lnd.xprv/fundingmanager.go

2638 lines
91 KiB
Go

package main
import (
"bytes"
"encoding/binary"
"fmt"
"net"
"sync"
"sync/atomic"
"time"
"google.golang.org/grpc"
"golang.org/x/crypto/salsa20"
"github.com/boltdb/bolt"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
const (
// TODO(roasbeef): tune
msgBufferSize = 50
// maxFundingAmount is a soft-limit of the maximum channel size
// accepted within the Lightning Protocol Currently. This limit is
// currently defined in BOLT-0002, and serves as an initial
// precautionary limit while implementations are battle tested in the
// real world.
//
// TODO(roasbeef): add command line param to modify
maxFundingAmount = btcutil.Amount(1 << 24)
// minRemoteDelay and maxRemoteDelay is the extremes of the CSV delay
// we will require the remote to use for its commitment transaction.
// The actual delay we will require will be somewhere between these
// values, depending on channel size.
minRemoteDelay = 144
maxRemoteDelay = 2016
// maxWaitNumBlocksFundingConf is the maximum number of blocks to wait
// for the funding transaction to be confirmed before forgetting about
// the channel. 288 blocks is ~48 hrs
maxWaitNumBlocksFundingConf = 288
)
// reservationWithCtx encapsulates a pending channel reservation. This wrapper
// struct is used internally within the funding manager to track and progress
// the funding workflow initiated by incoming/outgoing methods from the target
// peer. Additionally, this struct houses a response and error channel which is
// used to respond to the caller in the case a channel workflow is initiated
// via a local signal such as RPC.
//
// TODO(roasbeef): actually use the context package
// * deadlines, etc.
type reservationWithCtx struct {
reservation *lnwallet.ChannelReservation
peerAddress *lnwire.NetAddress
chanAmt btcutil.Amount
updates chan *lnrpc.OpenStatusUpdate
err chan error
}
// initFundingMsg is sent by an outside subsystem to the funding manager in
// order to kick off a funding workflow with a specified target peer. The
// original request which defines the parameters of the funding workflow are
// embedded within this message giving the funding manager full context w.r.t
// the workflow.
type initFundingMsg struct {
peerAddress *lnwire.NetAddress
*openChanReq
}
// fundingOpenMsg couples an lnwire.OpenChannel message with the peer who sent
// the message. This allows the funding manager to queue a response directly to
// the peer, progressing the funding workflow.
type fundingOpenMsg struct {
msg *lnwire.OpenChannel
peerAddress *lnwire.NetAddress
}
// fundingAcceptMsg couples an lnwire.AcceptChannel message with the peer who
// sent the message. This allows the funding manager to queue a response
// directly to the peer, progressing the funding workflow.
type fundingAcceptMsg struct {
msg *lnwire.AcceptChannel
peerAddress *lnwire.NetAddress
}
// fundingCreatedMsg couples an lnwire.FundingCreated message with the peer who
// sent the message. This allows the funding manager to queue a response
// directly to the peer, progressing the funding workflow.
type fundingCreatedMsg struct {
msg *lnwire.FundingCreated
peerAddress *lnwire.NetAddress
}
// fundingSignedMsg couples an lnwire.FundingSigned message with the peer who
// sent the message. This allows the funding manager to queue a response
// directly to the peer, progressing the funding workflow.
type fundingSignedMsg struct {
msg *lnwire.FundingSigned
peerAddress *lnwire.NetAddress
}
// fundingLockedMsg couples an lnwire.FundingLocked message with the peer who
// sent the message. This allows the funding manager to finalize the funding
// process and announce the existence of the new channel.
type fundingLockedMsg struct {
msg *lnwire.FundingLocked
peerAddress *lnwire.NetAddress
}
// fundingErrorMsg couples an lnwire.Error message with the peer who sent the
// message. This allows the funding manager to properly process the error.
type fundingErrorMsg struct {
err *lnwire.Error
peerAddress *lnwire.NetAddress
}
// pendingChannels is a map instantiated per-peer which tracks all active
// pending single funded channels indexed by their pending channel identifier,
// which is a set of 32-bytes generated via a CSPRNG.
type pendingChannels map[[32]byte]*reservationWithCtx
// serializedPubKey is used within the FundingManager's activeReservations list
// to identify the nodes with which the FundingManager is actively working to
// initiate new channels.
type serializedPubKey [33]byte
// newSerializedKey creates a new serialized public key from an instance of a
// live pubkey object.
func newSerializedKey(pubKey *btcec.PublicKey) serializedPubKey {
var s serializedPubKey
copy(s[:], pubKey.SerializeCompressed())
return s
}
// fundingConfig defines the configuration for the FundingManager. All elements
// within the configuration MUST be non-nil for the FundingManager to carry out
// its duties.
type fundingConfig struct {
// IDKey is the PublicKey that is used to identify this node within the
// Lightning Network.
IDKey *btcec.PublicKey
// Wallet handles the parts of the funding process that involves moving
// funds from on-chain transaction outputs into Lightning channels.
Wallet *lnwallet.LightningWallet
// FeeEstimator calculates appropriate fee rates based on historical
// transaction information.
FeeEstimator lnwallet.FeeEstimator
// Notifier is used by the FundingManager to determine when the
// channel's funding transaction has been confirmed on the blockchain
// so that the channel creation process can be completed.
Notifier chainntnfs.ChainNotifier
// ArbiterChan allows the FundingManager to notify the BreachArbiter
// that a new channel has been created that should be observed to
// ensure that the channel counterparty hasn't broadcast an invalid
// commitment transaction.
ArbiterChan chan<- wire.OutPoint
// SignMessage signs an arbitrary method with a given public key. The
// actual digest signed is the double sha-256 of the message. In the
// case that the private key corresponding to the passed public key
// cannot be located, then an error is returned.
//
// TODO(roasbeef): should instead pass on this responsibility to a
// distinct sub-system?
SignMessage func(pubKey *btcec.PublicKey, msg []byte) (*btcec.Signature, error)
// CurrentNodeAnnouncement should return the latest, fully signed node
// announcement from the backing Lighting Network node.
CurrentNodeAnnouncement func() (lnwire.NodeAnnouncement, error)
// SendAnnouncement is used by the FundingManager to send
// announcement messages to the Gossiper to possibly broadcast
// to the greater network.
SendAnnouncement func(msg lnwire.Message) error
// SendToPeer allows the FundingManager to send messages to the peer
// node during the multiple steps involved in the creation of the
// channel's funding transaction and initial commitment transaction.
SendToPeer func(target *btcec.PublicKey, msgs ...lnwire.Message) error
// NotifyWhenOnline allows the FundingManager to register with a
// subsystem that will notify it when the peer comes online.
// This is used when sending the fundingLocked message, since it MUST be
// delivered after the funding transaction is confirmed.
NotifyWhenOnline func(peer *btcec.PublicKey, connectedChan chan<- struct{})
// FindPeer searches the list of peers connected to the node so that
// the FundingManager can notify other daemon subsystems as necessary
// during the funding process.
FindPeer func(peerKey *btcec.PublicKey) (*peer, error)
// FindChannel queries the database for the channel with the given
// channel ID.
FindChannel func(chanID lnwire.ChannelID) (*lnwallet.LightningChannel, error)
// TempChanIDSeed is a cryptographically random string of bytes that's
// used as a seed to generate pending channel ID's.
TempChanIDSeed [32]byte
// DefaultRoutingPolicy is the default routing policy used when
// initially announcing channels.
DefaultRoutingPolicy htlcswitch.ForwardingPolicy
// NumRequiredConfs is a function closure that helps the funding
// manager decide how many confirmations it should require for a
// channel extended to it. The function is able to take into account
// the amount of the channel, and any funds we'll be pushed in the
// process to determine how many confirmations we'll require.
NumRequiredConfs func(btcutil.Amount, lnwire.MilliSatoshi) uint16
// RequiredRemoteDelay is a function that maps the total amount in a
// proposed channel to the CSV delay that we'll require for the remote
// party. Naturally a larger channel should require a higher CSV delay
// in order to give us more time to claim funds in the case of a
// contract breach.
RequiredRemoteDelay func(btcutil.Amount) uint16
// WatchNewChannel is to be called once a new channel enters the final
// funding stage: waiting for on-chain confirmation. This method sends
// the channel to the ChainArbitrator so it can watch for any on-chain
// events related to the channel.
WatchNewChannel func(*channeldb.OpenChannel) error
// ReportShortChanID allows the funding manager to report the newly
// discovered short channel ID of a formerly pending channel to outside
// sub-systems.
ReportShortChanID func(wire.OutPoint, lnwire.ShortChannelID) error
}
// fundingManager acts as an orchestrator/bridge between the wallet's
// 'ChannelReservation' workflow, and the wire protocol's funding initiation
// messages. Any requests to initiate the funding workflow for a channel,
// either kicked-off locally or remotely handled by the funding manager.
// Once a channel's funding workflow has been completed, any local callers, the
// local peer, and possibly the remote peer are notified of the completion of
// the channel workflow. Additionally, any temporary or permanent access
// controls between the wallet and remote peers are enforced via the funding
// manager.
type fundingManager struct {
// MUST be used atomically.
started int32
stopped int32
// cfg is a copy of the configuration struct that the FundingManager was
// initialized with.
cfg *fundingConfig
// chanIDKey is a cryptographically random key that's used to generate
// temporary channel ID's.
chanIDKey [32]byte
// chanIDNonce is a nonce that's incremented for each new funding
// reservation created.
nonceMtx sync.RWMutex
chanIDNonce uint64
// activeReservations is a map which houses the state of all pending
// funding workflows.
activeReservations map[serializedPubKey]pendingChannels
// signedReservations is a utility map that maps the permanent channel
// ID of a funding reservation to its temporary channel ID. This is
// required as mid funding flow, we switch to referencing the channel
// by its full channel ID once the commitment transactions have been
// signed by both parties.
signedReservations map[lnwire.ChannelID][32]byte
// resMtx guards both of the maps above to ensure that all access is
// goroutine stafe.
resMtx sync.RWMutex
// fundingMsgs is a channel which receives wrapped wire messages
// related to funding workflow from outside peers.
fundingMsgs chan interface{}
// queries is a channel which receives requests to query the internal
// state of the funding manager.
queries chan interface{}
// fundingRequests is a channel used to receive channel initiation
// requests from a local subsystem within the daemon.
fundingRequests chan *initFundingMsg
// newChanBarriers is a map from a channel ID to a 'barrier' which will
// be signalled once the channel is fully open. This barrier acts as a
// synchronization point for any incoming/outgoing HTLCs before the
// channel has been fully opened.
barrierMtx sync.RWMutex
newChanBarriers map[lnwire.ChannelID]chan struct{}
localDiscoveryMtx sync.Mutex
localDiscoverySignals map[lnwire.ChannelID]chan struct{}
handleFundingLockedMtx sync.RWMutex
handleFundingLockedBarriers map[lnwire.ChannelID]struct{}
quit chan struct{}
wg sync.WaitGroup
}
// channelOpeningState represents the different states a channel can be in
// between the funding transaction has been confirmed and the channel is
// announced to the network and ready to be used.
type channelOpeningState uint8
const (
// markedOpen is the opening state of a channel if the funding
// transaction is confirmed on-chain, but fundingLocked is not yet
// successfully sent to the other peer.
markedOpen channelOpeningState = iota
// fundingLockedSent is the opening state of a channel if the
// fundingLocked message has successfully been sent to the other peer,
// but we still haven't announced the channel to the network.
fundingLockedSent
// addedToRouterGraph is the opening state of a channel if the
// channel has been successfully added to the router graph
// immediately after the fundingLocked message has been sent, but
// we still haven't announced the channel to the network.
addedToRouterGraph
)
var (
// channelOpeningStateBucket is the database bucket used to store the
// channelOpeningState for each channel that is currently in the process
// of being opened.
channelOpeningStateBucket = []byte("channelOpeningState")
// ErrChannelNotFound is returned when we are looking for a specific
// channel opening state in the FundingManager's internal database, but
// the channel in question is not considered being in an opening state.
ErrChannelNotFound = fmt.Errorf("channel not found in db")
)
// newFundingManager creates and initializes a new instance of the
// fundingManager.
func newFundingManager(cfg fundingConfig) (*fundingManager, error) {
return &fundingManager{
cfg: &cfg,
chanIDKey: cfg.TempChanIDSeed,
activeReservations: make(map[serializedPubKey]pendingChannels),
signedReservations: make(map[lnwire.ChannelID][32]byte),
newChanBarriers: make(map[lnwire.ChannelID]chan struct{}),
fundingMsgs: make(chan interface{}, msgBufferSize),
fundingRequests: make(chan *initFundingMsg, msgBufferSize),
localDiscoverySignals: make(map[lnwire.ChannelID]chan struct{}),
handleFundingLockedBarriers: make(map[lnwire.ChannelID]struct{}),
queries: make(chan interface{}, 1),
quit: make(chan struct{}),
}, nil
}
// Start launches all helper goroutines required for handling requests sent
// to the funding manager.
func (f *fundingManager) Start() error {
if atomic.AddInt32(&f.started, 1) != 1 { // TODO(roasbeef): CAS instead
return nil
}
fndgLog.Tracef("Funding manager running")
// Upon restart, the Funding Manager will check the database to load any
// channels that were waiting for their funding transactions to be
// confirmed on the blockchain at the time when the daemon last went
// down.
// TODO(roasbeef): store height that funding finished?
// * would then replace call below
pendingChannels, err := f.cfg.Wallet.Cfg.Database.FetchPendingChannels()
if err != nil {
return err
}
// For any channels that were in a pending state when the daemon was
// last connected, the Funding Manager will re-initialize the channel
// barriers and will also launch waitForFundingConfirmation to wait for
// the channel's funding transaction to be confirmed on the blockchain.
for _, channel := range pendingChannels {
f.barrierMtx.Lock()
fndgLog.Tracef("Loading pending ChannelPoint(%v), creating chan "+
"barrier", channel.FundingOutpoint)
chanID := lnwire.NewChanIDFromOutPoint(&channel.FundingOutpoint)
f.newChanBarriers[chanID] = make(chan struct{})
f.barrierMtx.Unlock()
f.localDiscoverySignals[chanID] = make(chan struct{})
confChan := make(chan *lnwire.ShortChannelID)
timeoutChan := make(chan struct{})
go func(ch *channeldb.OpenChannel) {
go f.waitForFundingWithTimeout(ch, confChan, timeoutChan)
select {
case <-timeoutChan:
// Timeout waiting for the funding transaction
// to confirm, so we forget the channel and
// delete it from the database.
closeInfo := &channeldb.ChannelCloseSummary{
ChainHash: ch.ChainHash,
ChanPoint: ch.FundingOutpoint,
RemotePub: ch.IdentityPub,
CloseType: channeldb.FundingCanceled,
}
if err := ch.CloseChannel(closeInfo); err != nil {
fndgLog.Errorf("Failed closing channel "+
"%v: %v", ch.FundingOutpoint, err)
}
case <-f.quit:
// The fundingManager is shutting down, and will
// resume wait on startup.
case shortChanID, ok := <-confChan:
if !ok {
fndgLog.Errorf("waiting for funding" +
"confirmation failed")
return
}
// Success, funding transaction was confirmed.
err := f.handleFundingConfirmation(ch, shortChanID)
if err != nil {
fndgLog.Errorf("failed to handle funding"+
"confirmation: %v", err)
return
}
}
}(channel)
}
// Fetch all our open channels, and make sure they all finalized the
// opening process.
// TODO(halseth): this check is only done on restart atm, but should
// also be done if a peer that disappeared during the opening process
// reconnects.
openChannels, err := f.cfg.Wallet.Cfg.Database.FetchAllChannels()
if err != nil {
return err
}
for _, channel := range openChannels {
channelState, shortChanID, err := f.getChannelOpeningState(
&channel.FundingOutpoint)
if err == ErrChannelNotFound {
// Channel not in fundingManager's opening database,
// meaning it was successfully announced to the
// network.
continue
} else if err != nil {
return err
}
chanID := lnwire.NewChanIDFromOutPoint(&channel.FundingOutpoint)
fndgLog.Debugf("channel (%v) with opening state %v found",
chanID, channelState)
if channel.IsPending {
// Set up the channel barriers again, to make sure
// waitUntilChannelOpen correctly waits until the
// opening process is completely over.
f.barrierMtx.Lock()
fndgLog.Tracef("Loading pending ChannelPoint(%v), "+
"creating chan barrier", channel.FundingOutpoint)
f.newChanBarriers[chanID] = make(chan struct{})
f.barrierMtx.Unlock()
}
// If we did find the channel in the opening state database, we
// have seen the funding transaction being confirmed, but we
// did not finish the rest of the setup procedure before we shut
// down. We handle the remaining steps of this setup by
// continuing the procedure where we left off.
switch channelState {
case markedOpen:
// The funding transaction was confirmed, but we did not
// successfully send the fundingLocked message to the
// peer, so let's do that now.
f.wg.Add(1)
go func(dbChan *channeldb.OpenChannel) {
defer f.wg.Done()
err := f.handleFundingConfirmation(dbChan, shortChanID)
if err != nil {
fndgLog.Errorf("failed to handle funding"+
"confirmation: %v", err)
return
}
}(channel)
case fundingLockedSent:
// fundingLocked was sent to peer, but the channel
// was not added to the router graph and the channel
// announcement was not sent.
f.wg.Add(1)
go func(dbChan *channeldb.OpenChannel) {
defer f.wg.Done()
err = f.addToRouterGraph(dbChan, shortChanID)
if err != nil {
fndgLog.Errorf("failed adding to "+
"router graph: %v", err)
return
}
// TODO(halseth): should create a state machine
// that can more easily be resumed from
// different states, to avoid this code
// duplication.
err = f.annAfterSixConfs(dbChan, shortChanID)
if err != nil {
fndgLog.Errorf("error sending channel "+
"announcements: %v", err)
return
}
}(channel)
case addedToRouterGraph:
// The channel was added to the Router's topology, but
// the channel announcement was not sent.
f.wg.Add(1)
go func(dbChan *channeldb.OpenChannel) {
defer f.wg.Done()
err = f.annAfterSixConfs(channel, shortChanID)
if err != nil {
fndgLog.Errorf("error sending channel "+
"announcement: %v", err)
return
}
}(channel)
default:
fndgLog.Errorf("undefined channelState: %v",
channelState)
}
}
f.wg.Add(1) // TODO(roasbeef): tune
go f.reservationCoordinator()
return nil
}
// Stop signals all helper goroutines to execute a graceful shutdown. This
// method will block until all goroutines have exited.
func (f *fundingManager) Stop() error {
if atomic.AddInt32(&f.stopped, 1) != 1 {
return nil
}
fndgLog.Infof("Funding manager shutting down")
close(f.quit)
f.wg.Wait()
return nil
}
// nextPendingChanID returns the next free pending channel ID to be used to
// identify a particular future channel funding workflow.
func (f *fundingManager) nextPendingChanID() [32]byte {
// Obtain a fresh nonce. We do this by encoding the current nonce
// counter, then incrementing it by one.
f.nonceMtx.Lock()
var nonce [8]byte
binary.LittleEndian.PutUint64(nonce[:], f.chanIDNonce)
f.chanIDNonce++
f.nonceMtx.Unlock()
// We'll generate the next pending channelID by "encrypting" 32-bytes
// of zeroes which'll extract 32 random bytes from our stream cipher.
var (
nextChanID [32]byte
zeroes [32]byte
)
salsa20.XORKeyStream(nextChanID[:], zeroes[:], nonce[:], &f.chanIDKey)
return nextChanID
}
type pendingChannel struct {
identityPub *btcec.PublicKey
channelPoint *wire.OutPoint
capacity btcutil.Amount
localBalance btcutil.Amount
remoteBalance btcutil.Amount
}
type pendingChansReq struct {
resp chan []*pendingChannel
err chan error
}
// PendingChannels returns a slice describing all the channels which are
// currently pending at the last state of the funding workflow.
func (f *fundingManager) PendingChannels() ([]*pendingChannel, error) {
respChan := make(chan []*pendingChannel, 1)
errChan := make(chan error)
req := &pendingChansReq{
resp: respChan,
err: errChan,
}
f.queries <- req
return <-respChan, <-errChan
}
// CancelPeerReservations cancels all active reservations associated with the
// passed node. This will ensure any outputs which have been pre committed,
// (and thus locked from coin selection), are properly freed.
func (f *fundingManager) CancelPeerReservations(nodePub [33]byte) {
fndgLog.Debugf("Cancelling all reservations for peer %x", nodePub[:])
f.resMtx.Lock()
defer f.resMtx.Unlock()
// We'll attempt to look up this node in the set of active
// reservations. If they don't have any, then there's no further work
// to be done.
nodeReservations, ok := f.activeReservations[nodePub]
if !ok {
fndgLog.Debugf("No active reservations for node: %x", nodePub[:])
return
}
// If they do have any active reservations, then we'll cancel all of
// them (which releases any locked UTXO's), and also delete it from the
// reservation map.
for pendingID, resCtx := range nodeReservations {
if err := resCtx.reservation.Cancel(); err != nil {
fndgLog.Errorf("unable to cancel reservation for "+
"node=%x: %v", nodePub[:], err)
}
if resCtx.err != nil {
select {
case resCtx.err <- fmt.Errorf("peer disconnected"):
default:
}
}
delete(nodeReservations, pendingID)
}
// Finally, we'll delete the node itself from the set of reservations.
delete(f.activeReservations, nodePub)
}
// failFundingFlow will fail the active funding flow with the target peer,
// identified by it's unique temporary channel ID. This method is send an error
// to the remote peer, and also remove the reservation from our set of pending
// reservations.
//
// TODO(roasbeef): if peer disconnects, and haven't yet broadcast funding
// transaction, then all reservations should be cleared.
func (f *fundingManager) failFundingFlow(peer *btcec.PublicKey,
tempChanID [32]byte, msg []byte) {
errMsg := &lnwire.Error{
ChanID: tempChanID,
Data: msg,
}
fndgLog.Errorf("Failing funding flow: %v", spew.Sdump(errMsg))
if _, err := f.cancelReservationCtx(peer, tempChanID); err != nil {
fndgLog.Errorf("unable to cancel reservation: %v", err)
}
err := f.cfg.SendToPeer(peer, errMsg)
if err != nil {
fndgLog.Errorf("unable to send error message to peer %v", err)
return
}
return
}
// reservationCoordinator is the primary goroutine tasked with progressing the
// funding workflow between the wallet, and any outside peers or local callers.
//
// NOTE: This MUST be run as a goroutine.
func (f *fundingManager) reservationCoordinator() {
defer f.wg.Done()
for {
select {
case msg := <-f.fundingMsgs:
switch fmsg := msg.(type) {
case *fundingOpenMsg:
f.handleFundingOpen(fmsg)
case *fundingAcceptMsg:
f.handleFundingAccept(fmsg)
case *fundingCreatedMsg:
f.handleFundingCreated(fmsg)
case *fundingSignedMsg:
f.handleFundingSigned(fmsg)
case *fundingLockedMsg:
f.wg.Add(1)
go f.handleFundingLocked(fmsg)
case *fundingErrorMsg:
f.handleErrorMsg(fmsg)
}
case req := <-f.fundingRequests:
f.handleInitFundingMsg(req)
case req := <-f.queries:
switch msg := req.(type) {
case *pendingChansReq:
f.handlePendingChannels(msg)
}
case <-f.quit:
return
}
}
}
// handlePendingChannels responds to a request for details concerning all
// currently pending channels waiting for the final phase of the funding
// workflow (funding txn confirmation).
func (f *fundingManager) handlePendingChannels(msg *pendingChansReq) {
var pendingChannels []*pendingChannel
dbPendingChannels, err := f.cfg.Wallet.Cfg.Database.FetchPendingChannels()
if err != nil {
msg.resp <- nil
msg.err <- err
return
}
for _, dbPendingChan := range dbPendingChannels {
pendingChan := &pendingChannel{
identityPub: dbPendingChan.IdentityPub,
channelPoint: &dbPendingChan.FundingOutpoint,
capacity: dbPendingChan.Capacity,
localBalance: dbPendingChan.LocalCommitment.LocalBalance.ToSatoshis(),
remoteBalance: dbPendingChan.LocalCommitment.RemoteBalance.ToSatoshis(),
}
pendingChannels = append(pendingChannels, pendingChan)
}
msg.resp <- pendingChannels
msg.err <- nil
}
// processFundingOpen sends a message to the fundingManager allowing it to
// initiate the new funding workflow with the source peer.
func (f *fundingManager) processFundingOpen(msg *lnwire.OpenChannel,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingOpenMsg{msg, peerAddress}:
case <-f.quit:
return
}
}
// handleFundingOpen creates an initial 'ChannelReservation' within the wallet,
// then responds to the source peer with an accept channel message progressing
// the funding workflow.
//
// TODO(roasbeef): add error chan to all, let channelManager handle
// error+propagate
func (f *fundingManager) handleFundingOpen(fmsg *fundingOpenMsg) {
// Check number of pending channels to be smaller than maximum allowed
// number and send ErrorGeneric to remote peer if condition is
// violated.
peerIDKey := newSerializedKey(fmsg.peerAddress.IdentityKey)
msg := fmsg.msg
amt := msg.FundingAmount
// TODO(roasbeef): modify to only accept a _single_ pending channel per
// block unless white listed
if len(f.activeReservations[peerIDKey]) >= cfg.MaxPendingChannels {
f.failFundingFlow(
fmsg.peerAddress.IdentityKey, fmsg.msg.PendingChannelID,
lnwire.ErrorData{byte(lnwire.ErrMaxPendingChannels)},
)
return
}
// We'll also reject any requests to create channels until we're fully
// synced to the network as we won't be able to properly validate the
// confirmation of the funding transaction.
isSynced, err := f.cfg.Wallet.IsSynced()
if err != nil {
fndgLog.Errorf("unable to query wallet: %v", err)
return
}
if !isSynced {
f.failFundingFlow(
fmsg.peerAddress.IdentityKey, fmsg.msg.PendingChannelID,
lnwire.ErrorData{byte(lnwire.ErrSynchronizingChain)},
)
return
}
// We'll reject any request to create a channel that's above the
// current soft-limit for channel size.
if msg.FundingAmount > maxFundingAmount {
f.failFundingFlow(
fmsg.peerAddress.IdentityKey, fmsg.msg.PendingChannelID,
lnwire.ErrorData{byte(lnwire.ErrChanTooLarge)},
)
return
}
// TODO(roasbeef): error if funding flow already ongoing
fndgLog.Infof("Recv'd fundingRequest(amt=%v, push=%v, delay=%v, "+
"pendingId=%x) from peer(%x)", amt, msg.PushAmount,
msg.CsvDelay, msg.PendingChannelID,
fmsg.peerAddress.IdentityKey.SerializeCompressed())
// Attempt to initialize a reservation within the wallet. If the wallet
// has insufficient resources to create the channel, then the
// reservation attempt may be rejected. Note that since we're on the
// responding side of a single funder workflow, we don't commit any
// funds to the channel ourselves.
//
// TODO(roasbeef): assuming this was an inbound connection, replace
// port with default advertised port
chainHash := chainhash.Hash(msg.ChainHash)
reservation, err := f.cfg.Wallet.InitChannelReservation(amt, 0,
msg.PushAmount, btcutil.Amount(msg.FeePerKiloWeight), 0,
fmsg.peerAddress.IdentityKey, fmsg.peerAddress.Address,
&chainHash, msg.ChannelFlags)
if err != nil {
fndgLog.Errorf("Unable to initialize reservation: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
return
}
// As we're the responder, we get to specify the number of
// confirmations that we require before both of us consider the channel
// open. We'll use out mapping to derive the proper number of
// confirmations based on the amount of the channel, and also if any
// funds are being pushed to us.
numConfsReq := f.cfg.NumRequiredConfs(msg.FundingAmount, msg.PushAmount)
reservation.SetNumConfsRequired(numConfsReq)
// We'll also validate and apply all the constraints the initiating
// party is attempting to dictate for our commitment transaction.
err = reservation.CommitConstraints(
uint16(msg.CsvDelay), msg.MaxAcceptedHTLCs,
msg.MaxValueInFlight, msg.ChannelReserve,
)
if err != nil {
f.failFundingFlow(
fmsg.peerAddress.IdentityKey, fmsg.msg.PendingChannelID,
[]byte(fmt.Sprintf("Unacceptable channel "+
"constraints: %v", err)),
)
return
}
reservation.RegisterMinHTLC(f.cfg.DefaultRoutingPolicy.MinHTLC)
fndgLog.Infof("Requiring %v confirmations for pendingChan(%x): "+
"amt=%v, push_amt=%v", numConfsReq, fmsg.msg.PendingChannelID,
amt, msg.PushAmount)
// Once the reservation has been created successfully, we add it to
// this peers map of pending reservations to track this particular
// reservation until either abort or completion.
f.resMtx.Lock()
if _, ok := f.activeReservations[peerIDKey]; !ok {
f.activeReservations[peerIDKey] = make(pendingChannels)
}
f.activeReservations[peerIDKey][msg.PendingChannelID] = &reservationWithCtx{
reservation: reservation,
chanAmt: amt,
err: make(chan error, 1),
peerAddress: fmsg.peerAddress,
}
f.resMtx.Unlock()
// Using the RequiredRemoteDelay closure, we'll compute the remote CSV
// delay we require given the total amount of funds within the channel.
remoteCsvDelay := f.cfg.RequiredRemoteDelay(amt)
// We'll also generate our required constraints for the remote party,
chanReserve, maxValue, maxHtlcs := reservation.RemoteChanConstraints()
// With our parameters set, we'll now process their contribution so we
// can move the funding workflow ahead.
remoteContribution := &lnwallet.ChannelContribution{
FundingAmount: amt,
FirstCommitmentPoint: msg.FirstCommitmentPoint,
ChannelConfig: &channeldb.ChannelConfig{
ChannelConstraints: channeldb.ChannelConstraints{
DustLimit: msg.DustLimit,
MaxPendingAmount: maxValue,
ChanReserve: chanReserve,
MinHTLC: msg.HtlcMinimum,
MaxAcceptedHtlcs: maxHtlcs,
},
CsvDelay: remoteCsvDelay,
MultiSigKey: copyPubKey(msg.FundingKey),
RevocationBasePoint: copyPubKey(msg.RevocationPoint),
PaymentBasePoint: copyPubKey(msg.PaymentPoint),
DelayBasePoint: copyPubKey(msg.DelayedPaymentPoint),
HtlcBasePoint: copyPubKey(msg.HtlcPoint),
},
}
err = reservation.ProcessSingleContribution(remoteContribution)
if err != nil {
fndgLog.Errorf("unable to add contribution reservation: %v", err)
// TODO(roasbeef): verify only sending sane info over
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
return
}
fndgLog.Infof("Sending fundingResp for pendingID(%x)",
msg.PendingChannelID)
fndgLog.Debugf("Remote party accepted commitment constraints: %v",
spew.Sdump(remoteContribution.ChannelConfig.ChannelConstraints))
// With the initiator's contribution recorded, respond with our
// contribution in the next message of the workflow.
ourContribution := reservation.OurContribution()
fundingAccept := lnwire.AcceptChannel{
PendingChannelID: msg.PendingChannelID,
DustLimit: ourContribution.DustLimit,
MaxValueInFlight: maxValue,
ChannelReserve: chanReserve,
MinAcceptDepth: uint32(numConfsReq),
HtlcMinimum: ourContribution.MinHTLC,
CsvDelay: uint16(remoteCsvDelay),
MaxAcceptedHTLCs: maxHtlcs,
FundingKey: ourContribution.MultiSigKey,
RevocationPoint: ourContribution.RevocationBasePoint,
PaymentPoint: ourContribution.PaymentBasePoint,
DelayedPaymentPoint: ourContribution.DelayBasePoint,
HtlcPoint: ourContribution.HtlcBasePoint,
FirstCommitmentPoint: ourContribution.FirstCommitmentPoint,
}
err = f.cfg.SendToPeer(fmsg.peerAddress.IdentityKey, &fundingAccept)
if err != nil {
fndgLog.Errorf("unable to send funding response to peer: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
return
}
}
// processFundingAccept sends a message to the fundingManager allowing it to
// continue the second phase of a funding workflow with the target peer.
func (f *fundingManager) processFundingAccept(msg *lnwire.AcceptChannel,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingAcceptMsg{msg, peerAddress}:
case <-f.quit:
return
}
}
// handleFundingAceept processes a response to the workflow initiation sent by
// the remote peer. This message then queues a message with the funding
// outpoint, and a commitment signature to the remote peer.
func (f *fundingManager) handleFundingAccept(fmsg *fundingAcceptMsg) {
msg := fmsg.msg
pendingChanID := fmsg.msg.PendingChannelID
peerKey := fmsg.peerAddress.IdentityKey
resCtx, err := f.getReservationCtx(peerKey, pendingChanID)
if err != nil {
fndgLog.Warnf("Can't find reservation (peerKey:%v, chanID:%v)",
peerKey, pendingChanID)
return
}
fndgLog.Infof("Recv'd fundingResponse for pendingID(%x)", pendingChanID[:])
// We'll also specify the responder's preference for the number of
// required confirmations, and also the set of channel constraints
// they've specified for commitment states we can create.
resCtx.reservation.SetNumConfsRequired(uint16(msg.MinAcceptDepth))
err = resCtx.reservation.CommitConstraints(
uint16(msg.CsvDelay), msg.MaxAcceptedHTLCs,
msg.MaxValueInFlight, msg.ChannelReserve,
)
if err != nil {
f.failFundingFlow(
fmsg.peerAddress.IdentityKey, fmsg.msg.PendingChannelID,
[]byte(fmt.Sprintf("Unacceptable channel "+
"constraints: %v", err)),
)
return
}
// As they've accepted our channel constraints, we'll regenerate them
// here so we can properly commit their accepted constraints to the
// reservation.
chanReserve, maxValue, maxHtlcs := resCtx.reservation.RemoteChanConstraints()
// The remote node has responded with their portion of the channel
// contribution. At this point, we can process their contribution which
// allows us to construct and sign both the commitment transaction, and
// the funding transaction.
remoteContribution := &lnwallet.ChannelContribution{
FirstCommitmentPoint: msg.FirstCommitmentPoint,
ChannelConfig: &channeldb.ChannelConfig{
ChannelConstraints: channeldb.ChannelConstraints{
DustLimit: msg.DustLimit,
MaxPendingAmount: maxValue,
ChanReserve: chanReserve,
MinHTLC: msg.HtlcMinimum,
MaxAcceptedHtlcs: maxHtlcs,
},
MultiSigKey: copyPubKey(msg.FundingKey),
RevocationBasePoint: copyPubKey(msg.RevocationPoint),
PaymentBasePoint: copyPubKey(msg.PaymentPoint),
DelayBasePoint: copyPubKey(msg.DelayedPaymentPoint),
HtlcBasePoint: copyPubKey(msg.HtlcPoint),
},
}
remoteContribution.CsvDelay = f.cfg.RequiredRemoteDelay(resCtx.chanAmt)
err = resCtx.reservation.ProcessContribution(remoteContribution)
if err != nil {
fndgLog.Errorf("Unable to process contribution from %v: %v",
fmsg.peerAddress.IdentityKey, err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
resCtx.err <- err
return
}
fndgLog.Infof("pendingChan(%x): remote party proposes num_confs=%v, "+
"csv_delay=%v", pendingChanID[:], msg.MinAcceptDepth, msg.CsvDelay)
fndgLog.Debugf("Remote party accepted commitment constraints: %v",
spew.Sdump(remoteContribution.ChannelConfig.ChannelConstraints))
// Now that we have their contribution, we can extract, then send over
// both the funding out point and our signature for their version of
// the commitment transaction to the remote peer.
outPoint := resCtx.reservation.FundingOutpoint()
_, sig := resCtx.reservation.OurSignatures()
commitSig, err := btcec.ParseSignature(sig, btcec.S256())
if err != nil {
fndgLog.Errorf("Unable to parse signature: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
resCtx.err <- err
return
}
// A new channel has almost finished the funding process. In order to
// properly synchronize with the writeHandler goroutine, we add a new
// channel to the barriers map which will be closed once the channel is
// fully open.
f.barrierMtx.Lock()
channelID := lnwire.NewChanIDFromOutPoint(outPoint)
fndgLog.Debugf("Creating chan barrier for ChanID(%v)", channelID)
f.newChanBarriers[channelID] = make(chan struct{})
f.barrierMtx.Unlock()
// The next message that advances the funding flow will reference the
// channel via its permanent channel ID, so we'll set up this mapping
// so we can retrieve the reservation context once we get the
// FundingSigned message.
f.resMtx.Lock()
f.signedReservations[channelID] = pendingChanID
f.resMtx.Unlock()
fndgLog.Infof("Generated ChannelPoint(%v) for pendingID(%x)", outPoint,
pendingChanID[:])
fundingCreated := &lnwire.FundingCreated{
PendingChannelID: pendingChanID,
FundingPoint: *outPoint,
CommitSig: commitSig,
}
err = f.cfg.SendToPeer(fmsg.peerAddress.IdentityKey, fundingCreated)
if err != nil {
fndgLog.Errorf("Unable to send funding complete message: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
msg.PendingChannelID, []byte(err.Error()))
resCtx.err <- err
return
}
}
// processFundingCreated queues a funding complete message coupled with the
// source peer to the fundingManager.
func (f *fundingManager) processFundingCreated(msg *lnwire.FundingCreated,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingCreatedMsg{msg, peerAddress}:
case <-f.quit:
return
}
}
// handleFundingCreated progresses the funding workflow when the daemon is on
// the responding side of a single funder workflow. Once this message has been
// processed, a signature is sent to the remote peer allowing it to broadcast
// the funding transaction, progressing the workflow into the final stage.
func (f *fundingManager) handleFundingCreated(fmsg *fundingCreatedMsg) {
peerKey := fmsg.peerAddress.IdentityKey
pendingChanID := fmsg.msg.PendingChannelID
resCtx, err := f.getReservationCtx(peerKey, pendingChanID)
if err != nil {
fndgLog.Warnf("can't find reservation (peerID:%v, chanID:%x)",
peerKey, pendingChanID[:])
return
}
// The channel initiator has responded with the funding outpoint of the
// final funding transaction, as well as a signature for our version of
// the commitment transaction. So at this point, we can validate the
// initiator's commitment transaction, then send our own if it's valid.
// TODO(roasbeef): make case (p vs P) consistent throughout
fundingOut := fmsg.msg.FundingPoint
fndgLog.Infof("completing pendingID(%x) with ChannelPoint(%v)",
pendingChanID[:], fundingOut)
// With all the necessary data available, attempt to advance the
// funding workflow to the next stage. If this succeeds then the
// funding transaction will broadcast after our next message.
// CompleteReservationSingle will also mark the channel as 'IsPending'
// in the database.
commitSig := fmsg.msg.CommitSig.Serialize()
completeChan, err := resCtx.reservation.CompleteReservationSingle(
&fundingOut, commitSig)
if err != nil {
// TODO(roasbeef): better error logging: peerID, channelID, etc.
fndgLog.Errorf("unable to complete single reservation: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err.Error()))
return
}
// If something goes wrong before the funding transaction is confirmed,
// we use this convenience method to delete the pending OpenChannel
// from the database.
deleteFromDatabase := func() {
closeInfo := &channeldb.ChannelCloseSummary{
ChanPoint: completeChan.FundingOutpoint,
ChainHash: completeChan.ChainHash,
RemotePub: completeChan.IdentityPub,
CloseType: channeldb.FundingCanceled,
}
if err := completeChan.CloseChannel(closeInfo); err != nil {
fndgLog.Errorf("Failed closing channel %v: %v",
completeChan.FundingOutpoint, err)
}
}
// A new channel has almost finished the funding process. In order to
// properly synchronize with the writeHandler goroutine, we add a new
// channel to the barriers map which will be closed once the channel is
// fully open.
f.barrierMtx.Lock()
channelID := lnwire.NewChanIDFromOutPoint(&fundingOut)
fndgLog.Debugf("Creating chan barrier for ChanID(%v)", channelID)
f.newChanBarriers[channelID] = make(chan struct{})
f.barrierMtx.Unlock()
fndgLog.Infof("sending FundingSigned for pendingID(%x) over "+
"ChannelPoint(%v)", pendingChanID[:], fundingOut)
// With their signature for our version of the commitment transaction
// verified, we can now send over our signature to the remote peer.
//
// TODO(roasbeef): just have raw bytes in wire msg? avoids decoding
// then decoding shortly afterwards.
_, sig := resCtx.reservation.OurSignatures()
ourCommitSig, err := btcec.ParseSignature(sig, btcec.S256())
if err != nil {
fndgLog.Errorf("unable to parse signature: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err.Error()))
deleteFromDatabase()
return
}
fundingSigned := &lnwire.FundingSigned{
ChanID: channelID,
CommitSig: ourCommitSig,
}
if err := f.cfg.SendToPeer(peerKey, fundingSigned); err != nil {
fndgLog.Errorf("unable to send FundingSigned message: %v", err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err.Error()))
deleteFromDatabase()
return
}
// Now that we've sent over our final signature for this channel, we'll
// send it to the ChainArbitrator so it can watch for any on-chain
// actions during this final confirmation stage.
if err := f.cfg.WatchNewChannel(completeChan); err != nil {
fndgLog.Errorf("Unable to send new ChannelPoint(%v) for "+
"arbitration: %v", fundingOut, err)
}
// Create an entry in the local discovery map so we can ensure that we
// process the channel confirmation fully before we receive a funding
// locked message.
f.localDiscoveryMtx.Lock()
f.localDiscoverySignals[channelID] = make(chan struct{})
f.localDiscoveryMtx.Unlock()
// With this last message, our job as the responder is now complete.
// We'll wait for the funding transaction to reach the specified number
// of confirmations, then start normal operations.
//
// When we get to this point we have sent the signComplete message to
// the channel funder, and BOLT#2 specifies that we MUST remember the
// channel for reconnection. The channel is already marked
// as pending in the database, so in case of a disconnect or restart,
// we will continue waiting for the confirmation the next time we start
// the funding manager. In case the funding transaction never appears
// on the blockchain, we must forget this channel. We therefore
// completely forget about this channel if we haven't seen the funding
// transaction in 288 blocks (~ 48 hrs), by canceling the reservation
// and canceling the wait for the funding confirmation.
f.wg.Add(1)
go func() {
defer f.wg.Done()
confChan := make(chan *lnwire.ShortChannelID)
timeoutChan := make(chan struct{})
go f.waitForFundingWithTimeout(completeChan, confChan,
timeoutChan)
var shortChanID *lnwire.ShortChannelID
var ok bool
select {
case <-timeoutChan:
// We did not see the funding confirmation before
// timeout, so we forget the channel.
deleteFromDatabase()
return
case <-f.quit:
// The fundingManager is shutting down, will resume
// wait for funding transaction on startup.
return
case shortChanID, ok = <-confChan:
if !ok {
fndgLog.Errorf("waiting for funding confirmation" +
" failed")
return
}
// Fallthrough.
}
// Success, funding transaction was confirmed.
f.deleteReservationCtx(peerKey, fmsg.msg.PendingChannelID)
err := f.handleFundingConfirmation(completeChan,
shortChanID)
if err != nil {
fndgLog.Errorf("failed to handle funding"+
"confirmation: %v", err)
return
}
}()
}
// processFundingSigned sends a single funding sign complete message along with
// the source peer to the funding manager.
func (f *fundingManager) processFundingSigned(msg *lnwire.FundingSigned,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingSignedMsg{msg, peerAddress}:
case <-f.quit:
return
}
}
// handleFundingSigned processes the final message received in a single funder
// workflow. Once this message is processed, the funding transaction is
// broadcast. Once the funding transaction reaches a sufficient number of
// confirmations, a message is sent to the responding peer along with a compact
// encoding of the location of the channel within the blockchain.
func (f *fundingManager) handleFundingSigned(fmsg *fundingSignedMsg) {
// As the funding signed message will reference the reservation by it's
// permanent channel ID, we'll need to perform an intermediate look up
// before we can obtain the reservation.
f.resMtx.Lock()
pendingChanID, ok := f.signedReservations[fmsg.msg.ChanID]
delete(f.signedReservations, fmsg.msg.ChanID)
f.resMtx.Unlock()
if !ok {
err := fmt.Sprintf("Unable to find signed reservation for "+
"chan_id=%x", fmsg.msg.ChanID)
fndgLog.Warnf(err)
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err))
return
}
peerKey := fmsg.peerAddress.IdentityKey
resCtx, err := f.getReservationCtx(fmsg.peerAddress.IdentityKey,
pendingChanID)
if err != nil {
fndgLog.Warnf("Unable to find reservation (peerID:%v, chanID:%x)",
peerKey, pendingChanID[:])
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err.Error()))
return
}
// Create an entry in the local discovery map so we can ensure that we
// process the channel confirmation fully before we receive a funding
// locked message.
fundingPoint := resCtx.reservation.FundingOutpoint()
permChanID := lnwire.NewChanIDFromOutPoint(fundingPoint)
f.localDiscoveryMtx.Lock()
f.localDiscoverySignals[permChanID] = make(chan struct{})
f.localDiscoveryMtx.Unlock()
// The remote peer has responded with a signature for our commitment
// transaction. We'll verify the signature for validity, then commit
// the state to disk as we can now open the channel.
commitSig := fmsg.msg.CommitSig.Serialize()
completeChan, err := resCtx.reservation.CompleteReservation(nil, commitSig)
if err != nil {
fndgLog.Errorf("Unable to complete reservation sign complete: %v", err)
resCtx.err <- err
f.failFundingFlow(fmsg.peerAddress.IdentityKey,
pendingChanID, []byte(err.Error()))
return
}
// Now that we have a finalized reservation for this funding flow,
// we'll send the to be active channel to the ChainArbitrator so it can
// watch for any on-chin actions before the channel has fully
// confirmed.
if err := f.cfg.WatchNewChannel(completeChan); err != nil {
fndgLog.Errorf("Unable to send new ChannelPoint(%v) for "+
"arbitration: %v", fundingPoint, err)
}
fndgLog.Infof("Finalizing pendingID(%x) over ChannelPoint(%v), "+
"waiting for channel open on-chain", pendingChanID[:], fundingPoint)
// Send an update to the upstream client that the negotiation process
// is over.
// TODO(roasbeef): add abstraction over updates to accommodate
// long-polling, or SSE, etc.
resCtx.updates <- &lnrpc.OpenStatusUpdate{
Update: &lnrpc.OpenStatusUpdate_ChanPending{
ChanPending: &lnrpc.PendingUpdate{
Txid: fundingPoint.Hash[:],
OutputIndex: fundingPoint.Index,
},
},
}
f.wg.Add(1)
go func() {
defer f.wg.Done()
confChan := make(chan *lnwire.ShortChannelID)
cancelChan := make(chan struct{})
// In case the fundingManager is stopped at some point during
// the remaining part of the opening process, we must wait for
// this process to finish (either successfully or with some
// error), before the fundingManager can be shut down.
f.wg.Add(1)
go func() {
defer f.wg.Done()
f.waitForFundingConfirmation(completeChan, cancelChan,
confChan)
}()
var shortChanID *lnwire.ShortChannelID
var ok bool
select {
case <-f.quit:
return
case shortChanID, ok = <-confChan:
if !ok {
fndgLog.Errorf("waiting for funding confirmation" +
" failed")
return
}
}
fndgLog.Debugf("Channel with ShortChanID %v now confirmed",
shortChanID.ToUint64())
// Go on adding the channel to the channel graph, and crafting
// channel announcements.
lnChannel, err := lnwallet.NewLightningChannel(
nil, nil, completeChan,
)
if err != nil {
fndgLog.Errorf("failed creating lnChannel: %v", err)
return
}
defer func() {
lnChannel.Stop()
}()
err = f.sendFundingLocked(completeChan, lnChannel, shortChanID)
if err != nil {
fndgLog.Errorf("failed sending fundingLocked: %v", err)
return
}
fndgLog.Debugf("FundingLocked for channel with ShortChanID "+
"%v sent", shortChanID.ToUint64())
err = f.addToRouterGraph(completeChan, shortChanID)
if err != nil {
fndgLog.Errorf("failed adding to router graph: %v", err)
return
}
fndgLog.Debugf("Channel with ShortChanID %v added to "+
"router graph", shortChanID.ToUint64())
// Give the caller a final update notifying them that
// the channel is now open.
// TODO(roasbeef): only notify after recv of funding locked?
resCtx.updates <- &lnrpc.OpenStatusUpdate{
Update: &lnrpc.OpenStatusUpdate_ChanOpen{
ChanOpen: &lnrpc.ChannelOpenUpdate{
ChannelPoint: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: fundingPoint.Hash[:],
},
OutputIndex: fundingPoint.Index,
},
},
},
}
f.deleteReservationCtx(peerKey, pendingChanID)
err = f.annAfterSixConfs(completeChan, shortChanID)
if err != nil {
fndgLog.Errorf("failed sending channel announcement: %v",
err)
return
}
}()
}
// waitForFundingWithTimeout is a wrapper around waitForFundingConfirmation that
// will cancel the wait for confirmation if maxWaitNumBlocksFundingConf has
// passed from bestHeight. In the case of timeout, the timeoutChan will be
// closed. In case of error, confChan will be closed. In case of success,
// a *lnwire.ShortChannelID will be passed to confChan.
func (f *fundingManager) waitForFundingWithTimeout(completeChan *channeldb.OpenChannel,
confChan chan<- *lnwire.ShortChannelID, timeoutChan chan<- struct{}) {
epochClient, err := f.cfg.Notifier.RegisterBlockEpochNtfn()
if err != nil {
fndgLog.Errorf("unable to register for epoch notification: %v",
err)
close(confChan)
return
}
defer epochClient.Cancel()
waitingConfChan := make(chan *lnwire.ShortChannelID)
cancelChan := make(chan struct{})
// Add this goroutine to wait group so we can be sure that it is
// properly stopped before the funding manager can be shut down.
f.wg.Add(1)
go func() {
defer f.wg.Done()
f.waitForFundingConfirmation(completeChan, cancelChan,
waitingConfChan)
}()
// On block maxHeight we will cancel the funding confirmation wait.
maxHeight := completeChan.FundingBroadcastHeight + maxWaitNumBlocksFundingConf
for {
select {
case epoch, ok := <-epochClient.Epochs:
if !ok {
fndgLog.Warnf("Epoch client shutting down")
return
}
if uint32(epoch.Height) >= maxHeight {
fndgLog.Warnf("waited for %v blocks without "+
"seeing funding transaction confirmed,"+
" cancelling.", maxWaitNumBlocksFundingConf)
// Cancel the waitForFundingConfirmation
// goroutine.
close(cancelChan)
// Notify the caller of the timeout.
close(timeoutChan)
return
}
case <-f.quit:
// The fundingManager is shutting down, will resume
// waiting for the funding transaction on startup.
return
case shortChanID, ok := <-waitingConfChan:
if !ok {
// Failed waiting for confirmation, close
// confChan to indicate failure.
close(confChan)
return
}
select {
case confChan <- shortChanID:
case <-f.quit:
return
}
}
}
}
// waitForFundingConfirmation handles the final stages of the channel funding
// process once the funding transaction has been broadcast. The primary
// function of waitForFundingConfirmation is to wait for blockchain
// confirmation, and then to notify the other systems that must be notified
// when a channel has become active for lightning transactions.
// The wait can be canceled by closing the cancelChan. In case of success,
// a *lnwire.ShortChannelID will be passed to confChan.
func (f *fundingManager) waitForFundingConfirmation(completeChan *channeldb.OpenChannel,
cancelChan <-chan struct{}, confChan chan<- *lnwire.ShortChannelID) {
defer close(confChan)
// Register with the ChainNotifier for a notification once the funding
// transaction reaches `numConfs` confirmations.
txid := completeChan.FundingOutpoint.Hash
numConfs := uint32(completeChan.NumConfsRequired)
confNtfn, err := f.cfg.Notifier.RegisterConfirmationsNtfn(&txid,
numConfs, completeChan.FundingBroadcastHeight)
if err != nil {
fndgLog.Errorf("Unable to register for confirmation of "+
"ChannelPoint(%v)", completeChan.FundingOutpoint)
return
}
fndgLog.Infof("Waiting for funding tx (%v) to reach %v confirmations",
txid, numConfs)
var confDetails *chainntnfs.TxConfirmation
var ok bool
// Wait until the specified number of confirmations has been reached,
// we get a cancel signal, or the wallet signals a shutdown.
select {
case confDetails, ok = <-confNtfn.Confirmed:
// fallthrough
case <-cancelChan:
fndgLog.Warnf("canceled waiting for funding confirmation, "+
"stopping funding flow for ChannelPoint(%v)",
completeChan.FundingOutpoint)
return
case <-f.quit:
fndgLog.Warnf("fundingManager shutting down, stopping funding "+
"flow for ChannelPoint(%v)", completeChan.FundingOutpoint)
return
}
if !ok {
fndgLog.Warnf("ChainNotifier shutting down, cannot complete "+
"funding flow for ChannelPoint(%v)",
completeChan.FundingOutpoint)
return
}
fundingPoint := completeChan.FundingOutpoint
chanID := lnwire.NewChanIDFromOutPoint(&fundingPoint)
fndgLog.Infof("ChannelPoint(%v) is now active: ChannelID(%x)",
fundingPoint, chanID[:])
// With the block height and the transaction index known, we can
// construct the compact chanID which is used on the network to unique
// identify channels.
shortChanID := lnwire.ShortChannelID{
BlockHeight: confDetails.BlockHeight,
TxIndex: confDetails.TxIndex,
TxPosition: uint16(fundingPoint.Index),
}
// Now that the channel has been fully confirmed, we'll mark it as open
// within the database.
if err := completeChan.MarkAsOpen(shortChanID); err != nil {
fndgLog.Errorf("error setting channel pending flag to false: "+
"%v", err)
return
}
// TODO(roasbeef): ideally persistent state update for chan above
// should be abstracted
// The funding transaction now being confirmed, we add this channel to
// the fundingManager's internal persistent state machine that we use
// to track the remaining process of the channel opening. This is
// useful to resume the opening process in case of restarts.
//
// TODO(halseth): make the two db transactions (MarkChannelAsOpen and
// saveChannelOpeningState) atomic by doing them in the same transaction.
// Needed to be properly fault-tolerant.
err = f.saveChannelOpeningState(&completeChan.FundingOutpoint, markedOpen,
&shortChanID)
if err != nil {
fndgLog.Errorf("error setting channel state to markedOpen: %v",
err)
return
}
// As there might already be an active link in the switch with an
// outdated short chan ID, we'll update it now.
err = f.cfg.ReportShortChanID(fundingPoint, shortChanID)
if err != nil {
fndgLog.Errorf("unable to report short chan id: %v", err)
}
select {
case confChan <- &shortChanID:
case <-f.quit:
return
}
// Close the discoverySignal channel, indicating to a separate
// goroutine that the channel now is marked as open in the database
// and that it is acceptable to process funding locked messages
// from the peer.
f.localDiscoveryMtx.Lock()
if discoverySignal, ok := f.localDiscoverySignals[chanID]; ok {
close(discoverySignal)
}
f.localDiscoveryMtx.Unlock()
}
// handleFundingConfirmation is a wrapper method for creating a new
// lnwallet.LightningChannel object, calling sendFundingLocked, addToRouterGraph,
// and annAfterSixConfs. This is called after the funding transaction is
// confirmed.
func (f *fundingManager) handleFundingConfirmation(completeChan *channeldb.OpenChannel,
shortChanID *lnwire.ShortChannelID) error {
// We create the state-machine object which wraps the database state.
lnChannel, err := lnwallet.NewLightningChannel(
nil, nil, completeChan,
)
if err != nil {
return err
}
defer func() {
lnChannel.Stop()
}()
chanID := lnwire.NewChanIDFromOutPoint(&completeChan.FundingOutpoint)
fndgLog.Debugf("ChannelID(%v) is now fully confirmed!", chanID)
err = f.sendFundingLocked(completeChan, lnChannel, shortChanID)
if err != nil {
return fmt.Errorf("failed sending fundingLocked: %v", err)
}
err = f.addToRouterGraph(completeChan, shortChanID)
if err != nil {
return fmt.Errorf("failed adding to router graph: %v", err)
}
err = f.annAfterSixConfs(completeChan, shortChanID)
if err != nil {
return fmt.Errorf("failed sending channel announcement: %v",
err)
}
return nil
}
// sendFundingLocked creates and sends the fundingLocked message.
// This should be called after the funding transaction has been confirmed,
// and the channelState is 'markedOpen'.
func (f *fundingManager) sendFundingLocked(completeChan *channeldb.OpenChannel,
channel *lnwallet.LightningChannel,
shortChanID *lnwire.ShortChannelID) error {
chanID := lnwire.NewChanIDFromOutPoint(&completeChan.FundingOutpoint)
// Next, we'll send over the funding locked message which marks that we
// consider the channel open by presenting the remote party with our
// next revocation key. Without the revocation key, the remote party
// will be unable to propose state transitions.
nextRevocation, err := channel.NextRevocationKey()
if err != nil {
return fmt.Errorf("unable to create next revocation: %v", err)
}
fundingLockedMsg := lnwire.NewFundingLocked(chanID, nextRevocation)
// If the peer has disconnected before we reach this point, we will need
// to wait for him to come back online before sending the fundingLocked
// message. This is special for fundingLocked, since failing to send any
// of the previous messages in the funding flow just cancels the flow.
// But now the funding transaction is confirmed, the channel is open
// and we have to make sure the peer gets the fundingLocked message when
// it comes back online. This is also crucial during restart of lnd,
// where we might try to resend the fundingLocked message before the
// server has had the time to connect to the peer. We keep trying to
// send fundingLocked until we succeed, or the fundingManager is shut
// down.
for {
fndgLog.Debugf("Sending FundingLocked for ChannelID(%v) to "+
"peer %x", chanID,
completeChan.IdentityPub.SerializeCompressed())
err = f.cfg.SendToPeer(completeChan.IdentityPub,
fundingLockedMsg)
if err == nil {
// Sending succeeded, we can break out and continue
// the funding flow.
break
}
fndgLog.Warnf("unable to send fundingLocked to peer %x: "+
"%v. Will retry when online",
completeChan.IdentityPub.SerializeCompressed(), err)
connected := make(chan struct{})
f.cfg.NotifyWhenOnline(completeChan.IdentityPub, connected)
select {
case <-connected:
fndgLog.Infof("Peer(%x) came back online, will retry "+
"sending FundingLocked for ChannelID(%v)",
completeChan.IdentityPub.SerializeCompressed(),
chanID)
// Retry sending.
case <-f.quit:
return fmt.Errorf("shutting down unable to send")
}
}
// As the fundingLocked message is now sent to the peer, the channel is
// moved to the next state of the state machine. It will be moved to the
// last state (actually deleted from the database) after the channel is
// finally announced.
err = f.saveChannelOpeningState(&completeChan.FundingOutpoint,
fundingLockedSent, shortChanID)
if err != nil {
return fmt.Errorf("error setting channel state to"+
" fundingLockedSent: %v", err)
}
return nil
}
// addToRouterGraph sends a ChannelAnnouncement and a ChannelUpdate to the
// gossiper so that the channel is added to the Router's internal graph.
// These announcement messages are NOT broadcasted to the greater network,
// only to the channel counter party. The proofs required to announce the
// channel to the greater network will be created and sent in annAfterSixConfs.
func (f *fundingManager) addToRouterGraph(completeChan *channeldb.OpenChannel,
shortChanID *lnwire.ShortChannelID) error {
chanID := lnwire.NewChanIDFromOutPoint(&completeChan.FundingOutpoint)
// We'll obtain their min HTLC as we'll use this value within our
// ChannelUpdate. We use this value isn't of ours, as the remote party
// will be the one that's carrying the HTLC towards us.
remoteMinHTLC := completeChan.RemoteChanCfg.MinHTLC
ann, err := f.newChanAnnouncement(f.cfg.IDKey, completeChan.IdentityPub,
completeChan.LocalChanCfg.MultiSigKey,
completeChan.RemoteChanCfg.MultiSigKey, *shortChanID, chanID,
remoteMinHTLC,
)
if err != nil {
return fmt.Errorf("error generating channel "+
"announcement: %v", err)
}
// Send ChannelAnnouncement and ChannelUpdate to the gossiper to add
// to the Router's topology.
if err = f.cfg.SendAnnouncement(ann.chanAnn); err != nil {
if routing.IsError(err, routing.ErrOutdated, routing.ErrIgnored) {
fndgLog.Debugf("Router rejected ChannelAnnouncement: %v",
err)
} else {
return fmt.Errorf("error sending channel "+
"announcement: %v", err)
}
}
if err = f.cfg.SendAnnouncement(ann.chanUpdateAnn); err != nil {
if routing.IsError(err, routing.ErrOutdated, routing.ErrIgnored) {
fndgLog.Debugf("Router rejected ChannelUpdate: %v", err)
} else {
return fmt.Errorf("error sending channel "+
"update: %v", err)
}
}
// As the channel is now added to the ChannelRouter's topology, the
// channel is moved to the next state of the state machine. It will be
// moved to the last state (actually deleted from the database) after
// the channel is finally announced.
err = f.saveChannelOpeningState(&completeChan.FundingOutpoint,
addedToRouterGraph, shortChanID)
if err != nil {
return fmt.Errorf("error setting channel state to"+
" addedToRouterGraph: %v", err)
}
return nil
}
// annAfterSixConfs broadcasts the necessary channel announcement messages to
// the network after 6 confs. Should be called after the fundingLocked message
// is sent and the channel is added to the router graph (channelState is
// 'addedToRouterGraph') and the channel is ready to be used. This is the last
// step in the channel opening process, and the opening state will be deleted
// from the database if successful.
func (f *fundingManager) annAfterSixConfs(completeChan *channeldb.OpenChannel,
shortChanID *lnwire.ShortChannelID) error {
// If this channel is meant to be announced to the greater network,
// wait until the funding tx has reached 6 confirmations before
// announcing it.
announceChan := completeChan.ChannelFlags&lnwire.FFAnnounceChannel != 0
if !announceChan {
fndgLog.Debugf("Will not announce private channel %v.",
shortChanID.ToUint64())
} else {
// Register with the ChainNotifier for a notification once the
// funding transaction reaches at least 6 confirmations.
numConfs := uint32(completeChan.NumConfsRequired)
if numConfs < 6 {
numConfs = 6
}
txid := completeChan.FundingOutpoint.Hash
fndgLog.Debugf("Will announce channel %v after ChannelPoint"+
"(%v) has gotten %d confirmations",
shortChanID.ToUint64(), completeChan.FundingOutpoint,
numConfs)
confNtfn, err := f.cfg.Notifier.RegisterConfirmationsNtfn(&txid,
numConfs, completeChan.FundingBroadcastHeight)
if err != nil {
return fmt.Errorf("Unable to register for confirmation of "+
"ChannelPoint(%v): %v", completeChan.FundingOutpoint, err)
}
// Wait until 6 confirmations has been reached or the wallet signals
// a shutdown.
select {
case _, ok := <-confNtfn.Confirmed:
if !ok {
return fmt.Errorf("ChainNotifier shutting down, cannot "+
"complete funding flow for ChannelPoint(%v)",
completeChan.FundingOutpoint)
}
// Fallthrough.
case <-f.quit:
return fmt.Errorf("fundingManager shutting down, stopping funding "+
"flow for ChannelPoint(%v)", completeChan.FundingOutpoint)
}
fundingPoint := completeChan.FundingOutpoint
chanID := lnwire.NewChanIDFromOutPoint(&fundingPoint)
fndgLog.Infof("Announcing ChannelPoint(%v), short_chan_id=%v",
&fundingPoint, spew.Sdump(shortChanID))
// We'll obtain their min HTLC as we'll use this value within our
// ChannelUpdate. We use this value isn't of ours, as the remote party
// will be the one that's carrying the HTLC towards us.
remoteMinHTLC := completeChan.RemoteChanCfg.MinHTLC
// Create and broadcast the proofs required to make this channel
// public and usable for other nodes for routing.
err = f.announceChannel(f.cfg.IDKey, completeChan.IdentityPub,
completeChan.LocalChanCfg.MultiSigKey,
completeChan.RemoteChanCfg.MultiSigKey, *shortChanID, chanID,
remoteMinHTLC,
)
if err != nil {
return fmt.Errorf("channel announcement failed: %v", err)
}
fndgLog.Debugf("Channel with ChannelPoint(%v), short_chan_id=%v "+
"announced", &fundingPoint, spew.Sdump(shortChanID))
}
// We delete the channel opening state from our internal database
// as the opening process has succeeded. We can do this because we
// assume the AuthenticatedGossiper queues the announcement messages,
// and persists them in case of a daemon shutdown.
err := f.deleteChannelOpeningState(&completeChan.FundingOutpoint)
if err != nil {
return fmt.Errorf("error deleting channel state: %v", err)
}
return nil
}
// processFundingLocked sends a message to the fundingManager allowing it to
// finish the funding workflow.
func (f *fundingManager) processFundingLocked(msg *lnwire.FundingLocked,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingLockedMsg{msg, peerAddress}:
case <-f.quit:
return
}
}
// handleFundingLocked finalizes the channel funding process and enables the
// channel to enter normal operating mode.
func (f *fundingManager) handleFundingLocked(fmsg *fundingLockedMsg) {
defer f.wg.Done()
fndgLog.Debugf("Received FundingLocked for ChannelID(%v) from "+
"peer %x", fmsg.msg.ChanID,
fmsg.peerAddress.IdentityKey.SerializeCompressed())
// If we are currently in the process of handling a funding locked
// message for this channel, ignore.
f.handleFundingLockedMtx.Lock()
_, ok := f.handleFundingLockedBarriers[fmsg.msg.ChanID]
if ok {
fndgLog.Infof("Already handling fundingLocked for "+
"ChannelID(%v), ignoring.", fmsg.msg.ChanID)
f.handleFundingLockedMtx.Unlock()
return
}
// If not already handling fundingLocked for this channel, set up
// barrier, and move on.
f.handleFundingLockedBarriers[fmsg.msg.ChanID] = struct{}{}
f.handleFundingLockedMtx.Unlock()
defer func() {
f.handleFundingLockedMtx.Lock()
delete(f.handleFundingLockedBarriers, fmsg.msg.ChanID)
f.handleFundingLockedMtx.Unlock()
}()
f.localDiscoveryMtx.Lock()
localDiscoverySignal, ok := f.localDiscoverySignals[fmsg.msg.ChanID]
f.localDiscoveryMtx.Unlock()
if ok {
// Before we proceed with processing the funding locked
// message, we'll wait for the local waitForFundingConfirmation
// goroutine to signal that it has the necessary state in
// place. Otherwise, we may be missing critical information
// required to handle forwarded HTLC's.
select {
case <-localDiscoverySignal:
// Fallthrough
case <-f.quit:
return
}
// With the signal received, we can now safely delete the entry
// from the map.
f.localDiscoveryMtx.Lock()
delete(f.localDiscoverySignals, fmsg.msg.ChanID)
f.localDiscoveryMtx.Unlock()
}
// First, we'll attempt to locate the channel who's funding workflow is
// being finalized by this message. We got to the database rather than
// our reservation map as we may have restarted, mid funding flow.
chanID := fmsg.msg.ChanID
channel, err := f.cfg.FindChannel(chanID)
if err != nil {
fndgLog.Errorf("Unable to locate ChannelID(%v), cannot complete "+
"funding", chanID)
return
}
// If the RemoteNextRevocation is non-nil, it means that we have
// already processed fundingLocked for this channel, so ignore.
if channel.RemoteNextRevocation() != nil {
fndgLog.Infof("Received duplicate fundingLocked for "+
"ChannelID(%v), ignoring.", chanID)
channel.Stop()
return
}
// With the channel retrieved, we'll send the breach arbiter the new
// channel so it can watch for attempts to breach the channel's
// contract by the remote party.
select {
case f.cfg.ArbiterChan <- *channel.ChanPoint:
case <-f.quit:
return
}
// The funding locked message contains the next commitment point we'll
// need to create the next commitment state for the remote party. So
// we'll insert that into the channel now before passing it along to
// other sub-systems.
err = channel.InitNextRevocation(fmsg.msg.NextPerCommitmentPoint)
if err != nil {
fndgLog.Errorf("unable to insert next commitment point: %v", err)
return
}
// Launch a defer so we _ensure_ that the channel barrier is properly
// closed even if the target peer is not longer online at this point.
defer func() {
// Close the active channel barrier signalling the readHandler
// that commitment related modifications to this channel can
// now proceed.
f.barrierMtx.Lock()
chanBarrier, ok := f.newChanBarriers[chanID]
if ok {
fndgLog.Tracef("Closing chan barrier for ChanID(%v)",
chanID)
close(chanBarrier)
delete(f.newChanBarriers, chanID)
}
f.barrierMtx.Unlock()
}()
// Finally, we'll find the peer that sent us this message so we can
// provide it with the fully initialized channel state.
peer, err := f.cfg.FindPeer(fmsg.peerAddress.IdentityKey)
if err != nil {
fndgLog.Errorf("Unable to find peer: %v", err)
return
}
newChanDone := make(chan struct{})
newChanMsg := &newChannelMsg{
channel: channel,
done: newChanDone,
}
select {
case peer.newChannels <- newChanMsg:
case <-f.quit:
return
}
// We pause here to wait for the peer to recognize the new channel
// before we close the channel barrier corresponding to the channel.
select {
case <-f.quit:
return
case <-newChanDone: // Fallthrough if we're not quitting.
}
}
// channelProof is one half of the proof necessary to create an authenticated
// announcement on the network. The two signatures individually sign a
// statement of the existence of a channel.
type channelProof struct {
nodeSig *btcec.Signature
bitcoinSig *btcec.Signature
}
// chanAnnouncement encapsulates the two authenticated announcements that we
// send out to the network after a new channel has been created locally.
type chanAnnouncement struct {
chanAnn *lnwire.ChannelAnnouncement
chanUpdateAnn *lnwire.ChannelUpdate
chanProof *lnwire.AnnounceSignatures
}
// newChanAnnouncement creates the authenticated channel announcement messages
// required to broadcast a newly created channel to the network. The
// announcement is two part: the first part authenticates the existence of the
// channel and contains four signatures binding the funding pub keys and
// identity pub keys of both parties to the channel, and the second segment is
// authenticated only by us and contains our directional routing policy for the
// channel.
func (f *fundingManager) newChanAnnouncement(localPubKey, remotePubKey *btcec.PublicKey,
localFundingKey, remoteFundingKey *btcec.PublicKey,
shortChanID lnwire.ShortChannelID, chanID lnwire.ChannelID,
remoteMinHTLC lnwire.MilliSatoshi) (*chanAnnouncement, error) {
chainHash := *f.cfg.Wallet.Cfg.NetParams.GenesisHash
// The unconditional section of the announcement is the ShortChannelID
// itself which compactly encodes the location of the funding output
// within the blockchain.
chanAnn := &lnwire.ChannelAnnouncement{
ShortChannelID: shortChanID,
Features: lnwire.NewRawFeatureVector(),
ChainHash: chainHash,
}
// The chanFlags field indicates which directed edge of the channel is
// being updated within the ChannelUpdateAnnouncement announcement
// below. A value of zero means it's the edge of the "first" node and 1
// being the other node.
var chanFlags lnwire.ChanUpdateFlag
// The lexicographical ordering of the two identity public keys of the
// nodes indicates which of the nodes is "first". If our serialized
// identity key is lower than theirs then we're the "first" node and
// second otherwise.
selfBytes := localPubKey.SerializeCompressed()
remoteBytes := remotePubKey.SerializeCompressed()
if bytes.Compare(selfBytes, remoteBytes) == -1 {
chanAnn.NodeID1 = localPubKey
chanAnn.NodeID2 = remotePubKey
chanAnn.BitcoinKey1 = localFundingKey
chanAnn.BitcoinKey2 = remoteFundingKey
// If we're the first node then update the chanFlags to
// indicate the "direction" of the update.
chanFlags = 0
} else {
chanAnn.NodeID1 = remotePubKey
chanAnn.NodeID2 = localPubKey
chanAnn.BitcoinKey1 = remoteFundingKey
chanAnn.BitcoinKey2 = localFundingKey
// If we're the second node then update the chanFlags to
// indicate the "direction" of the update.
chanFlags = 1
}
// We announce the channel with the default values. Some of
// these values can later be changed by crafting a new ChannelUpdate.
chanUpdateAnn := &lnwire.ChannelUpdate{
ShortChannelID: shortChanID,
ChainHash: chainHash,
Timestamp: uint32(time.Now().Unix()),
Flags: chanFlags,
TimeLockDelta: uint16(f.cfg.DefaultRoutingPolicy.TimeLockDelta),
// We use the *remote* party's HtlcMinimumMsat, as they'll be
// the ones carrying the HTLC routed *towards* us.
HtlcMinimumMsat: remoteMinHTLC,
BaseFee: uint32(f.cfg.DefaultRoutingPolicy.BaseFee),
FeeRate: uint32(f.cfg.DefaultRoutingPolicy.FeeRate),
}
// With the channel update announcement constructed, we'll generate a
// signature that signs a double-sha digest of the announcement.
// This'll serve to authenticate this announcement and any other future
// updates we may send.
chanUpdateMsg, err := chanUpdateAnn.DataToSign()
if err != nil {
return nil, err
}
chanUpdateAnn.Signature, err = f.cfg.SignMessage(f.cfg.IDKey, chanUpdateMsg)
if err != nil {
return nil, errors.Errorf("unable to generate channel "+
"update announcement signature: %v", err)
}
// The channel existence proofs itself is currently announced in
// distinct message. In order to properly authenticate this message, we
// need two signatures: one under the identity public key used which
// signs the message itself and another signature of the identity
// public key under the funding key itself.
//
// TODO(roasbeef): use SignAnnouncement here instead?
chanAnnMsg, err := chanAnn.DataToSign()
if err != nil {
return nil, err
}
nodeSig, err := f.cfg.SignMessage(f.cfg.IDKey, chanAnnMsg)
if err != nil {
return nil, errors.Errorf("unable to generate node "+
"signature for channel announcement: %v", err)
}
bitcoinSig, err := f.cfg.SignMessage(localFundingKey, chanAnnMsg)
if err != nil {
return nil, errors.Errorf("unable to generate bitcoin "+
"signature for node public key: %v", err)
}
// Finally, we'll generate the announcement proof which we'll use to
// provide the other side with the necessary signatures required to
// allow them to reconstruct the full channel announcement.
proof := &lnwire.AnnounceSignatures{
ChannelID: chanID,
ShortChannelID: shortChanID,
NodeSignature: nodeSig,
BitcoinSignature: bitcoinSig,
}
return &chanAnnouncement{
chanAnn: chanAnn,
chanUpdateAnn: chanUpdateAnn,
chanProof: proof,
}, nil
}
// announceChannel announces a newly created channel to the rest of the network
// by crafting the two authenticated announcements required for the peers on
// the network to recognize the legitimacy of the channel. The crafted
// announcements are then sent to the channel router to handle broadcasting to
// the network during its next trickle.
// This method is synchronous and will return when all the network requests
// finish, either successfully or with an error.
func (f *fundingManager) announceChannel(localIDKey, remoteIDKey, localFundingKey,
remoteFundingKey *btcec.PublicKey, shortChanID lnwire.ShortChannelID,
chanID lnwire.ChannelID, remoteMinHTLC lnwire.MilliSatoshi) error {
// First, we'll create the batch of announcements to be sent upon
// initial channel creation. This includes the channel announcement
// itself, the channel update announcement, and our half of the channel
// proof needed to fully authenticate the channel.
ann, err := f.newChanAnnouncement(localIDKey, remoteIDKey,
localFundingKey, remoteFundingKey, shortChanID, chanID,
remoteMinHTLC,
)
if err != nil {
fndgLog.Errorf("can't generate channel announcement: %v", err)
return err
}
// We only send the channel proof announcement and the node announcement
// because addToRouterGraph previously send the ChannelAnnouncement and
// the ChannelUpdate announcement messages. The channel proof and node
// announcements are broadcast to the greater network.
if err = f.cfg.SendAnnouncement(ann.chanProof); err != nil {
if routing.IsError(err, routing.ErrOutdated, routing.ErrIgnored) {
fndgLog.Debugf("Router rejected AnnounceSignatures: %v",
err)
} else {
fndgLog.Errorf("Unable to send channel proof: %v", err)
return err
}
}
// Now that the channel is announced to the network, we will also
// obtain and send a node announcement. This is done since a node
// announcement is only accepted after a channel is known for that
// particular node, and this might be our first channel.
nodeAnn, err := f.cfg.CurrentNodeAnnouncement()
if err != nil {
fndgLog.Errorf("can't generate node announcement: %v", err)
return err
}
if err := f.cfg.SendAnnouncement(&nodeAnn); err != nil {
if routing.IsError(err, routing.ErrOutdated, routing.ErrIgnored) {
fndgLog.Debugf("Router rejected NodeAnnouncement: %v",
err)
} else {
fndgLog.Errorf("Unable to send node announcement: %v", err)
return err
}
}
return nil
}
// initFundingWorkflow sends a message to the funding manager instructing it
// to initiate a single funder workflow with the source peer.
// TODO(roasbeef): re-visit blocking nature..
func (f *fundingManager) initFundingWorkflow(peerAddress *lnwire.NetAddress,
req *openChanReq) {
f.fundingRequests <- &initFundingMsg{
peerAddress: peerAddress,
openChanReq: req,
}
}
// handleInitFundingMsg creates a channel reservation within the daemon's
// wallet, then sends a funding request to the remote peer kicking off the
// funding workflow.
func (f *fundingManager) handleInitFundingMsg(msg *initFundingMsg) {
var (
// TODO(roasbeef): add delay
peerKey = msg.peerAddress.IdentityKey
localAmt = msg.localFundingAmt
remoteAmt = msg.remoteFundingAmt
capacity = localAmt + remoteAmt
ourDustLimit = lnwallet.DefaultDustLimit()
minHtlc = msg.minHtlc
)
fndgLog.Infof("Initiating fundingRequest(localAmt=%v, remoteAmt=%v, "+
"capacity=%v, chainhash=%v, addr=%v, dustLimit=%v)", localAmt,
msg.pushAmt, capacity, msg.chainHash, msg.peerAddress.Address,
ourDustLimit)
// First, we'll query the fee estimator for a fee that should get the
// commitment transaction confirmed by the next few blocks (conf target
// of 3). We target the near blocks here to ensure that we'll be able
// to execute a timely unilateral channel closure if needed.
feePerWeight, err := f.cfg.FeeEstimator.EstimateFeePerWeight(3)
if err != nil {
msg.err <- err
return
}
// The protocol currently operates on the basis of fee-per-kw, so we'll
// multiply the computed sat/weight by 1000 to arrive at fee-per-kw.
commitFeePerKw := feePerWeight * 1000
// We set the channel flags to indicate whether we want this channel
// to be announced to the network.
var channelFlags lnwire.FundingFlag
if !msg.openChanReq.private {
// This channel will be announced.
channelFlags = lnwire.FFAnnounceChannel
}
// Initialize a funding reservation with the local wallet. If the
// wallet doesn't have enough funds to commit to this channel, then the
// request will fail, and be aborted.
reservation, err := f.cfg.Wallet.InitChannelReservation(capacity,
localAmt, msg.pushAmt, commitFeePerKw, msg.fundingFeePerWeight,
peerKey, msg.peerAddress.Address.(*net.TCPAddr), &msg.chainHash, channelFlags)
if err != nil {
msg.err <- err
return
}
// Obtain a new pending channel ID which is used to track this
// reservation throughout its lifetime.
chanID := f.nextPendingChanID()
fndgLog.Infof("Target commit tx sat/kw for pendingID(%x): %v", chanID,
int64(commitFeePerKw))
// If a pending channel map for this peer isn't already created, then
// we create one, ultimately allowing us to track this pending
// reservation within the target peer.
peerIDKey := newSerializedKey(peerKey)
f.resMtx.Lock()
if _, ok := f.activeReservations[peerIDKey]; !ok {
f.activeReservations[peerIDKey] = make(pendingChannels)
}
f.activeReservations[peerIDKey][chanID] = &reservationWithCtx{
chanAmt: capacity,
reservation: reservation,
peerAddress: msg.peerAddress,
updates: msg.updates,
err: msg.err,
}
f.resMtx.Unlock()
// Using the RequiredRemoteDelay closure, we'll compute the remote CSV
// delay we require given the total amount of funds within the channel.
remoteCsvDelay := f.cfg.RequiredRemoteDelay(capacity)
// If no minimum HTLC value was specified, use the default one.
if minHtlc == 0 {
minHtlc = f.cfg.DefaultRoutingPolicy.MinHTLC
}
// Once the reservation has been created, and indexed, queue a funding
// request to the remote peer, kicking off the funding workflow.
reservation.RegisterMinHTLC(minHtlc)
ourContribution := reservation.OurContribution()
// Finally, we'll use the current value of the channels and our default
// policy to determine of required commitment constraints for the
// remote party.
chanReserve, maxValue, maxHtlcs := reservation.RemoteChanConstraints()
fndgLog.Infof("Starting funding workflow with %v for pendingID(%x)",
msg.peerAddress.Address, chanID)
fundingOpen := lnwire.OpenChannel{
ChainHash: *f.cfg.Wallet.Cfg.NetParams.GenesisHash,
PendingChannelID: chanID,
FundingAmount: capacity,
PushAmount: msg.pushAmt,
DustLimit: ourContribution.DustLimit,
MaxValueInFlight: maxValue,
ChannelReserve: chanReserve,
HtlcMinimum: ourContribution.MinHTLC,
FeePerKiloWeight: uint32(commitFeePerKw),
CsvDelay: uint16(remoteCsvDelay),
MaxAcceptedHTLCs: maxHtlcs,
FundingKey: ourContribution.MultiSigKey,
RevocationPoint: ourContribution.RevocationBasePoint,
PaymentPoint: ourContribution.PaymentBasePoint,
HtlcPoint: ourContribution.HtlcBasePoint,
DelayedPaymentPoint: ourContribution.DelayBasePoint,
FirstCommitmentPoint: ourContribution.FirstCommitmentPoint,
ChannelFlags: channelFlags,
}
if err := f.cfg.SendToPeer(peerKey, &fundingOpen); err != nil {
fndgLog.Errorf("Unable to send funding request message: %v", err)
msg.err <- err
return
}
}
// waitUntilChannelOpen is designed to prevent other lnd subsystems from
// sending new update messages to a channel before the channel is fully
// opened.
func (f *fundingManager) waitUntilChannelOpen(targetChan lnwire.ChannelID) {
f.barrierMtx.RLock()
barrier, ok := f.newChanBarriers[targetChan]
f.barrierMtx.RUnlock()
if ok {
fndgLog.Tracef("waiting for chan barrier signal for ChanID(%v)",
targetChan)
select {
case <-barrier:
case <-f.quit: // TODO(roasbeef): add timer?
break
}
fndgLog.Tracef("barrier for ChanID(%v) closed", targetChan)
}
}
// processErrorGeneric sends a message to the fundingManager allowing it to
// process the occurred generic error.
func (f *fundingManager) processFundingError(err *lnwire.Error,
peerAddress *lnwire.NetAddress) {
select {
case f.fundingMsgs <- &fundingErrorMsg{err, peerAddress}:
case <-f.quit:
return
}
}
// handleErrorGenericMsg process the error which was received from remote peer,
// depending on the type of error we should do different clean up steps and
// inform the user about it.
func (f *fundingManager) handleErrorMsg(fmsg *fundingErrorMsg) {
protocolErr := fmsg.err
peerKey := fmsg.peerAddress.IdentityKey
chanID := fmsg.err.ChanID
// First, we'll attempt to retrieve the funding workflow that this
// error was tied to. If we're unable to do so, then we'll exit early
// as this was an unwarranted error.
resCtx, err := f.getReservationCtx(peerKey, chanID)
if err != nil {
fndgLog.Warnf("Received error for non-existent funding "+
"flow: %v", spew.Sdump(protocolErr))
return
}
// If we did indeed find the funding workflow, then we'll return the
// error back to the caller (if any), and cancel the workflow itself.
lnErr := lnwire.ErrorCode(protocolErr.Data[0])
fndgLog.Errorf("Received funding error from %x: %v",
peerKey.SerializeCompressed(), string(protocolErr.Data),
)
// If this isn't a simple error code, then we'll display the entire
// thing.
if len(protocolErr.Data) > 1 {
resCtx.err <- grpc.Errorf(
lnErr.ToGrpcCode(), string(protocolErr.Data),
)
} else {
// Otherwise, we'll attempt tto display just the error code
// itself.
resCtx.err <- grpc.Errorf(
lnErr.ToGrpcCode(), lnErr.String(),
)
}
if _, err := f.cancelReservationCtx(peerKey, chanID); err != nil {
fndgLog.Warnf("unable to delete reservation: %v", err)
return
}
}
// cancelReservationCtx do all needed work in order to securely cancel the
// reservation.
func (f *fundingManager) cancelReservationCtx(peerKey *btcec.PublicKey,
pendingChanID [32]byte) (*reservationWithCtx, error) {
fndgLog.Infof("Cancelling funding reservation for node_key=%x, "+
"chan_id=%x", peerKey.SerializeCompressed(), pendingChanID[:])
ctx, err := f.getReservationCtx(peerKey, pendingChanID)
if err != nil {
return nil, errors.Errorf("unable to find reservation: %v",
err)
}
if err := ctx.reservation.Cancel(); err != nil {
return nil, errors.Errorf("unable to cancel reservation: %v",
err)
}
f.deleteReservationCtx(peerKey, pendingChanID)
return ctx, nil
}
// deleteReservationCtx deletes the reservation uniquely identified by the
// target public key of the peer, and the specified pending channel ID.
func (f *fundingManager) deleteReservationCtx(peerKey *btcec.PublicKey,
pendingChanID [32]byte) {
// TODO(roasbeef): possibly cancel funding barrier in peer's
// channelManager?
peerIDKey := newSerializedKey(peerKey)
f.resMtx.Lock()
delete(f.activeReservations[peerIDKey], pendingChanID)
f.resMtx.Unlock()
}
// getReservationCtx returns the reservation context for a particular pending
// channel ID for a target peer.
func (f *fundingManager) getReservationCtx(peerKey *btcec.PublicKey,
pendingChanID [32]byte) (*reservationWithCtx, error) {
peerIDKey := newSerializedKey(peerKey)
f.resMtx.RLock()
resCtx, ok := f.activeReservations[peerIDKey][pendingChanID]
f.resMtx.RUnlock()
if !ok {
return nil, errors.Errorf("unknown channel (id: %x)",
pendingChanID[:])
}
return resCtx, nil
}
func copyPubKey(pub *btcec.PublicKey) *btcec.PublicKey {
return &btcec.PublicKey{
Curve: btcec.S256(),
X: pub.X,
Y: pub.Y,
}
}
// saveChannelOpeningState saves the channelOpeningState for the provided
// chanPoint to the channelOpeningStateBucket.
func (f *fundingManager) saveChannelOpeningState(chanPoint *wire.OutPoint,
state channelOpeningState, shortChanID *lnwire.ShortChannelID) error {
return f.cfg.Wallet.Cfg.Database.Update(func(tx *bolt.Tx) error {
bucket, err := tx.CreateBucketIfNotExists(channelOpeningStateBucket)
if err != nil {
return err
}
var outpointBytes bytes.Buffer
if err = writeOutpoint(&outpointBytes, chanPoint); err != nil {
return err
}
// Save state and the uint64 representation of the shortChanID
// for later use.
scratch := make([]byte, 10)
byteOrder.PutUint16(scratch[:2], uint16(state))
byteOrder.PutUint64(scratch[2:], shortChanID.ToUint64())
return bucket.Put(outpointBytes.Bytes(), scratch)
})
}
// getChannelOpeningState fetches the channelOpeningState for the provided
// chanPoint from the database, or returns ErrChannelNotFound if the channel
// is not found.
func (f *fundingManager) getChannelOpeningState(chanPoint *wire.OutPoint) (
channelOpeningState, *lnwire.ShortChannelID, error) {
var state channelOpeningState
var shortChanID lnwire.ShortChannelID
err := f.cfg.Wallet.Cfg.Database.View(func(tx *bolt.Tx) error {
bucket := tx.Bucket(channelOpeningStateBucket)
if bucket == nil {
// If the bucket does not exist, it means we never added
// a channel to the db, so return ErrChannelNotFound.
return ErrChannelNotFound
}
var outpointBytes bytes.Buffer
if err := writeOutpoint(&outpointBytes, chanPoint); err != nil {
return err
}
value := bucket.Get(outpointBytes.Bytes())
if value == nil {
return ErrChannelNotFound
}
state = channelOpeningState(byteOrder.Uint16(value[:2]))
shortChanID = lnwire.NewShortChanIDFromInt(byteOrder.Uint64(value[2:]))
return nil
})
if err != nil {
return 0, nil, err
}
return state, &shortChanID, nil
}
// deleteChannelOpeningState removes any state for chanPoint from the database.
func (f *fundingManager) deleteChannelOpeningState(chanPoint *wire.OutPoint) error {
return f.cfg.Wallet.Cfg.Database.Update(func(tx *bolt.Tx) error {
bucket := tx.Bucket(channelOpeningStateBucket)
if bucket == nil {
return fmt.Errorf("Bucket not found")
}
var outpointBytes bytes.Buffer
if err := writeOutpoint(&outpointBytes, chanPoint); err != nil {
return err
}
return bucket.Delete(outpointBytes.Bytes())
})
}