lnd.xprv/lnwallet/script_utils.go
Johan T. Halseth dd4996b4d5
lnwallet: use signDesc.HashType for sweepsig in script_utils
This commit changes the use of SigHash flags in the spend
transactions created in scrit_utils. Instead of always
using SigHashAll for the sweep signature, we instead use
the sighash flag specified by the passed sign descriptor.
2017-11-06 14:31:21 +01:00

1286 lines
49 KiB
Go

package lnwallet
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"fmt"
"math/big"
"golang.org/x/crypto/hkdf"
"golang.org/x/crypto/ripemd160"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
// TODO(roasbeef): remove these and use the one's defined in txscript
// within testnet-L.
// SequenceLockTimeSeconds is the 22nd bit which indicates the lock
// time is in seconds.
SequenceLockTimeSeconds = uint32(1 << 22)
// TimelockShift is used to make sure the commitment transaction is
// spendable by setting the locktime with it so that it is larger than
// 500,000,000, thus interpreting it as Unix epoch timestamp and not
// a block height. It is also smaller than the current timestamp which
// has bit (1 << 30) set, so there is no risk of having the commitment
// transaction be rejected. This way we can safely use the lower 24 bits
// of the locktime field for part of the obscured commitment transaction
// number.
TimelockShift = uint32(1 << 29)
)
const (
// StateHintSize is the total number of bytes used between the sequence
// number and locktime of the commitment transaction use to encode a hint
// to the state number of a particular commitment transaction.
StateHintSize = 6
// maxStateHint is the maximum state number we're able to encode using
// StateHintSize bytes amongst the sequence number and locktime fields
// of the commitment transaction.
maxStateHint uint64 = (1 << 48) - 1
)
// witnessScriptHash generates a pay-to-witness-script-hash public key script
// paying to a version 0 witness program paying to the passed redeem script.
func witnessScriptHash(witnessScript []byte) ([]byte, error) {
bldr := txscript.NewScriptBuilder()
bldr.AddOp(txscript.OP_0)
scriptHash := sha256.Sum256(witnessScript)
bldr.AddData(scriptHash[:])
return bldr.Script()
}
// genMultiSigScript generates the non-p2sh'd multisig script for 2 of 2
// pubkeys.
func genMultiSigScript(aPub, bPub []byte) ([]byte, error) {
if len(aPub) != 33 || len(bPub) != 33 {
return nil, fmt.Errorf("Pubkey size error. Compressed pubkeys only")
}
// Swap to sort pubkeys if needed. Keys are sorted in lexicographical
// order. The signatures within the scriptSig must also adhere to the
// order, ensuring that the signatures for each public key appears in
// the proper order on the stack.
if bytes.Compare(aPub, bPub) == 1 {
aPub, bPub = bPub, aPub
}
bldr := txscript.NewScriptBuilder()
bldr.AddOp(txscript.OP_2)
bldr.AddData(aPub) // Add both pubkeys (sorted).
bldr.AddData(bPub)
bldr.AddOp(txscript.OP_2)
bldr.AddOp(txscript.OP_CHECKMULTISIG)
return bldr.Script()
}
// GenFundingPkScript creates a redeem script, and its matching p2wsh
// output for the funding transaction.
func GenFundingPkScript(aPub, bPub []byte, amt int64) ([]byte, *wire.TxOut, error) {
// As a sanity check, ensure that the passed amount is above zero.
if amt <= 0 {
return nil, nil, fmt.Errorf("can't create FundTx script with " +
"zero, or negative coins")
}
// First, create the 2-of-2 multi-sig script itself.
witnessScript, err := genMultiSigScript(aPub, bPub)
if err != nil {
return nil, nil, err
}
// With the 2-of-2 script in had, generate a p2wsh script which pays
// to the funding script.
pkScript, err := witnessScriptHash(witnessScript)
if err != nil {
return nil, nil, err
}
return witnessScript, wire.NewTxOut(amt, pkScript), nil
}
// SpendMultiSig generates the witness stack required to redeem the 2-of-2 p2wsh
// multi-sig output.
func SpendMultiSig(witnessScript, pubA, sigA, pubB, sigB []byte) [][]byte {
witness := make([][]byte, 4)
// When spending a p2wsh multi-sig script, rather than an OP_0, we add
// a nil stack element to eat the extra pop.
witness[0] = nil
// When initially generating the witnessScript, we sorted the serialized
// public keys in descending order. So we do a quick comparison in order
// ensure the signatures appear on the Script Virtual Machine stack in
// the correct order.
if bytes.Compare(pubA, pubB) == 1 {
witness[1] = sigB
witness[2] = sigA
} else {
witness[1] = sigA
witness[2] = sigB
}
// Finally, add the preimage as the last witness element.
witness[3] = witnessScript
return witness
}
// FindScriptOutputIndex finds the index of the public key script output
// matching 'script'. Additionally, a boolean is returned indicating if a
// matching output was found at all.
//
// NOTE: The search stops after the first matching script is found.
func FindScriptOutputIndex(tx *wire.MsgTx, script []byte) (bool, uint32) {
found := false
index := uint32(0)
for i, txOut := range tx.TxOut {
if bytes.Equal(txOut.PkScript, script) {
found = true
index = uint32(i)
break
}
}
return found, index
}
// ripemd160H calculates the ripemd160 of the passed byte slice. This is used to
// calculate the intermediate hash for payment pre-images. Payment hashes are
// the result of ripemd160(sha256(paymentPreimage)). As a result, the value
// passed in should be the sha256 of the payment hash.
func ripemd160H(d []byte) []byte {
h := ripemd160.New()
h.Write(d)
return h.Sum(nil)
}
// senderHTLCScript constructs the public key script for an outgoing HTLC
// output payment for the sender's version of the commitment transaction. The
// possible script paths from this output include:
//
// * The sender timing out the HTLC using the second level HTLC timeout
// transaction.
// * The receiver of the HTLC claiming the output on-chain with the payment
// preimage.
// * The receiver of the HTLC sweeping all the funds in the case that a
// revoked commitment transaction bearing this HTLC was broadcast.
//
// Possible Input Scripts:
// SENDR: <0> <sendr sig> <recvr sig> <0> (spend using HTLC timeout transaction)
// RECVR: <recvr sig> <preimage>
// REVOK: <revoke sig> <revoke key>
// * receiver revoke
//
// OP_DUP OP_HASH160 <revocation key hash160> OP_EQUAL
// OP_IF
// OP_CHECKSIG
// OP_ELSE
// <recv key>
// OP_SWAP OP_SIZE 32 OP_EQUAL
// OP_NOTIF
// OP_DROP 2 OP_SWAP <sender key> 2 OP_CHECKMULTISIG
// OP_ELSE
// OP_HASH160 <ripemd160(payment hash)> OP_EQUALVERIFY
// OP_ENDIF
// OP_ENDIF
func senderHTLCScript(senderKey, receiverKey, revocationKey *btcec.PublicKey,
paymentHash []byte) ([]byte, error) {
builder := txscript.NewScriptBuilder()
// The opening operations are used to determine if this is the receiver
// of the HTLC attempting to sweep all the funds due to a contract
// breach. In this case, they'll place the revocation key at the top of
// the stack.
builder.AddOp(txscript.OP_DUP)
builder.AddOp(txscript.OP_HASH160)
builder.AddData(btcutil.Hash160(revocationKey.SerializeCompressed()))
builder.AddOp(txscript.OP_EQUAL)
// If the hash matches, then this is the revocation clause. The output
// can be spent if the check sig operation passes.
builder.AddOp(txscript.OP_IF)
builder.AddOp(txscript.OP_CHECKSIG)
// Otherwise, this may either be the receiver of the HTLC claiming with
// the pre-image, or the sender of the HTLC sweeping the output after
// it has timed out.
builder.AddOp(txscript.OP_ELSE)
// We'll do a bit of set up by pushing the receiver's key on the top of
// the stack. This will be needed later if we decide that this is the
// sender activating the time out clause with the HTLC timeout
// transaction.
builder.AddData(receiverKey.SerializeCompressed())
// Atm, the top item of the stack is the receiverKey's so we use a swap
// to expose what is either the payment pre-image or a signature.
builder.AddOp(txscript.OP_SWAP)
// With the top item swapped, check if it's 32 bytes. If so, then this
// *may* be the payment pre-image.
builder.AddOp(txscript.OP_SIZE)
builder.AddInt64(32)
builder.AddOp(txscript.OP_EQUAL)
// If it isn't then this might be the sender of the HTLC activating the
// time out clause.
builder.AddOp(txscript.OP_NOTIF)
// We'll drop the OP_IF return value off the top of the stack so we can
// reconstruct the multi-sig script used as an off-chain covenant. If
// two valid signatures are provided, ten then output will be deemed as
// spendable.
builder.AddOp(txscript.OP_DROP)
builder.AddOp(txscript.OP_2)
builder.AddOp(txscript.OP_SWAP)
builder.AddData(senderKey.SerializeCompressed())
builder.AddOp(txscript.OP_2)
builder.AddOp(txscript.OP_CHECKMULTISIG)
// Otherwise, then the only other case is that this is the receiver of
// the HTLC sweeping it on-chain with the payment pre-image.
builder.AddOp(txscript.OP_ELSE)
// Hash the top item of the stack and compare it with the hash160 of
// the payment hash, which is already the sha256 of the payment
// pre-image. By using this little trick we're able save space on-chain
// as the witness includes a 20-byte hash rather than a 32-byte hash.
builder.AddOp(txscript.OP_HASH160)
builder.AddData(ripemd160H(paymentHash))
builder.AddOp(txscript.OP_EQUALVERIFY)
// This checks the receiver's signature so that a third party with
// knowledge of the payment preimage still cannot steal the output.
builder.AddOp(txscript.OP_CHECKSIG)
// Close out the OP_IF statement above.
builder.AddOp(txscript.OP_ENDIF)
// Close out the OP_IF statement at the top of the script.
builder.AddOp(txscript.OP_ENDIF)
return builder.Script()
}
// senderHtlcSpendRevoke constructs a valid witness allowing the receiver of an
// HTLC to claim the output with knowledge of the revocation private key in the
// scenario that the sender of the HTLC broadcasts a previously revoked
// commitment transaction. A valid spend requires knowledge of the private key
// that corresponds to their revocation base point and also the private key fro
// the per commitment point, and a valid signature under the combined public
// key.
func senderHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
revokeKey *btcec.PublicKey, sweepTx *wire.MsgTx) (wire.TxWitness, error) {
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// The stack required to sweep a revoke HTLC output consists simply of
// the exact witness stack as one of a regular p2wkh spend. The only
// difference is that the keys used were derived in an adversarial
// manner in order to encode the revocation contract into a sig+key
// pair.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = revokeKey.SerializeCompressed()
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// SenderHtlcSpendRevoke constructs a valid witness allowing the receiver of an
// HTLC to claim the output with knowledge of the revocation private key in the
// scenario that the sender of the HTLC broadcasts a previously revoked
// commitment transaction. This method first derives the appropriate revocation
// key, and requires that the provided SignDescriptor has a local revocation
// basepoint and commitment secret in the PubKey and DoubleTweak fields,
// respectively.
func SenderHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
// Derive the revocation key using the local revocation base point and
// commitment point.
revokeKey := DeriveRevocationPubkey(signDesc.PubKey,
signDesc.DoubleTweak.PubKey())
return senderHtlcSpendRevoke(signer, signDesc, revokeKey, sweepTx)
}
// senderHtlcSpendRedeem constructs a valid witness allowing the receiver of an
// HTLC to redeem the pending output in the scenario that the sender broadcasts
// their version of the commitment transaction. A valid spend requires
// knowledge of the payment preimage, and a valid signature under the receivers
// public key.
func senderHtlcSpendRedeem(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx, paymentPreimage []byte) (wire.TxWitness, error) {
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// The stack require to spend this output is simply the signature
// generated above under the receiver's public key, and the payment
// pre-image.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = paymentPreimage
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// senderHtlcSpendTimeout constructs a valid witness allowing the sender of an
// HTLC to activate the time locked covenant clause of a soon to be expired
// HTLC. This script simply spends the multi-sig output using the
// pre-generated HTLC timeout transaction.
func senderHtlcSpendTimeout(receiverSig []byte, signer Signer,
signDesc *SignDescriptor, htlcTimeoutTx *wire.MsgTx) (wire.TxWitness, error) {
sweepSig, err := signer.SignOutputRaw(htlcTimeoutTx, signDesc)
if err != nil {
return nil, err
}
// We place a zero as the first item of the evaluated witness stack in
// order to force Script execution to the HTLC timeout clause. The
// second zero is require to consume the extra pop due to a bug in the
// original OP_CHECKMULTISIG.
witnessStack := wire.TxWitness(make([][]byte, 5))
witnessStack[0] = nil
witnessStack[1] = append(receiverSig, byte(txscript.SigHashAll))
witnessStack[2] = append(sweepSig, byte(signDesc.HashType))
witnessStack[3] = nil
witnessStack[4] = signDesc.WitnessScript
return witnessStack, nil
}
// receiverHTLCScript constructs the public key script for an incoming HTLC
// output payment for the receiver's version of the commitment transaction. The
// possible execution paths from this script include:
// * The receiver of the HTLC uses it's second level HTLC transaction to
// advance the state of the HTLC into the delay+claim state.
// * The sender of the HTLC sweeps all the funds of the HTLC as a breached
// commitment was broadcast.
// * The sender of the HTLC sweeps the HTLC on-chain after the timeout period
// of the HTLC has passed.
//
// Possible Input Scripts:
// RECVR: <0> <sender sig> <recvr sig> <preimage>
// REVOK: <sig> <key>
// SENDR: <sig> 0
//
//
// OP_DUP OP_HASH160 <revocation key hash160> OP_EQUAL
// OP_IF
// OP_CHECKSIG
// OP_ELSE
// <sendr key>
// OP_SWAP OP_SIZE 32 OP_EQUAL
// OP_IF
// OP_HASH160 <ripemd160(payment hash)> OP_EQUALVERIFY
// 2 OP_SWAP <recvr key> 2 OP_CHECKMULTISIG
// OP_ELSE
// OP_DROP <cltv expiry> OP_CHECKLOCKTIMEVERIFY OP_DROP
// OP_CHECKSIG
// OP_ENDIF
// OP_ENDIF
func receiverHTLCScript(cltvExipiry uint32, senderKey,
receiverKey, revocationKey *btcec.PublicKey, paymentHash []byte) ([]byte, error) {
builder := txscript.NewScriptBuilder()
// The opening operations are used to determine if this is the sender
// of the HTLC attempting to sweep all the funds due to a contract
// breach. In this case, they'll place the revocation key at the top of
// the stack.
builder.AddOp(txscript.OP_DUP)
builder.AddOp(txscript.OP_HASH160)
builder.AddData(btcutil.Hash160(revocationKey.SerializeCompressed()))
builder.AddOp(txscript.OP_EQUAL)
// If the hash matches, then this is the revocation clause. The output
// can be spent if the check sig operation passes.
builder.AddOp(txscript.OP_IF)
builder.AddOp(txscript.OP_CHECKSIG)
// Otherwise, this may either be the receiver of the HTLC starting the
// claiming process via the second level HTLC success transaction and
// the pre-image, or the sender of the HTLC sweeping the output after
// it has timed out.
builder.AddOp(txscript.OP_ELSE)
// We'll do a bit of set up by pushing the sender's key on the top of
// the stack. This will be needed later if we decide that this is the
// receiver transitioning the output to the claim state using their
// second-level HTLC success transaction.
builder.AddData(senderKey.SerializeCompressed())
// Atm, the top item of the stack is the sender's key so we use a swap
// to expose what is either the payment pre-image or something else.
builder.AddOp(txscript.OP_SWAP)
// With the top item swapped, check if it's 32 bytes. If so, then this
// *may* be the payment pre-image.
builder.AddOp(txscript.OP_SIZE)
builder.AddInt64(32)
builder.AddOp(txscript.OP_EQUAL)
// If the item on the top of the stack is 32-bytes, then it is the
// proper size, so this indicates that the receiver of the HTLC is
// attempting to claim the output on-chain by transitioning the state
// of the HTLC to delay+claim.
builder.AddOp(txscript.OP_IF)
// Next we'll hash the item on the top of the stack, if it matches the
// payment pre-image, then we'll continue. Otherwise, we'll end the
// script here as this is the invalid payment pre-image.
builder.AddOp(txscript.OP_HASH160)
builder.AddData(ripemd160H(paymentHash))
builder.AddOp(txscript.OP_EQUALVERIFY)
// If the payment hash matches, then we'll also need to satisfy the
// multi-sig covenant by providing both signatures of the sender and
// receiver. If the convenient is met, then we'll allow the spending of
// this output, but only by the HTLC success transaction.
builder.AddOp(txscript.OP_2)
builder.AddOp(txscript.OP_SWAP)
builder.AddData(receiverKey.SerializeCompressed())
builder.AddOp(txscript.OP_2)
builder.AddOp(txscript.OP_CHECKMULTISIG)
// Otherwise, this might be the sender of the HTLC attempting to sweep
// it on-chain after the timeout.
builder.AddOp(txscript.OP_ELSE)
// We'll drop the extra item (which is the output from evaluating the
// OP_EQUAL) above from the stack.
builder.AddOp(txscript.OP_DROP)
// With that item dropped off, we can now enforce the absolute
// lock-time required to timeout the HTLC. If the time has passed, then
// we'll proceed with a checksig to ensure that this is actually the
// sender of he original HLTC.
builder.AddInt64(int64(cltvExipiry))
builder.AddOp(txscript.OP_CHECKLOCKTIMEVERIFY)
builder.AddOp(txscript.OP_DROP)
builder.AddOp(txscript.OP_CHECKSIG)
// Close out the inner if statement.
builder.AddOp(txscript.OP_ENDIF)
// Close out the outer if statement.
builder.AddOp(txscript.OP_ENDIF)
return builder.Script()
}
// receiverHtlcSpendRedeem constructs a valid witness allowing the receiver of
// an HTLC to redeem the conditional payment in the event that their commitment
// transaction is broadcast. This clause transitions the state of the HLTC
// output into the delay+claim state by activating the off-chain covenant bound
// by the 2-of-2 multi-sig output. The HTLC success timeout transaction being
// signed has a relative timelock delay enforced by its sequence number. This
// delay give the sender of the HTLC enough time to revoke the output if this
// is a breach commitment transaction.
func receiverHtlcSpendRedeem(senderSig, paymentPreimage []byte,
signer Signer, signDesc *SignDescriptor,
htlcSuccessTx *wire.MsgTx) (wire.TxWitness, error) {
// First, we'll generate a signature for the HTLC success transaction.
// The signDesc should be signing with the public key used as the
// receiver's public key and also the correct single tweak.
sweepSig, err := signer.SignOutputRaw(htlcSuccessTx, signDesc)
if err != nil {
return nil, err
}
// The final witness stack is used the provide the script with the
// payment pre-image, and also execute the multi-sig clause after the
// pre-images matches. We add a nil item at the bottom of the stack in
// order to consume the extra pop within OP_CHECKMULTISIG.
witnessStack := wire.TxWitness(make([][]byte, 5))
witnessStack[0] = nil
witnessStack[1] = append(senderSig, byte(txscript.SigHashAll))
witnessStack[2] = append(sweepSig, byte(signDesc.HashType))
witnessStack[3] = paymentPreimage
witnessStack[4] = signDesc.WitnessScript
return witnessStack, nil
}
// receiverHtlcSpendRevoke constructs a valid witness allowing the sender of an
// HTLC within a previously revoked commitment transaction to re-claim the
// pending funds in the case that the receiver broadcasts this revoked
// commitment transaction.
func receiverHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
revokeKey *btcec.PublicKey, sweepTx *wire.MsgTx) (wire.TxWitness, error) {
// First, we'll generate a signature for the sweep transaction. The
// signDesc should be signing with the public key used as the fully
// derived revocation public key and also the correct double tweak
// value.
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// We place a zero, then one as the first items in the evaluated
// witness stack in order to force script execution to the HTLC
// revocation clause.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = revokeKey.SerializeCompressed()
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// ReceiverHtlcSpendRevoke constructs a valid witness allowing the sender of an
// HTLC within a previously revoked commitment transaction to re-claim the
// pending funds in the case that the receiver broadcasts this revoked
// commitment transaction. This method first derives the appropriate revocation
// key, and requires that the provided SignDescriptor has a local revocation
// basepoint and commitment secret in the PubKey and DoubleTweak fields,
// respectively.
func ReceiverHtlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
// Derive the revocation key using the local revocation base point and
// commitment point.
revokeKey := DeriveRevocationPubkey(signDesc.PubKey,
signDesc.DoubleTweak.PubKey())
return receiverHtlcSpendRevoke(signer, signDesc, revokeKey, sweepTx)
}
// receiverHtlcSpendTimeout constructs a valid witness allowing the sender of
// an HTLC to recover the pending funds after an absolute timeout in the
// scenario that the receiver of the HTLC broadcasts their version of the
// commitment transaction.
//
// NOTE: The target input of the passed transaction MUST NOT have a final
// sequence number. Otherwise, the OP_CHECKLOCKTIMEVERIFY check will fail.
func receiverHtlcSpendTimeout(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx, cltvExpiry uint32) (wire.TxWitness, error) {
// The HTLC output has an absolute time period before we are permitted
// to recover the pending funds. Therefore we need to set the locktime
// on this sweeping transaction in order to pass Script verification.
sweepTx.LockTime = cltvExpiry
// With the lock time on the transaction set, we'll not generate a
// signature for the sweep transaction. The passed sign descriptor
// should be created using the raw public key of the sender (w/o the
// single tweak applied), and the single tweak set to the proper value
// taking into account the current state's point.
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = nil
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// createHtlcTimeoutTx creates a transaction that spends the HTLC output on the
// commitment transaction of the peer that created an HTLC (the sender). This
// transaction essentially acts as an off-chain covenant as it spends a 2-of-2
// multi-sig output. This output requires a signature from both the sender and
// receiver of the HTLC. By using a distinct transaction, we're able to
// uncouple the timeout and delay clauses of the HTLC contract. This
// transaction is locked with an absolute lock-time so the sender can only
// attempt to claim the output using it after the lock time has passed.
//
// In order to spend the HTLC output, the witness for the passed transaction
// should be:
// * <0> <sender sig> <receiver sig> <0>
//
// NOTE: The passed amount for the HTLC should take into account the required
// fee rate at the time the HTLC was created. The fee should be able to
// entirely pay for this (tiny: 1-in 1-out) transaction.
func createHtlcTimeoutTx(htlcOutput wire.OutPoint, htlcAmt btcutil.Amount,
cltvExpiry, csvDelay uint32,
revocationKey, delayKey *btcec.PublicKey) (*wire.MsgTx, error) {
// Create a version two transaction (as the success version of this
// spends an output with a CSV timeout), and set the lock-time to the
// specified absolute lock-time in blocks.
timeoutTx := wire.NewMsgTx(2)
timeoutTx.LockTime = cltvExpiry
// The input to the transaction is the outpoint that creates the
// original HTLC on the sender's commitment transaction.
timeoutTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: htlcOutput,
})
// Next, we'll generate the script used as the output for all second
// level HTLC which forces a covenant w.r.t what can be done with all
// HTLC outputs.
witnessScript, err := secondLevelHtlcScript(revocationKey, delayKey,
csvDelay)
if err != nil {
return nil, err
}
pkScript, err := witnessScriptHash(witnessScript)
if err != nil {
return nil, err
}
// Finally, the output is simply the amount of the HTLC (minus the
// required fees), paying to the regular second level HTLC script.
timeoutTx.AddTxOut(&wire.TxOut{
Value: int64(htlcAmt),
PkScript: pkScript,
})
return timeoutTx, nil
}
// createHtlcSuccessTx creats a transaction that spends the output on the
// commitment transaction of the peer that receives an HTLC. This transaction
// essentially acts as an off-chain covenant as it's only permitted to spend
// the designated HTLC output, and also that spend can _only_ be used as a
// state transition to create another output which actually allows redemption
// or revocation of an HTLC.
//
// In order to spend the HTLC output, the witness for the passed transaction
// should be:
// * <0> <sender sig> <recvr sig> <preimage>
func createHtlcSuccessTx(htlcOutput wire.OutPoint, htlcAmt btcutil.Amount,
csvDelay uint32,
revocationKey, delayKey *btcec.PublicKey) (*wire.MsgTx, error) {
// Create a version two transaction (as the success version of this
// spends an output with a CSV timeout).
successTx := wire.NewMsgTx(2)
// The input to the transaction is the outpoint that creates the
// original HTLC on the sender's commitment transaction.
successTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: htlcOutput,
})
// Next, we'll generate the script used as the output for all second
// level HTLC which forces a covenant w.r.t what can be done with all
// HTLC outputs.
witnessScript, err := secondLevelHtlcScript(revocationKey, delayKey,
csvDelay)
if err != nil {
return nil, err
}
pkScript, err := witnessScriptHash(witnessScript)
if err != nil {
return nil, err
}
// Finally, the output is simply the amount of the HTLC (minus the
// required fees), paying to the timeout script.
successTx.AddTxOut(&wire.TxOut{
Value: int64(htlcAmt),
PkScript: pkScript,
})
return successTx, nil
}
// secondLevelHtlcScript is the uniform script that's used as the output for
// the second-level HTLC transactions. The second level transaction act as a
// sort of covenant, ensuring that an 2-of-2 multi-sig output can only be
// spent in a particular way, and to a particular output.
//
// Possible Input Scripts:
// * To revoke an HTLC output that has been transitioned to the claim+delay
// state:
// * <revoke sig> 1
//
// * To claim and HTLC output, either with a pre-image or due to a timeout:
// * <delay sig> 0
//
// OP_IF
// <revoke key>
// OP_ELSE
// <delay in blocks>
// OP_CHECKSEQUENCEVERIFY
// OP_DROP
// <delay key>
// OP_ENDIF
// OP_CHECKSIG
//
// TODO(roasbeef): possible renames for second-level
// * transition?
// * covenant output
func secondLevelHtlcScript(revocationKey, delayKey *btcec.PublicKey,
csvDelay uint32) ([]byte, error) {
builder := txscript.NewScriptBuilder()
// If this is the revocation clause for this script is to be executed,
// the spender will push a 1, forcing us to hit the true clause of this
// if statement.
builder.AddOp(txscript.OP_IF)
// If this this is the revocation case, then we'll push the revocation
// public key on the stack.
builder.AddData(revocationKey.SerializeCompressed())
// Otherwise, this is either the sender or receiver of the HTLC
// attempting to claim the HTLC output.
builder.AddOp(txscript.OP_ELSE)
// In order to give the other party time to execute the revocation
// clause above, we require a relative timeout to pass before the
// output can be spent.
builder.AddInt64(int64(csvDelay))
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
builder.AddOp(txscript.OP_DROP)
// If the relative timelock passes, then we'll add the delay key to the
// stack to ensure that we properly authenticate the spending party.
builder.AddData(delayKey.SerializeCompressed())
// Close out the if statement.
builder.AddOp(txscript.OP_ENDIF)
// In either case, we'll ensure that only either the party possessing
// the revocation private key, or the delay private key is able to
// spend this output.
builder.AddOp(txscript.OP_CHECKSIG)
return builder.Script()
}
// htlcSpendSuccess spends a second-level HTLC output. This function is to be
// used by the sender of an HTLC to claim the output after a relative timeout
// or the receiver of the HTLC to claim on-chain with the pre-image.
func htlcSpendSuccess(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx, csvDelay uint32) (wire.TxWitness, error) {
// We're required to wait a relative period of time before we can sweep
// the output in order to allow the other party to contest our claim of
// validity to this version of the commitment transaction.
sweepTx.TxIn[0].Sequence = lockTimeToSequence(false, csvDelay)
// Finally, OP_CSV requires that the version of the transaction
// spending a pkscript with OP_CSV within it *must* be >= 2.
sweepTx.Version = 2
// As we mutated the transaction, we'll re-calculate the sighashes for
// this instance.
signDesc.SigHashes = txscript.NewTxSigHashes(sweepTx)
// With the proper sequence an version set, we'll now sign the timeout
// transaction using the passed signed descriptor. In order to generate
// a valid signature, then signDesc should be using the base delay
// public key, and the proper single tweak bytes.
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// We set a zero as the first element the witness stack (ignoring the
// witness script), in order to force execution to the second portion
// of the if clause.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = nil
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// htlcTimeoutRevoke spends a second-level HTLC output. This function is to be
// used by the sender or receiver of an HTLC to claim the HTLC after a revoked
// commitment transaction was broadcast.
func htlcSpendRevoke(signer Signer, signDesc *SignDescriptor,
revokeTx *wire.MsgTx) (wire.TxWitness, error) {
// We don't need any spacial modifications to the transaction as this
// is just sweeping a revoked HTLC output. So we'll generate a regular
// witness signature.
sweepSig, err := signer.SignOutputRaw(revokeTx, signDesc)
if err != nil {
return nil, err
}
// We set a one as the first element the witness stack (ignoring the
// witness script), in order to force execution to the revocation
// clause in the second level HTLC script.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = []byte{1}
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// lockTimeToSequence converts the passed relative locktime to a sequence
// number in accordance to BIP-68.
// See: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
// * (Compatibility)
func lockTimeToSequence(isSeconds bool, locktime uint32) uint32 {
if !isSeconds {
// The locktime is to be expressed in confirmations.
return locktime
}
// Set the 22nd bit which indicates the lock time is in seconds, then
// shift the locktime over by 9 since the time granularity is in
// 512-second intervals (2^9). This results in a max lock-time of
// 33,554,431 seconds, or 1.06 years.
return SequenceLockTimeSeconds | (locktime >> 9)
}
// commitScriptToSelf constructs the public key script for the output on the
// commitment transaction paying to the "owner" of said commitment transaction.
// If the other party learns of the preimage to the revocation hash, then they
// can claim all the settled funds in the channel, plus the unsettled funds.
//
// Possible Input Scripts:
// REVOKE: <sig> 1
// SENDRSWEEP: <sig> <emptyvector>
//
// Output Script:
// OP_IF
// <revokeKey>
// OP_ELSE
// <numRelativeBlocks> OP_CHECKSEQUENCEVERIFY OP_DROP
// <timeKey>
// OP_ENDIF
// OP_CHECKSIG
func commitScriptToSelf(csvTimeout uint32, selfKey, revokeKey *btcec.PublicKey) ([]byte, error) {
// This script is spendable under two conditions: either the
// 'csvTimeout' has passed and we can redeem our funds, or they can
// produce a valid signature with the revocation public key. The
// revocation public key will *only* be known to the other party if we
// have divulged the revocation hash, allowing them to homomorphically
// derive the proper private key which corresponds to the revoke public
// key.
builder := txscript.NewScriptBuilder()
builder.AddOp(txscript.OP_IF)
// If a valid signature using the revocation key is presented, then
// allow an immediate spend provided the proper signature.
builder.AddData(revokeKey.SerializeCompressed())
builder.AddOp(txscript.OP_ELSE)
// Otherwise, we can re-claim our funds after a CSV delay of
// 'csvTimeout' timeout blocks, and a valid signature.
builder.AddInt64(int64(csvTimeout))
builder.AddOp(txscript.OP_CHECKSEQUENCEVERIFY)
builder.AddOp(txscript.OP_DROP)
builder.AddData(selfKey.SerializeCompressed())
builder.AddOp(txscript.OP_ENDIF)
// Finally, we'll validate the signature against the public key that's
// left on the top of the stack.
builder.AddOp(txscript.OP_CHECKSIG)
return builder.Script()
}
// commitScriptUnencumbered constructs the public key script on the commitment
// transaction paying to the "other" party. The constructed output is a normal
// p2wkh output spendable immediately, requiring no contestation period.
func commitScriptUnencumbered(key *btcec.PublicKey) ([]byte, error) {
// This script goes to the "other" party, and it spendable immediately.
builder := txscript.NewScriptBuilder()
builder.AddOp(txscript.OP_0)
builder.AddData(btcutil.Hash160(key.SerializeCompressed()))
return builder.Script()
}
// CommitSpendTimeout constructs a valid witness allowing the owner of a
// particular commitment transaction to spend the output returning settled
// funds back to themselves after a relative block timeout. In order to
// properly spend the transaction, the target input's sequence number should be
// set accordingly based off of the target relative block timeout within the
// redeem script. Additionally, OP_CSV requires that the version of the
// transaction spending a pkscript with OP_CSV within it *must* be >= 2.
func CommitSpendTimeout(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
// Ensure the transaction version supports the validation of sequence
// locks and CSV semantics.
if sweepTx.Version < 2 {
return nil, fmt.Errorf("version of passed transaction MUST "+
"be >= 2, not %v", sweepTx.Version)
}
// With the sequence number in place, we're now able to properly sign
// off on the sweep transaction.
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// Place an empty byte as the first item in the evaluated witness stack
// to force script execution to the timeout spend clause. We need to
// place an empty byte in order to ensure our script is still valid
// from the PoV of nodes that are enforcing minimal OP_IF/OP_NOTIF.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = nil
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// CommitSpendRevoke constructs a valid witness allowing a node to sweep the
// settled output of a malicious counterparty who broadcasts a revoked
// commitment transaction.
//
// NOTE: The passed SignDescriptor should include the raw (untweaked)
// revocation base public key of the receiver and also the proper double tweak
// value based on the commitment secret of the revoked commitment.
func CommitSpendRevoke(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// Place a 1 as the first item in the evaluated witness stack to
// force script execution to the revocation clause.
witnessStack := wire.TxWitness(make([][]byte, 3))
witnessStack[0] = append(sweepSig, byte(signDesc.HashType))
witnessStack[1] = []byte{1}
witnessStack[2] = signDesc.WitnessScript
return witnessStack, nil
}
// CommitSpendNoDelay constructs a valid witness allowing a node to spend their
// settled no-delay output on the counterparty's commitment transaction.
//
// NOTE: The passed SignDescriptor should include the raw (untweaked) public
// key of the receiver and also the proper single tweak value based on the
// current commitment point.
func CommitSpendNoDelay(signer Signer, signDesc *SignDescriptor,
sweepTx *wire.MsgTx) (wire.TxWitness, error) {
// This is just a regular p2wkh spend which looks something like:
// * witness: <sig> <pubkey>
sweepSig, err := signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
return nil, err
}
// Finally, we'll manually craft the witness. The witness here is the
// exact same as a regular p2wkh witness, but we'll need to ensure that
// we use the tweaked public key as the last item in the witness stack
// which was originally used to created the pkScript we're spending.
witness := make([][]byte, 2)
witness[0] = append(sweepSig, byte(signDesc.HashType))
witness[1] = TweakPubKeyWithTweak(
signDesc.PubKey, signDesc.SingleTweak,
).SerializeCompressed()
return witness, nil
}
// SingleTweakBytes computes set of bytes we call the single tweak. The purpose
// of the single tweak is to randomize all regular delay and payment base
// points. To do this, we generate a hash that binds the commitment point to
// the pay/delay base point. The end end results is that the basePoint is
// tweaked as follows:
//
// * key = basePoint + sha256(commitPoint || basePoint)*G
func SingleTweakBytes(commitPoint, basePoint *btcec.PublicKey) []byte {
h := sha256.New()
h.Write(commitPoint.SerializeCompressed())
h.Write(basePoint.SerializeCompressed())
return h.Sum(nil)
}
// TweakPubKey tweaks a public base point given a per commitment point. The per
// commitment point is a unique point on our target curve for each commitment
// transaction. When tweaking a local base point for use in a remote commitment
// transaction, the remote party's current per commitment point is to be used.
// The opposite applies for when tweaking remote keys. Precisely, the following
// operation is used to "tweak" public keys:
//
// tweakPub := basePoint + sha256(commitPoint || basePoint) * G
// := G*k + sha256(commitPoint || basePoint)*G
// := G*(k + sha256(commitPoint || basePoint))
//
// Therefore, if a party possess the value k, the private key of the base
// point, then they are able to derive the private key by computing: compute
// the proper private key for the revokeKey by computing:
//
// revokePriv := k + sha256(commitPoint || basePoint) mod N
//
// Where N is the order of the sub-group.
//
// The rationale for tweaking all public keys used within the commitment
// contracts is to ensure that all keys are properly delinearized to avoid any
// funny business when jointly collaborating to compute public and private
// keys. Additionally, the use of the per commitment point ensures that each
// commitment state houses a unique set of keys which is useful when creating
// blinded channel outsourcing protocols.
//
// TODO(roasbeef): should be using double-scalar mult here
func TweakPubKey(basePoint, commitPoint *btcec.PublicKey) *btcec.PublicKey {
tweakBytes := SingleTweakBytes(commitPoint, basePoint)
return TweakPubKeyWithTweak(basePoint, tweakBytes)
}
// TweakPubKeyWithTweak is the exact same as the TweakPubKey function, however
// it accepts the raw tweak bytes directly rather than the commitment point.
func TweakPubKeyWithTweak(pubKey *btcec.PublicKey, tweakBytes []byte) *btcec.PublicKey {
curve := btcec.S256()
tweakX, tweakY := curve.ScalarBaseMult(tweakBytes)
// TODO(roasbeef): check that both passed on curve?
x, y := curve.Add(pubKey.X, pubKey.Y, tweakX, tweakY)
return &btcec.PublicKey{
X: x,
Y: y,
Curve: curve,
}
}
// TweakPrivKey tweaks the private key of a public base point given a per
// commitment point. The per commitment secret is the revealed revocation
// secret for the commitment state in question. This private key will only need
// to be generated in the case that a channel counter party broadcasts a
// revoked state. Precisely, the following operation is used to derive a
// tweaked private key:
//
// * tweakPriv := basePriv + sha256(commitment || basePub) mod N
//
// Where N is the order of the sub-group.
func TweakPrivKey(basePriv *btcec.PrivateKey, commitTweak []byte) *btcec.PrivateKey {
// tweakInt := sha256(commitPoint || basePub)
tweakInt := new(big.Int).SetBytes(commitTweak)
tweakInt = tweakInt.Add(tweakInt, basePriv.D)
tweakInt = tweakInt.Mod(tweakInt, btcec.S256().N)
tweakPriv, _ := btcec.PrivKeyFromBytes(btcec.S256(), tweakInt.Bytes())
return tweakPriv
}
// DeriveRevocationPubkey derives the revocation public key given the
// counterparty's commitment key, and revocation preimage derived via a
// pseudo-random-function. In the event that we (for some reason) broadcast a
// revoked commitment transaction, then if the other party knows the revocation
// preimage, then they'll be able to derive the corresponding private key to
// this private key by exploiting the homomorphism in the elliptic curve group:
// * https://en.wikipedia.org/wiki/Group_homomorphism#Homomorphisms_of_abelian_groups
//
// The derivation is performed as follows:
//
// revokeKey := revokeBase * sha256(revocationBase || commitPoint) +
// commitPoint * sha256(commitPoint || revocationBase)
//
// := G*(revokeBasePriv * sha256(revocationBase || commitPoint)) +
// G*(commitSecret * sha256(commitPoint || revocationBase))
//
// := G*(revokeBasePriv * sha256(revocationBase || commitPoint) +
// commitSecret * sha256(commitPoint || revocationBase))
//
// Therefore, once we divulge the revocation secret, the remote peer is able to
// compute the proper private key for the revokeKey by computing:
//
// revokePriv := (revokeBasePriv * sha256(revocationBase || commitPoint)) +
// (commitSecret * sha256(commitPoint || revocationBase)) mod N
//
// Where N is the order of the sub-group.
func DeriveRevocationPubkey(revokeBase, commitPoint *btcec.PublicKey) *btcec.PublicKey {
// R = revokeBase * sha256(revocationBase || commitPoint)
revokeTweakBytes := SingleTweakBytes(revokeBase, commitPoint)
rX, rY := btcec.S256().ScalarMult(revokeBase.X, revokeBase.Y,
revokeTweakBytes)
// C = commitPoint * sha256(commitPoint || revocationBase)
commitTweakBytes := SingleTweakBytes(commitPoint, revokeBase)
cX, cY := btcec.S256().ScalarMult(commitPoint.X, commitPoint.Y,
commitTweakBytes)
// Now that we have the revocation point, we add this to their commitment
// public key in order to obtain the revocation public key.
//
// P = R + C
revX, revY := btcec.S256().Add(rX, rY, cX, cY)
return &btcec.PublicKey{
X: revX,
Y: revY,
Curve: btcec.S256(),
}
}
// DeriveRevocationPrivKey derives the revocation private key given a node's
// commitment private key, and the preimage to a previously seen revocation
// hash. Using this derived private key, a node is able to claim the output
// within the commitment transaction of a node in the case that they broadcast
// a previously revoked commitment transaction.
//
// The private key is derived as follwos:
// revokePriv := (revokeBasePriv * sha256(revocationBase || commitPoint)) +
// (commitSecret * sha256(commitPoint || revocationBase)) mod N
//
// Where N is the order of the sub-group.
func DeriveRevocationPrivKey(revokeBasePriv *btcec.PrivateKey,
commitSecret *btcec.PrivateKey) *btcec.PrivateKey {
// r = sha256(revokeBasePub || commitPoint)
revokeTweakBytes := SingleTweakBytes(revokeBasePriv.PubKey(),
commitSecret.PubKey())
revokeTweakInt := new(big.Int).SetBytes(revokeTweakBytes)
// c = sha256(commitPoint || revokeBasePub)
commitTweakBytes := SingleTweakBytes(commitSecret.PubKey(),
revokeBasePriv.PubKey())
commitTweakInt := new(big.Int).SetBytes(commitTweakBytes)
// Finally to derive the revocation secret key we'll perform the
// following operation:
//
// k = (revocationPriv * r) + (commitSecret * c) mod N
//
// This works since:
// P = (G*a)*b + (G*c)*d
// P = G*(a*b) + G*(c*d)
// P = G*(a*b + c*d)
revokeHalfPriv := revokeTweakInt.Mul(revokeTweakInt, revokeBasePriv.D)
commitHalfPriv := commitTweakInt.Mul(commitTweakInt, commitSecret.D)
revocationPriv := revokeHalfPriv.Add(revokeHalfPriv, commitHalfPriv)
revocationPriv = revocationPriv.Mod(revocationPriv, btcec.S256().N)
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), revocationPriv.Bytes())
return priv
}
// DeriveRevocationRoot derives an root unique to a channel given the
// derivation root, and the blockhash that the funding process began at and the
// remote node's identity public key. The seed is derived using the HKDF[1][2]
// instantiated with sha-256. With this schema, once we know the block hash of
// the funding transaction, and who we funded the channel with, we can
// reconstruct all of our revocation state.
//
// [1]: https://eprint.iacr.org/2010/264.pdf
// [2]: https://tools.ietf.org/html/rfc5869
func DeriveRevocationRoot(derivationRoot *btcec.PrivateKey,
blockSalt chainhash.Hash, nodePubKey *btcec.PublicKey) chainhash.Hash {
secret := derivationRoot.Serialize()
salt := blockSalt[:]
info := nodePubKey.SerializeCompressed()
seedReader := hkdf.New(sha256.New, secret, salt, info)
// It's safe to ignore the error her as we know for sure that we won't
// be draining the HKDF past its available entropy horizon.
// TODO(roasbeef): revisit...
var root chainhash.Hash
seedReader.Read(root[:])
return root
}
// SetStateNumHint encodes the current state number within the passed
// commitment transaction by re-purposing the locktime and sequence fields in
// the commitment transaction to encode the obfuscated state number. The state
// number is encoded using 48 bits. The lower 24 bits of the lock time are the
// lower 24 bits of the obfuscated state number and the lower 24 bits of the
// sequence field are the higher 24 bits. Finally before encoding, the
// obfuscater is XOR'd against the state number in order to hide the exact
// state number from the PoV of outside parties.
func SetStateNumHint(commitTx *wire.MsgTx, stateNum uint64,
obfuscator [StateHintSize]byte) error {
// With the current schema we are only able able to encode state num
// hints up to 2^48. Therefore if the passed height is greater than our
// state hint ceiling, then exit early.
if stateNum > maxStateHint {
return fmt.Errorf("unable to encode state, %v is greater "+
"state num that max of %v", stateNum, maxStateHint)
}
if len(commitTx.TxIn) != 1 {
return fmt.Errorf("commitment tx must have exactly 1 input, "+
"instead has %v", len(commitTx.TxIn))
}
// Convert the obfuscator into a uint64, then XOR that against the
// targeted height in order to obfuscate the state number of the
// commitment transaction in the case that either commitment
// transaction is broadcast directly on chain.
var obfs [8]byte
copy(obfs[2:], obfuscator[:])
xorInt := binary.BigEndian.Uint64(obfs[:])
stateNum = stateNum ^ xorInt
// Set the height bit of the sequence number in order to disable any
// sequence locks semantics.
commitTx.TxIn[0].Sequence = uint32(stateNum>>24) | wire.SequenceLockTimeDisabled
commitTx.LockTime = uint32(stateNum&0xFFFFFF) | TimelockShift
return nil
}
// GetStateNumHint recovers the current state number given a commitment
// transaction which has previously had the state number encoded within it via
// setStateNumHint and a shared obfuscator.
//
// See setStateNumHint for further details w.r.t exactly how the state-hints
// are encoded.
func GetStateNumHint(commitTx *wire.MsgTx, obfuscator [StateHintSize]byte) uint64 {
// Convert the obfuscater into a uint64, this will be used to
// de-obfuscate the final recovered state number.
var obfs [8]byte
copy(obfs[2:], obfuscator[:])
xorInt := binary.BigEndian.Uint64(obfs[:])
// Retrieve the state hint from the sequence number and locktime
// of the transaction.
stateNumXor := uint64(commitTx.TxIn[0].Sequence&0xFFFFFF) << 24
stateNumXor |= uint64(commitTx.LockTime & 0xFFFFFF)
// Finally, to obtain the final state number, we XOR by the obfuscater
// value to de-obfuscate the state number.
return stateNumXor ^ xorInt
}
// ComputeCommitmentPoint generates a commitment point given a commitment
// secret. The commitment point for each state is used to randomize each key in
// the key-ring and also to used as a tweak to derive new public+private keys
// for the state.
func ComputeCommitmentPoint(commitSecret []byte) *btcec.PublicKey {
x, y := btcec.S256().ScalarBaseMult(commitSecret)
return &btcec.PublicKey{
X: x,
Y: y,
Curve: btcec.S256(),
}
}