lnd.xprv/brontide/noise_test.go

388 lines
12 KiB
Go

package brontide
import (
"bytes"
"encoding/hex"
"io"
"math"
"net"
"sync"
"testing"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/btcec"
)
func establishTestConnection() (net.Conn, net.Conn, func(), error) {
// First, generate the long-term private keys both ends of the
// connection within our test.
localPriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, nil, err
}
remotePriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, nil, err
}
// Having a port of ":0" means a random port, and interface will be
// chosen for our listener.
addr := "localhost:0"
// Our listener will be local, and the connection remote.
listener, err := NewListener(localPriv, addr)
if err != nil {
return nil, nil, nil, err
}
defer listener.Close()
netAddr := &lnwire.NetAddress{
IdentityKey: localPriv.PubKey(),
Address: listener.Addr().(*net.TCPAddr),
}
// Initiate a connection with a separate goroutine, and listen with our
// main one. If both errors are nil, then encryption+auth was
// successful.
conErrChan := make(chan error, 1)
connChan := make(chan net.Conn, 1)
go func() {
conn, err := Dial(remotePriv, netAddr)
conErrChan <- err
connChan <- conn
}()
lisErrChan := make(chan error, 1)
lisChan := make(chan net.Conn, 1)
go func() {
localConn, listenErr := listener.Accept()
lisErrChan <- listenErr
lisChan <- localConn
}()
select {
case err := <-conErrChan:
if err != nil {
return nil, nil, nil, err
}
case err := <-lisErrChan:
if err != nil {
return nil, nil, nil, err
}
}
localConn := <-lisChan
remoteConn := <-connChan
cleanUp := func() {
localConn.Close()
remoteConn.Close()
}
return localConn, remoteConn, cleanUp, nil
}
func TestConnectionCorrectness(t *testing.T) {
// Create a test connection, grabbing either side of the connection
// into local variables. If the initial crypto handshake fails, then
// we'll get a non-nil error here.
localConn, remoteConn, cleanUp, err := establishTestConnection()
if err != nil {
t.Fatalf("unable to establish test connection: %v", err)
}
defer cleanUp()
// Test out some message full-message reads.
for i := 0; i < 10; i++ {
msg := []byte("hello" + string(i))
if _, err := localConn.Write(msg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(msg))
if _, err := remoteConn.Read(readBuf); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(readBuf, msg) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(msg))
}
}
// Now try incremental message reads. This simulates first writing a
// message header, then a message body.
outMsg := []byte("hello world")
if _, err := localConn.Write(outMsg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(outMsg))
if _, err := remoteConn.Read(readBuf[:len(outMsg)/2]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if _, err := remoteConn.Read(readBuf[len(outMsg)/2:]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(outMsg, readBuf) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(outMsg))
}
}
func TestMaxPayloadLength(t *testing.T) {
t.Parallel()
b := Machine{}
b.split()
// Create a payload that's juust over the maximum allotted payload
// length.
payloadToReject := make([]byte, math.MaxUint16+1)
var buf bytes.Buffer
// A write of the payload generated above to the state machine should
// be rejected as it's over the max payload length.
err := b.WriteMessage(&buf, payloadToReject)
if err != ErrMaxMessageLengthExceeded {
t.Fatalf("payload is over the max allowed length, the write " +
"should have been rejected")
}
// Generate another payload which should be accepted as a valid
// payload.
payloadToAccept := make([]byte, math.MaxUint16-1)
if err := b.WriteMessage(&buf, payloadToAccept); err != nil {
t.Fatalf("write for payload was rejected, should have been " +
"accepted")
}
// Generate a final payload which is juuust over the max payload length
// when the MAC is accounted for.
payloadToReject = make([]byte, math.MaxUint16+1)
// This payload should be rejected.
err = b.WriteMessage(&buf, payloadToReject)
if err != ErrMaxMessageLengthExceeded {
t.Fatalf("payload is over the max allowed length, the write " +
"should have been rejected")
}
}
func TestWriteMessageChunking(t *testing.T) {
// Create a test connection, grabbing either side of the connection
// into local variables. If the initial crypto handshake fails, then
// we'll get a non-nil error here.
localConn, remoteConn, cleanUp, err := establishTestConnection()
if err != nil {
t.Fatalf("unable to establish test connection: %v", err)
}
defer cleanUp()
// Attempt to write a message which is over 3x the max allowed payload
// size.
largeMessage := bytes.Repeat([]byte("kek"), math.MaxUint16*3)
// Launch a new goroutine to write the large message generated above in
// chunks. We spawn a new goroutine because otherwise, we may block as
// the kernal waits for the buffer to flush.
var wg sync.WaitGroup
wg.Add(1)
go func() {
bytesWritten, err := localConn.Write(largeMessage)
if err != nil {
t.Fatalf("unable to write message: %v", err)
}
// The entire message should have been written out to the remote
// connection.
if bytesWritten != len(largeMessage) {
t.Fatalf("bytes not fully written!")
}
wg.Done()
}()
// Attempt to read the entirety of the message generated above.
buf := make([]byte, len(largeMessage))
if _, err := io.ReadFull(remoteConn, buf); err != nil {
t.Fatalf("unable to read message: %v", err)
}
wg.Wait()
// Finally, the message the remote end of the connection received
// should be identical to what we sent from the local connection.
if !bytes.Equal(buf, largeMessage) {
t.Fatalf("bytes don't match")
}
}
// TestBolt0008TestVectors ensures that our implementation of brontide exactly
// matches the test vectors within the specification.
func TestBolt0008TestVectors(t *testing.T) {
t.Parallel()
// First, we'll generate the state of the initiator from the test
// vectors at the appendix of BOLT-0008
initiatorKeyBytes, err := hex.DecodeString("1111111111111111111111" +
"111111111111111111111111111111111111111111")
if err != nil {
t.Fatalf("unable to decode hex: %v", err)
}
initiatorPriv, _ := btcec.PrivKeyFromBytes(btcec.S256(),
initiatorKeyBytes)
// We'll then do the same for the responder.
responderKeyBytes, err := hex.DecodeString("212121212121212121212121" +
"2121212121212121212121212121212121212121")
if err != nil {
t.Fatalf("unable to decode hex: %v", err)
}
responderPriv, responderPub := btcec.PrivKeyFromBytes(btcec.S256(),
responderKeyBytes)
// With the initiator's key data parsed, we'll now define a custom
// EphemeralGenerator function for the state machine to ensure that the
// initiator and responder both generate the ephemeral public key
// defined within the test vectors.
initiatorEphemeral := EphemeralGenerator(func() (*btcec.PrivateKey, error) {
e := "121212121212121212121212121212121212121212121212121212" +
"1212121212"
eBytes, err := hex.DecodeString(e)
if err != nil {
return nil, err
}
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), eBytes)
return priv, nil
})
responderEphemeral := EphemeralGenerator(func() (*btcec.PrivateKey, error) {
e := "222222222222222222222222222222222222222222222222222" +
"2222222222222"
eBytes, err := hex.DecodeString(e)
if err != nil {
return nil, err
}
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), eBytes)
return priv, nil
})
// Finally, we'll create both brontide state machines, so we can begin
// our test.
initiator := NewBrontideMachine(true, initiatorPriv, responderPub,
initiatorEphemeral)
responder := NewBrontideMachine(false, responderPriv, nil,
responderEphemeral)
// We'll start with the initiator generating the initial payload for
// act one. This should consist of exactly 50 bytes. We'll assert that
// the payload return is _exactly_ the same as what's specified within
// the test vectors.
actOne, err := initiator.GenActOne()
if err != nil {
t.Fatalf("unable to generate act one: %v", err)
}
expectedActOne, err := hex.DecodeString("00036360e856310ce5d294e" +
"8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df608655115" +
"1f58b8afe6c195782c6a")
if err != nil {
t.Fatalf("unable to parse expected act one: %v", err)
}
if !bytes.Equal(expectedActOne, actOne[:]) {
t.Fatalf("act one mismatch: expected %x, got %x",
expectedActOne, actOne)
}
// With the assertion above passed, we'll now process the act one
// payload with the responder of the crypto handshake.
if err := responder.RecvActOne(actOne); err != nil {
t.Fatalf("responder unable to process act one: %v", err)
}
// Next, we'll start the second act by having the responder generate
// its contribution to the crypto handshake. We'll also verify that we
// produce the _exact_ same byte stream as advertised within the spec's
// test vectors.
actTwo, err := responder.GenActTwo()
if err != nil {
t.Fatalf("unable to generate act two: %v", err)
}
expectedActTwo, err := hex.DecodeString("0002466d7fcae563e5cb09a0" +
"d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac58" +
"3c9ef6eafca3f730ae")
if err != nil {
t.Fatalf("unable to parse expected act two: %v", err)
}
if !bytes.Equal(expectedActTwo, actTwo[:]) {
t.Fatalf("act two mismatch: expected %x, got %x",
expectedActTwo, actTwo)
}
// Moving the handshake along, we'll also ensure that the initiator
// accepts the act two payload.
if err := initiator.RecvActTwo(actTwo); err != nil {
t.Fatalf("initiator unable to process act two: %v", err)
}
// At the final step, we'll generate the last act from the initiator
// and once again verify that it properly matches the test vectors.
actThree, err := initiator.GenActThree()
if err != nil {
t.Fatalf("unable to generate act three: %v", err)
}
expectedActThree, err := hex.DecodeString("00b9e3a702e93e3a9948c2e" +
"d6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8f" +
"c28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba")
if err != nil {
t.Fatalf("unable to parse expected act three: %v", err)
}
if !bytes.Equal(expectedActThree, actThree[:]) {
t.Fatalf("act three mismatch: expected %x, got %x",
expectedActThree, actThree)
}
// Finally, we'll ensure that the responder itself also properly parses
// the last payload in the crypto handshake.
if err := responder.RecvActThree(actThree); err != nil {
t.Fatalf("responder unable to process act three: %v", err)
}
// As a final assertion, we'll ensure that both sides have derived the
// proper symmetric encryption keys.
sendingKey, err := hex.DecodeString("969ab31b4d288cedf6218839b27a3e2" +
"140827047f2c0f01bf5c04435d43511a9")
if err != nil {
t.Fatalf("unable to parse sending key: %v", err)
}
recvKey, err := hex.DecodeString("bb9020b8965f4df047e07f955f3c4b884" +
"18984aadc5cdb35096b9ea8fa5c3442")
if err != nil {
t.Fatalf("unable to parse recv'ing key: %v", err)
}
if !bytes.Equal(initiator.sendCipher.secretKey[:], sendingKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
initiator.sendCipher.secretKey[:], sendingKey)
}
if !bytes.Equal(initiator.recvCipher.secretKey[:], recvKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
initiator.sendCipher.secretKey[:], recvKey)
}
if !bytes.Equal(responder.sendCipher.secretKey[:], recvKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
responder.sendCipher.secretKey[:], recvKey)
}
if !bytes.Equal(responder.recvCipher.secretKey[:], sendingKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
responder.sendCipher.secretKey[:], sendingKey)
}
}