.
|
|
additionalEdges map[route.Vertex][]*channeldb.ChannelEdgePolicy
|
|
|
|
// bandwidthHints is an optional map from channels to bandwidths that
|
|
// can be populated if the caller has a better estimate of the current
|
|
// channel bandwidth than what is found in the graph. If set, it will
|
|
// override the capacities and disabled flags found in the graph for
|
|
// local channels when doing path finding. In particular, it should be
|
|
// set to the current available sending bandwidth for active local
|
|
// channels, and 0 for inactive channels.
|
|
bandwidthHints map[uint64]lnwire.MilliSatoshi
|
|
}
|
|
|
|
// RestrictParams wraps the set of restrictions passed to findPath that the
|
|
// found path must adhere to.
|
|
type RestrictParams struct {
|
|
// ProbabilitySource is a callback that is expected to return the
|
|
// success probability of traversing the channel from the node.
|
|
ProbabilitySource func(route.Vertex, route.Vertex,
|
|
lnwire.MilliSatoshi) float64
|
|
|
|
// FeeLimit is a maximum fee amount allowed to be used on the path from
|
|
// the source to the target.
|
|
FeeLimit lnwire.MilliSatoshi
|
|
|
|
// OutgoingChannelID is the channel that needs to be taken to the first
|
|
// hop. If nil, any channel may be used.
|
|
OutgoingChannelID *uint64
|
|
|
|
// LastHop is the pubkey of the last node before the final destination
|
|
// is reached. If nil, any node may be used.
|
|
LastHop *route.Vertex
|
|
|
|
// CltvLimit is the maximum time lock of the route excluding the final
|
|
// ctlv. After path finding is complete, the caller needs to increase
|
|
// all cltv expiry heights with the required final cltv delta.
|
|
CltvLimit uint32
|
|
|
|
// DestCustomRecords contains the custom records to drop off at the
|
|
// final hop, if any.
|
|
DestCustomRecords record.CustomSet
|
|
|
|
// DestFeatures is a feature vector describing what the final hop
|
|
// supports. If none are provided, pathfinding will try to inspect any
|
|
// features on the node announcement instead.
|
|
DestFeatures *lnwire.FeatureVector
|
|
|
|
// PaymentAddr is a random 32-byte value generated by the receiver to
|
|
// mitigate probing vectors and payment sniping attacks on overpaid
|
|
// invoices.
|
|
PaymentAddr *[32]byte
|
|
}
|
|
|
|
// PathFindingConfig defines global parameters that control the trade-off in
|
|
// path finding between fees and probabiity.
|
|
type PathFindingConfig struct {
|
|
// PaymentAttemptPenalty is the virtual cost in path finding weight
|
|
// units of executing a payment attempt that fails. It is used to trade
|
|
// off potentially better routes against their probability of
|
|
// succeeding.
|
|
PaymentAttemptPenalty lnwire.MilliSatoshi
|
|
|
|
// MinProbability defines the minimum success probability of the
|
|
// returned route.
|
|
MinProbability float64
|
|
}
|
|
|
|
// getMaxOutgoingAmt returns the maximum available balance in any of the
|
|
// channels of the given node.
|
|
func getMaxOutgoingAmt(node route.Vertex, outgoingChan *uint64,
|
|
g *graphParams, tx *bbolt.Tx) (lnwire.MilliSatoshi, error) {
|
|
|
|
var max lnwire.MilliSatoshi
|
|
cb := func(_ *bbolt.Tx, edgeInfo *channeldb.ChannelEdgeInfo, outEdge,
|
|
_ *channeldb.ChannelEdgePolicy) error {
|
|
|
|
if outEdge == nil {
|
|
return nil
|
|
}
|
|
|
|
chanID := outEdge.ChannelID
|
|
|
|
// Enforce outgoing channel restriction.
|
|
if outgoingChan != nil && chanID != *outgoingChan {
|
|
return nil
|
|
}
|
|
|
|
bandwidth, ok := g.bandwidthHints[chanID]
|
|
|
|
// If the bandwidth is not available for whatever reason, don't
|
|
// fail the pathfinding early.
|
|
if !ok {
|
|
max = lnwire.MaxMilliSatoshi
|
|
return nil
|
|
}
|
|
|
|
if bandwidth > max {
|
|
max = bandwidth
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Iterate over all channels of the to node.
|
|
err := g.graph.ForEachNodeChannel(tx, node[:], cb)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
return max, err
|
|
}
|
|
|
|
// findPath attempts to find a path from the source node within the
|
|
// ChannelGraph to the target node that's capable of supporting a payment of
|
|
// `amt` value. The current approach implemented is modified version of
|
|
// Dijkstra's algorithm to find a single shortest path between the source node
|
|
// and the destination. The distance metric used for edges is related to the
|
|
// time-lock+fee costs along a particular edge. If a path is found, this
|
|
// function returns a slice of ChannelHop structs which encoded the chosen path
|
|
// from the target to the source. The search is performed backwards from
|
|
// destination node back to source. This is to properly accumulate fees
|
|
// that need to be paid along the path and accurately check the amount
|
|
// to forward at every node against the available bandwidth.
|
|
func findPath(g *graphParams, r *RestrictParams, cfg *PathFindingConfig,
|
|
source, target route.Vertex, amt lnwire.MilliSatoshi, finalHtlcExpiry int32) (
|
|
[]*channeldb.ChannelEdgePolicy, error) {
|
|
|
|
// Pathfinding can be a significant portion of the total payment
|
|
// latency, especially on low-powered devices. Log several metrics to
|
|
// aid in the analysis performance problems in this area.
|
|
start := time.Now()
|
|
nodesVisited := 0
|
|
edgesExpanded := 0
|
|
defer func() {
|
|
timeElapsed := time.Since(start)
|
|
log.Debugf("Pathfinding perf metrics: nodes=%v, edges=%v, "+
|
|
"time=%v", nodesVisited, edgesExpanded, timeElapsed)
|
|
}()
|
|
|
|
// Get source node outside of the pathfinding tx, to prevent a deadlock.
|
|
selfNode, err := g.graph.SourceNode()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
self := selfNode.PubKeyBytes
|
|
|
|
tx := g.tx
|
|
if tx == nil {
|
|
tx, err = g.graph.Database().Begin(false)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer tx.Rollback()
|
|
}
|
|
|
|
// If no destination features are provided, we will load what features
|
|
// we have for the target node from our graph.
|
|
features := r.DestFeatures
|
|
if features == nil {
|
|
targetNode, err := g.graph.FetchLightningNode(tx, target)
|
|
switch {
|
|
|
|
// If the node exists and has features, use them directly.
|
|
case err == nil:
|
|
features = targetNode.Features
|
|
|
|
// If an error other than the node not existing is hit, abort.
|
|
case err != channeldb.ErrGraphNodeNotFound:
|
|
return nil, err
|
|
|
|
// Otherwise, we couldn't find a node announcement, populate a
|
|
// blank feature vector.
|
|
default:
|
|
features = lnwire.EmptyFeatureVector()
|
|
}
|
|
}
|
|
|
|
// With the destination's feature vector selected, ensure that all
|
|
// transitive depdencies are set.
|
|
err = feature.ValidateDeps(features)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Now that we know the feature vector is well formed, we'll proceed in
|
|
// checking that it supports the features we need, given our
|
|
// restrictions on the final hop.
|
|
|
|
// If the caller needs to send custom records, check that our
|
|
// destination feature vector supports TLV.
|
|
if len(r.DestCustomRecords) > 0 &&
|
|
!features.HasFeature(lnwire.TLVOnionPayloadOptional) {
|
|
|
|
return nil, errNoTlvPayload
|
|
}
|
|
|
|
// If the caller has a payment address to attach, check that our
|
|
// destination feature vector supports them.
|
|
if r.PaymentAddr != nil &&
|
|
!features.HasFeature(lnwire.PaymentAddrOptional) {
|
|
|
|
return nil, errNoPaymentAddr
|
|
}
|
|
|
|
// If we are routing from ourselves, check that we have enough local
|
|
// balance available.
|
|
if source == self {
|
|
max, err := getMaxOutgoingAmt(self, r.OutgoingChannelID, g, tx)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if max < amt {
|
|
return nil, errInsufficientBalance
|
|
}
|
|
}
|
|
|
|
// First we'll initialize an empty heap which'll help us to quickly
|
|
// locate the next edge we should visit next during our graph
|
|
// traversal.
|
|
nodeHeap := newDistanceHeap(estimatedNodeCount)
|
|
|
|
// Holds the current best distance for a given node.
|
|
distance := make(map[route.Vertex]*nodeWithDist, estimatedNodeCount)
|
|
|
|
additionalEdgesWithSrc := make(map[route.Vertex][]*edgePolicyWithSource)
|
|
for vertex, outgoingEdgePolicies := range g.additionalEdges {
|
|
// Build reverse lookup to find incoming edges. Needed because
|
|
// search is taken place from target to source.
|
|
for _, outgoingEdgePolicy := range outgoingEdgePolicies {
|
|
toVertex := outgoingEdgePolicy.Node.PubKeyBytes
|
|
incomingEdgePolicy := &edgePolicyWithSource{
|
|
sourceNode: vertex,
|
|
edge: outgoingEdgePolicy,
|
|
}
|
|
|
|
additionalEdgesWithSrc[toVertex] =
|
|
append(additionalEdgesWithSrc[toVertex],
|
|
incomingEdgePolicy)
|
|
}
|
|
}
|
|
|
|
// Build a preliminary destination hop structure to obtain the payload
|
|
// size.
|
|
var mpp *record.MPP
|
|
if r.PaymentAddr != nil {
|
|
mpp = record.NewMPP(amt, *r.PaymentAddr)
|
|
}
|
|
|
|
finalHop := route.Hop{
|
|
AmtToForward: amt,
|
|
OutgoingTimeLock: uint32(finalHtlcExpiry),
|
|
CustomRecords: r.DestCustomRecords,
|
|
LegacyPayload: !features.HasFeature(
|
|
lnwire.TLVOnionPayloadOptional,
|
|
),
|
|
MPP: mpp,
|
|
}
|
|
|
|
// We can't always assume that the end destination is publicly
|
|
// advertised to the network so we'll manually include the target node.
|
|
// The target node charges no fee. Distance is set to 0, because this is
|
|
// the starting point of the graph traversal. We are searching backwards
|
|
// to get the fees first time right and correctly match channel
|
|
// bandwidth.
|
|
//
|
|
// Don't record the initial partial path in the distance map and reserve
|
|
// that key for the source key in the case we route to ourselves.
|
|
partialPath := &nodeWithDist{
|
|
dist: 0,
|
|
weight: 0,
|
|
node: target,
|
|
amountToReceive: amt,
|
|
incomingCltv: finalHtlcExpiry,
|
|
probability: 1,
|
|
routingInfoSize: finalHop.PayloadSize(0),
|
|
}
|
|
|
|
// Calculate the absolute cltv limit. Use uint64 to prevent an overflow
|
|
// if the cltv limit is MaxUint32.
|
|
absoluteCltvLimit := uint64(r.CltvLimit) + uint64(finalHtlcExpiry)
|
|
|
|
// processEdge is a helper closure that will be used to make sure edges
|
|
// satisfy our specific requirements.
|
|
processEdge := func(fromVertex route.Vertex,
|
|
fromFeatures *lnwire.FeatureVector,
|
|
edge *channeldb.ChannelEdgePolicy, toNodeDist *nodeWithDist) {
|
|
|
|
edgesExpanded++
|
|
|
|
// Calculate amount that the candidate node would have to sent
|
|
// out.
|
|
amountToSend := toNodeDist.amountToReceive
|
|
|
|
// Request the success probability for this edge.
|
|
edgeProbability := r.ProbabilitySource(
|
|
fromVertex, toNodeDist.node, amountToSend,
|
|
)
|
|
|
|
log.Trace(newLogClosure(func() string {
|
|
return fmt.Sprintf("path finding probability: fromnode=%v,"+
|
|
" tonode=%v, probability=%v", fromVertex, toNodeDist.node,
|
|
edgeProbability)
|
|
}))
|
|
|
|
// If the probability is zero, there is no point in trying.
|
|
if edgeProbability == 0 {
|
|
return
|
|
}
|
|
|
|
// Compute fee that fromVertex is charging. It is based on the
|
|
// amount that needs to be sent to the next node in the route.
|
|
//
|
|
// Source node has no predecessor to pay a fee. Therefore set
|
|
// fee to zero, because it should not be included in the fee
|
|
// limit check and edge weight.
|
|
//
|
|
// Also determine the time lock delta that will be added to the
|
|
// route if fromVertex is selected. If fromVertex is the source
|
|
// node, no additional timelock is required.
|
|
var fee lnwire.MilliSatoshi
|
|
var timeLockDelta uint16
|
|
if fromVertex != source {
|
|
fee = edge.ComputeFee(amountToSend)
|
|
timeLockDelta = edge.TimeLockDelta
|
|
}
|
|
|
|
incomingCltv := toNodeDist.incomingCltv + int32(timeLockDelta)
|
|
|
|
// Check that we are within our CLTV limit.
|
|
if uint64(incomingCltv) > absoluteCltvLimit {
|
|
return
|
|
}
|
|
|
|
// amountToReceive is the amount that the node that is added to
|
|
// the distance map needs to receive from a (to be found)
|
|
// previous node in the route. That previous node will need to
|
|
// pay the amount that this node forwards plus the fee it
|
|
// charges.
|
|
amountToReceive := amountToSend + fee
|
|
|
|
// Check if accumulated fees would exceed fee limit when this
|
|
// node would be added to the path.
|
|
totalFee := amountToReceive - amt
|
|
if totalFee > r.FeeLimit {
|
|
return
|
|
}
|
|
|
|
// Calculate total probability of successfully reaching target
|
|
// by multiplying the probabilities. Both this edge and the rest
|
|
// of the route must succeed.
|
|
probability := toNodeDist.probability * edgeProbability
|
|
|
|
// If the probability is below the specified lower bound, we can
|
|
// abandon this direction. Adding further nodes can only lower
|
|
// the probability more.
|
|
if probability < cfg.MinProbability {
|
|
return
|
|
}
|
|
|
|
// By adding fromVertex in the route, there will be an extra
|
|
// weight composed of the fee that this node will charge and
|
|
// the amount that will be locked for timeLockDelta blocks in
|
|
// the HTLC that is handed out to fromVertex.
|
|
weight := edgeWeight(amountToReceive, fee, timeLockDelta)
|
|
|
|
// Compute the tentative weight to this new channel/edge
|
|
// which is the weight from our toNode to the target node
|
|
// plus the weight of this edge.
|
|
tempWeight := toNodeDist.weight + weight
|
|
|
|
// Add an extra factor to the weight to take into account the
|
|
// probability.
|
|
tempDist := getProbabilityBasedDist(
|
|
tempWeight, probability,
|
|
int64(cfg.PaymentAttemptPenalty),
|
|
)
|
|
|
|
// If there is already a best route stored, compare this
|
|
// candidate route with the best route so far.
|
|
current, ok := distance[fromVertex]
|
|
if ok {
|
|
// If this route is worse than what we already found,
|
|
// skip this route.
|
|
if tempDist > current.dist {
|
|
return
|
|
}
|
|
|
|
// If the route is equally good and the probability
|
|
// isn't better, skip this route. It is important to
|
|
// also return if both cost and probability are equal,
|
|
// because otherwise the algorithm could run into an
|
|
// endless loop.
|
|
probNotBetter := probability <= current.probability
|
|
if tempDist == current.dist && probNotBetter {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Every edge should have a positive time lock delta. If we
|
|
// encounter a zero delta, log a warning line.
|
|
if edge.TimeLockDelta == 0 {
|
|
log.Warnf("Channel %v has zero cltv delta",
|
|
edge.ChannelID)
|
|
}
|
|
|
|
// Calculate the total routing info size if this hop were to be
|
|
// included. If we are coming from the source hop, the payload
|
|
// size is zero, because the original htlc isn't in the onion
|
|
// blob.
|
|
var payloadSize uint64
|
|
if fromVertex != source {
|
|
supportsTlv := fromFeatures.HasFeature(
|
|
lnwire.TLVOnionPayloadOptional,
|
|
)
|
|
|
|
hop := route.Hop{
|
|
AmtToForward: amountToSend,
|
|
OutgoingTimeLock: uint32(
|
|
toNodeDist.incomingCltv,
|
|
),
|
|
LegacyPayload: !supportsTlv,
|
|
}
|
|
|
|
payloadSize = hop.PayloadSize(edge.ChannelID)
|
|
}
|
|
|
|
routingInfoSize := toNodeDist.routingInfoSize + payloadSize
|
|
|
|
// Skip paths that would exceed the maximum routing info size.
|
|
if routingInfoSize > sphinx.MaxPayloadSize {
|
|
return
|
|
}
|
|
|
|
// All conditions are met and this new tentative distance is
|
|
// better than the current best known distance to this node.
|
|
// The new better distance is recorded, and also our "next hop"
|
|
// map is populated with this edge.
|
|
withDist := &nodeWithDist{
|
|
dist: tempDist,
|
|
weight: tempWeight,
|
|
node: fromVertex,
|
|
amountToReceive: amountToReceive,
|
|
incomingCltv: incomingCltv,
|
|
probability: probability,
|
|
nextHop: edge,
|
|
routingInfoSize: routingInfoSize,
|
|
}
|
|
distance[fromVertex] = withDist
|
|
|
|
// Either push withDist onto the heap if the node
|
|
// represented by fromVertex is not already on the heap OR adjust
|
|
// its position within the heap via heap.Fix.
|
|
nodeHeap.PushOrFix(withDist)
|
|
}
|
|
|
|
// TODO(roasbeef): also add path caching
|
|
// * similar to route caching, but doesn't factor in the amount
|
|
|
|
// Cache features because we visit nodes multiple times.
|
|
featureCache := make(map[route.Vertex]*lnwire.FeatureVector)
|
|
|
|
// getGraphFeatures returns (cached) node features from the graph.
|
|
getGraphFeatures := func(node route.Vertex) (*lnwire.FeatureVector,
|
|
error) {
|
|
|
|
// Check cache for features of the fromNode.
|
|
fromFeatures, ok := featureCache[node]
|
|
if !ok {
|
|
targetNode, err := g.graph.FetchLightningNode(tx, node)
|
|
switch {
|
|
|
|
// If the node exists and has valid features, use them.
|
|
case err == nil:
|
|
err := feature.ValidateDeps(targetNode.Features)
|
|
if err == nil {
|
|
fromFeatures = targetNode.Features
|
|
}
|
|
|
|
// If an error other than the node not existing is hit,
|
|
// abort.
|
|
case err != channeldb.ErrGraphNodeNotFound:
|
|
return nil, err
|
|
|
|
// Otherwise, we couldn't find a node announcement,
|
|
// populate a blank feature vector.
|
|
default:
|
|
fromFeatures = lnwire.EmptyFeatureVector()
|
|
}
|
|
|
|
// Update cache.
|
|
featureCache[node] = fromFeatures
|
|
}
|
|
|
|
return fromFeatures, nil
|
|
}
|
|
|
|
routeToSelf := source == target
|
|
for {
|
|
nodesVisited++
|
|
|
|
pivot := partialPath.node
|
|
|
|
// Create unified policies for all incoming connections.
|
|
u := newUnifiedPolicies(self, pivot, r.OutgoingChannelID)
|
|
|
|
err := u.addGraphPolicies(g.graph, tx)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for _, reverseEdge := range additionalEdgesWithSrc[pivot] {
|
|
u.addPolicy(reverseEdge.sourceNode, reverseEdge.edge, 0)
|
|
}
|
|
|
|
amtToSend := partialPath.amountToReceive
|
|
|
|
// Expand all connections using the optimal policy for each
|
|
// connection.
|
|
for fromNode, unifiedPolicy := range u.policies {
|
|
// The target node is not recorded in the distance map.
|
|
// Therefore we need to have this check to prevent
|
|
// creating a cycle. Only when we intend to route to
|
|
// self, we allow this cycle to form. In that case we'll
|
|
// also break out of the search loop below.
|
|
if !routeToSelf && fromNode == target {
|
|
continue
|
|
}
|
|
|
|
// Apply last hop restriction if set.
|
|
if r.LastHop != nil &&
|
|
pivot == target && fromNode != *r.LastHop {
|
|
|
|
continue
|
|
}
|
|
|
|
policy := unifiedPolicy.getPolicy(
|
|
amtToSend, g.bandwidthHints,
|
|
)
|
|
|
|
if policy == nil {
|
|
continue
|
|
}
|
|
|
|
// Get feature vector for fromNode.
|
|
fromFeatures, err := getGraphFeatures(fromNode)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If there are no valid features, skip this node.
|
|
if fromFeatures == nil {
|
|
continue
|
|
}
|
|
|
|
// Check if this candidate node is better than what we
|
|
// already have.
|
|
processEdge(fromNode, fromFeatures, policy, partialPath)
|
|
}
|
|
|
|
if nodeHeap.Len() == 0 {
|
|
break
|
|
}
|
|
|
|
// Fetch the node within the smallest distance from our source
|
|
// from the heap.
|
|
partialPath = heap.Pop(&nodeHeap).(*nodeWithDist)
|
|
|
|
// If we've reached our source (or we don't have any incoming
|
|
// edges), then we're done here and can exit the graph
|
|
// traversal early.
|
|
if partialPath.node == source {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Use the distance map to unravel the forward path from source to
|
|
// target.
|
|
var pathEdges []*channeldb.ChannelEdgePolicy
|
|
currentNode := source
|
|
for {
|
|
// Determine the next hop forward using the next map.
|
|
currentNodeWithDist, ok := distance[currentNode]
|
|
if !ok {
|
|
// If the node doesnt have a next hop it means we didn't find a path.
|
|
return nil, errNoPathFound
|
|
}
|
|
|
|
// Add the next hop to the list of path edges.
|
|
pathEdges = append(pathEdges, currentNodeWithDist.nextHop)
|
|
|
|
// Advance current node.
|
|
currentNode = currentNodeWithDist.nextHop.Node.PubKeyBytes
|
|
|
|
// Check stop condition at the end of this loop. This prevents
|
|
// breaking out too soon for self-payments that have target set
|
|
// to source.
|
|
if currentNode == target {
|
|
break
|
|
}
|
|
}
|
|
|
|
// For the final hop, we'll set the node features to those determined
|
|
// above. These are either taken from the destination features, e.g.
|
|
// virtual or invoice features, or loaded as a fallback from the graph.
|
|
// The transitive dependencies were already validated above, so no need
|
|
// to do so now.
|
|
//
|
|
// NOTE: This may overwrite features loaded from the graph if
|
|
// destination features were provided. This is fine though, since our
|
|
// route construction does not care where the features are actually
|
|
// taken from. In the future we may wish to do route construction within
|
|
// findPath, and avoid using ChannelEdgePolicy altogether.
|
|
pathEdges[len(pathEdges)-1].Node.Features = features
|
|
|
|
log.Debugf("Found route: probability=%v, hops=%v, fee=%v",
|
|
distance[source].probability, len(pathEdges),
|
|
distance[source].amountToReceive-amt)
|
|
|
|
return pathEdges, nil
|
|
}
|
|
|
|
// getProbabilityBasedDist converts a weight into a distance that takes into
|
|
// account the success probability and the (virtual) cost of a failed payment
|
|
// attempt.
|
|
//
|
|
// Derivation:
|
|
//
|
|
// Suppose there are two routes A and B with fees Fa and Fb and success
|
|
// probabilities Pa and Pb.
|
|
//
|
|
// Is the expected cost of trying route A first and then B lower than trying the
|
|
// other way around?
|
|
//
|
|
// The expected cost of A-then-B is: Pa*Fa + (1-Pa)*Pb*(c+Fb)
|
|
//
|
|
// The expected cost of B-then-A is: Pb*Fb + (1-Pb)*Pa*(c+Fa)
|
|
//
|
|
// In these equations, the term representing the case where both A and B fail is
|
|
// left out because its value would be the same in both cases.
|
|
//
|
|
// Pa*Fa + (1-Pa)*Pb*(c+Fb) < Pb*Fb + (1-Pb)*Pa*(c+Fa)
|
|
//
|
|
// Pa*Fa + Pb*c + Pb*Fb - Pa*Pb*c - Pa*Pb*Fb < Pb*Fb + Pa*c + Pa*Fa - Pa*Pb*c - Pa*Pb*Fa
|
|
//
|
|
// Removing terms that cancel out:
|
|
// Pb*c - Pa*Pb*Fb < Pa*c - Pa*Pb*Fa
|
|
//
|
|
// Divide by Pa*Pb:
|
|
// c/Pa - Fb < c/Pb - Fa
|
|
//
|
|
// Move terms around:
|
|
// Fa + c/Pa < Fb + c/Pb
|
|
//
|
|
// So the value of F + c/P can be used to compare routes.
|
|
func getProbabilityBasedDist(weight int64, probability float64, penalty int64) int64 {
|
|
// Clamp probability to prevent overflow.
|
|
const minProbability = 0.00001
|
|
|
|
if probability < minProbability {
|
|
return infinity
|
|
}
|
|
|
|
return weight + int64(float64(penalty)/probability)
|
|
}
|