lnd.xprv/watchtower/wtclient/client_test.go

1119 lines
29 KiB
Go

// +build dev
package wtclient_test
import (
"encoding/binary"
"net"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/watchtower/blob"
"github.com/lightningnetwork/lnd/watchtower/wtclient"
"github.com/lightningnetwork/lnd/watchtower/wtdb"
"github.com/lightningnetwork/lnd/watchtower/wtmock"
"github.com/lightningnetwork/lnd/watchtower/wtpolicy"
"github.com/lightningnetwork/lnd/watchtower/wtserver"
)
const csvDelay uint32 = 144
var (
revPrivBytes = []byte{
0x8f, 0x4b, 0x51, 0x83, 0xa9, 0x34, 0xbd, 0x5f,
0x74, 0x6c, 0x9d, 0x5c, 0xae, 0x88, 0x2d, 0x31,
0x06, 0x90, 0xdd, 0x8c, 0x9b, 0x31, 0xbc, 0xd1,
0x78, 0x91, 0x88, 0x2a, 0xf9, 0x74, 0xa0, 0xef,
}
toLocalPrivBytes = []byte{
0xde, 0x17, 0xc1, 0x2f, 0xdc, 0x1b, 0xc0, 0xc6,
0x59, 0x5d, 0xf9, 0xc1, 0x3e, 0x89, 0xbc, 0x6f,
0x01, 0x85, 0x45, 0x76, 0x26, 0xce, 0x9c, 0x55,
0x3b, 0xc9, 0xec, 0x3d, 0xd8, 0x8b, 0xac, 0xa8,
}
toRemotePrivBytes = []byte{
0x28, 0x59, 0x6f, 0x36, 0xb8, 0x9f, 0x19, 0x5d,
0xcb, 0x07, 0x48, 0x8a, 0xe5, 0x89, 0x71, 0x74,
0x70, 0x4c, 0xff, 0x1e, 0x9c, 0x00, 0x93, 0xbe,
0xe2, 0x2e, 0x68, 0x08, 0x4c, 0xb4, 0x0f, 0x4f,
}
// addr is the server's reward address given to watchtower clients.
addr, _ = btcutil.DecodeAddress(
"mrX9vMRYLfVy1BnZbc5gZjuyaqH3ZW2ZHz", &chaincfg.TestNet3Params,
)
addrScript, _ = txscript.PayToAddrScript(addr)
)
// randPrivKey generates a new secp keypair, and returns the public key.
func randPrivKey(t *testing.T) *btcec.PrivateKey {
t.Helper()
sk, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate pubkey: %v", err)
}
return sk
}
type mockNet struct {
mu sync.RWMutex
connCallback func(wtserver.Peer)
}
func newMockNet(cb func(wtserver.Peer)) *mockNet {
return &mockNet{
connCallback: cb,
}
}
func (m *mockNet) Dial(network string, address string) (net.Conn, error) {
return nil, nil
}
func (m *mockNet) LookupHost(host string) ([]string, error) {
panic("not implemented")
}
func (m *mockNet) LookupSRV(service string, proto string, name string) (string, []*net.SRV, error) {
panic("not implemented")
}
func (m *mockNet) ResolveTCPAddr(network string, address string) (*net.TCPAddr, error) {
panic("not implemented")
}
func (m *mockNet) AuthDial(localPriv *btcec.PrivateKey, netAddr *lnwire.NetAddress,
dialer func(string, string) (net.Conn, error)) (wtserver.Peer, error) {
localPk := localPriv.PubKey()
localAddr := &net.TCPAddr{
IP: net.IP{0x32, 0x31, 0x30, 0x29},
Port: 36723,
}
localPeer, remotePeer := wtmock.NewMockConn(
localPk, netAddr.IdentityKey, localAddr, netAddr.Address, 0,
)
m.mu.RLock()
m.connCallback(remotePeer)
m.mu.RUnlock()
return localPeer, nil
}
func (m *mockNet) setConnCallback(cb func(wtserver.Peer)) {
m.mu.Lock()
defer m.mu.Unlock()
m.connCallback = cb
}
type mockChannel struct {
mu sync.Mutex
commitHeight uint64
retributions map[uint64]*lnwallet.BreachRetribution
localBalance lnwire.MilliSatoshi
remoteBalance lnwire.MilliSatoshi
revSK *btcec.PrivateKey
revPK *btcec.PublicKey
revKeyLoc keychain.KeyLocator
toRemoteSK *btcec.PrivateKey
toRemotePK *btcec.PublicKey
toRemoteKeyLoc keychain.KeyLocator
toLocalPK *btcec.PublicKey // only need to generate to-local script
dustLimit lnwire.MilliSatoshi
csvDelay uint32
}
func newMockChannel(t *testing.T, signer *wtmock.MockSigner,
localAmt, remoteAmt lnwire.MilliSatoshi) *mockChannel {
// Generate the revocation, to-local, and to-remote keypairs.
revSK := randPrivKey(t)
revPK := revSK.PubKey()
toLocalSK := randPrivKey(t)
toLocalPK := toLocalSK.PubKey()
toRemoteSK := randPrivKey(t)
toRemotePK := toRemoteSK.PubKey()
// Register the revocation secret key and the to-remote secret key with
// the signer. We will not need to sign with the to-local key, as this
// is to be known only by the counterparty.
revKeyLoc := signer.AddPrivKey(revSK)
toRemoteKeyLoc := signer.AddPrivKey(toRemoteSK)
c := &mockChannel{
retributions: make(map[uint64]*lnwallet.BreachRetribution),
localBalance: localAmt,
remoteBalance: remoteAmt,
revSK: revSK,
revPK: revPK,
revKeyLoc: revKeyLoc,
toLocalPK: toLocalPK,
toRemoteSK: toRemoteSK,
toRemotePK: toRemotePK,
toRemoteKeyLoc: toRemoteKeyLoc,
dustLimit: 546000,
csvDelay: 144,
}
// Create the initial remote commitment with the initial balances.
c.createRemoteCommitTx(t)
return c
}
func (c *mockChannel) createRemoteCommitTx(t *testing.T) {
t.Helper()
// Construct the to-local witness script.
toLocalScript, err := input.CommitScriptToSelf(
c.csvDelay, c.toLocalPK, c.revPK,
)
if err != nil {
t.Fatalf("unable to create to-local script: %v", err)
}
// Compute the to-local witness script hash.
toLocalScriptHash, err := input.WitnessScriptHash(toLocalScript)
if err != nil {
t.Fatalf("unable to create to-local witness script hash: %v", err)
}
// Compute the to-remote witness script hash.
toRemoteScriptHash, err := input.CommitScriptUnencumbered(c.toRemotePK)
if err != nil {
t.Fatalf("unable to create to-remote script: %v", err)
}
// Construct the remote commitment txn, containing the to-local and
// to-remote outputs. The balances are flipped since the transaction is
// from the PoV of the remote party. We don't need any inputs for this
// test. We increment the version with the commit height to ensure that
// all commitment transactions are unique even if the same distribution
// of funds is used more than once.
commitTxn := &wire.MsgTx{
Version: int32(c.commitHeight + 1),
}
var (
toLocalSignDesc *input.SignDescriptor
toRemoteSignDesc *input.SignDescriptor
)
var outputIndex int
if c.remoteBalance >= c.dustLimit {
commitTxn.TxOut = append(commitTxn.TxOut, &wire.TxOut{
Value: int64(c.remoteBalance.ToSatoshis()),
PkScript: toLocalScriptHash,
})
// Create the sign descriptor used to sign for the to-local
// input.
toLocalSignDesc = &input.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
KeyLocator: c.revKeyLoc,
PubKey: c.revPK,
},
WitnessScript: toLocalScript,
Output: commitTxn.TxOut[outputIndex],
HashType: txscript.SigHashAll,
}
outputIndex++
}
if c.localBalance >= c.dustLimit {
commitTxn.TxOut = append(commitTxn.TxOut, &wire.TxOut{
Value: int64(c.localBalance.ToSatoshis()),
PkScript: toRemoteScriptHash,
})
// Create the sign descriptor used to sign for the to-remote
// input.
toRemoteSignDesc = &input.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
KeyLocator: c.toRemoteKeyLoc,
PubKey: c.toRemotePK,
},
WitnessScript: toRemoteScriptHash,
Output: commitTxn.TxOut[outputIndex],
HashType: txscript.SigHashAll,
}
outputIndex++
}
txid := commitTxn.TxHash()
var (
toLocalOutPoint wire.OutPoint
toRemoteOutPoint wire.OutPoint
)
outputIndex = 0
if toLocalSignDesc != nil {
toLocalOutPoint = wire.OutPoint{
Hash: txid,
Index: uint32(outputIndex),
}
outputIndex++
}
if toRemoteSignDesc != nil {
toRemoteOutPoint = wire.OutPoint{
Hash: txid,
Index: uint32(outputIndex),
}
outputIndex++
}
commitKeyRing := &lnwallet.CommitmentKeyRing{
RevocationKey: c.revPK,
NoDelayKey: c.toLocalPK,
DelayKey: c.toRemotePK,
}
retribution := &lnwallet.BreachRetribution{
BreachTransaction: commitTxn,
RevokedStateNum: c.commitHeight,
KeyRing: commitKeyRing,
RemoteDelay: c.csvDelay,
LocalOutpoint: toRemoteOutPoint,
LocalOutputSignDesc: toRemoteSignDesc,
RemoteOutpoint: toLocalOutPoint,
RemoteOutputSignDesc: toLocalSignDesc,
}
c.retributions[c.commitHeight] = retribution
c.commitHeight++
}
// advanceState creates the next channel state and retribution without altering
// channel balances.
func (c *mockChannel) advanceState(t *testing.T) {
c.mu.Lock()
defer c.mu.Unlock()
c.createRemoteCommitTx(t)
}
// sendPayment creates the next channel state and retribution after transferring
// amt to the remote party.
func (c *mockChannel) sendPayment(t *testing.T, amt lnwire.MilliSatoshi) {
t.Helper()
c.mu.Lock()
defer c.mu.Unlock()
if c.localBalance < amt {
t.Fatalf("insufficient funds to send, need: %v, have: %v",
amt, c.localBalance)
}
c.localBalance -= amt
c.remoteBalance += amt
c.createRemoteCommitTx(t)
}
// receivePayment creates the next channel state and retribution after
// transferring amt to the local party.
func (c *mockChannel) receivePayment(t *testing.T, amt lnwire.MilliSatoshi) {
t.Helper()
c.mu.Lock()
defer c.mu.Unlock()
if c.remoteBalance < amt {
t.Fatalf("insufficient funds to recv, need: %v, have: %v",
amt, c.remoteBalance)
}
c.localBalance += amt
c.remoteBalance -= amt
c.createRemoteCommitTx(t)
}
// getState retrieves the channel's commitment and retribution at state i.
func (c *mockChannel) getState(i uint64) (*wire.MsgTx, *lnwallet.BreachRetribution) {
c.mu.Lock()
defer c.mu.Unlock()
retribution := c.retributions[i]
return retribution.BreachTransaction, retribution
}
type testHarness struct {
t *testing.T
cfg harnessCfg
signer *wtmock.MockSigner
capacity lnwire.MilliSatoshi
clientDB *wtmock.ClientDB
clientCfg *wtclient.Config
client wtclient.Client
serverDB *wtdb.MockDB
serverCfg *wtserver.Config
server *wtserver.Server
net *mockNet
mu sync.Mutex
channels map[lnwire.ChannelID]*mockChannel
}
type harnessCfg struct {
localBalance lnwire.MilliSatoshi
remoteBalance lnwire.MilliSatoshi
policy wtpolicy.Policy
noRegisterChan0 bool
}
func newHarness(t *testing.T, cfg harnessCfg) *testHarness {
towerAddrStr := "18.28.243.2:9911"
towerTCPAddr, err := net.ResolveTCPAddr("tcp", towerAddrStr)
if err != nil {
t.Fatalf("Unable to resolve tower TCP addr: %v", err)
}
privKey, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("Unable to generate tower private key: %v", err)
}
towerPubKey := privKey.PubKey()
towerAddr := &lnwire.NetAddress{
IdentityKey: towerPubKey,
Address: towerTCPAddr,
}
const timeout = 200 * time.Millisecond
serverDB := wtdb.NewMockDB()
serverCfg := &wtserver.Config{
DB: serverDB,
ReadTimeout: timeout,
WriteTimeout: timeout,
NewAddress: func() (btcutil.Address, error) {
return addr, nil
},
}
server, err := wtserver.New(serverCfg)
if err != nil {
t.Fatalf("unable to create wtserver: %v", err)
}
signer := wtmock.NewMockSigner()
mockNet := newMockNet(server.InboundPeerConnected)
clientDB := wtmock.NewClientDB()
clientCfg := &wtclient.Config{
Signer: signer,
Dial: func(string, string) (net.Conn, error) {
return nil, nil
},
DB: clientDB,
AuthDial: mockNet.AuthDial,
PrivateTower: towerAddr,
Policy: cfg.policy,
NewAddress: func() ([]byte, error) {
return addrScript, nil
},
ReadTimeout: timeout,
WriteTimeout: timeout,
MinBackoff: time.Millisecond,
MaxBackoff: 10 * time.Millisecond,
}
client, err := wtclient.New(clientCfg)
if err != nil {
t.Fatalf("Unable to create wtclient: %v", err)
}
if err := server.Start(); err != nil {
t.Fatalf("Unable to start wtserver: %v", err)
}
if err = client.Start(); err != nil {
server.Stop()
t.Fatalf("Unable to start wtclient: %v", err)
}
h := &testHarness{
t: t,
cfg: cfg,
signer: signer,
capacity: cfg.localBalance + cfg.remoteBalance,
clientDB: clientDB,
clientCfg: clientCfg,
client: client,
serverDB: serverDB,
serverCfg: serverCfg,
server: server,
net: mockNet,
channels: make(map[lnwire.ChannelID]*mockChannel),
}
h.makeChannel(0, h.cfg.localBalance, h.cfg.remoteBalance)
if !cfg.noRegisterChan0 {
h.registerChannel(0)
}
return h
}
// startServer creates a new server using the harness's current serverCfg and
// starts it after pointing the mockNet's callback to the new server.
func (h *testHarness) startServer() {
h.t.Helper()
var err error
h.server, err = wtserver.New(h.serverCfg)
if err != nil {
h.t.Fatalf("unable to create wtserver: %v", err)
}
h.net.setConnCallback(h.server.InboundPeerConnected)
if err := h.server.Start(); err != nil {
h.t.Fatalf("unable to start wtserver: %v", err)
}
}
// startClient creates a new server using the harness's current clientCf and
// starts it.
func (h *testHarness) startClient() {
h.t.Helper()
var err error
h.client, err = wtclient.New(h.clientCfg)
if err != nil {
h.t.Fatalf("unable to create wtclient: %v", err)
}
if err := h.client.Start(); err != nil {
h.t.Fatalf("unable to start wtclient: %v", err)
}
}
// chanIDFromInt creates a unique channel id given a unique integral id.
func chanIDFromInt(id uint64) lnwire.ChannelID {
var chanID lnwire.ChannelID
binary.BigEndian.PutUint64(chanID[:8], id)
return chanID
}
// makeChannel creates new channel with id, using the localAmt and remoteAmt as
// the starting balances. The channel will be available by using h.channel(id).
//
// NOTE: The method fails if channel for id already exists.
func (h *testHarness) makeChannel(id uint64,
localAmt, remoteAmt lnwire.MilliSatoshi) {
h.t.Helper()
chanID := chanIDFromInt(id)
c := newMockChannel(h.t, h.signer, localAmt, remoteAmt)
c.mu.Lock()
_, ok := h.channels[chanID]
if !ok {
h.channels[chanID] = c
}
c.mu.Unlock()
if ok {
h.t.Fatalf("channel %d already created", id)
}
}
// channel retrieves the channel corresponding to id.
//
// NOTE: The method fails if a channel for id does not exist.
func (h *testHarness) channel(id uint64) *mockChannel {
h.t.Helper()
h.mu.Lock()
c, ok := h.channels[chanIDFromInt(id)]
h.mu.Unlock()
if !ok {
h.t.Fatalf("unable to fetch channel %d", id)
}
return c
}
// registerChannel registers the channel identified by id with the client.
func (h *testHarness) registerChannel(id uint64) {
h.t.Helper()
chanID := chanIDFromInt(id)
err := h.client.RegisterChannel(chanID)
if err != nil {
h.t.Fatalf("unable to register channel %d: %v", id, err)
}
}
// advanceChannelN calls advanceState on the channel identified by id the number
// of provided times and returns the breach hints corresponding to the new
// states.
func (h *testHarness) advanceChannelN(id uint64, n int) []wtdb.BreachHint {
h.t.Helper()
channel := h.channel(id)
var hints []wtdb.BreachHint
for i := uint64(0); i < uint64(n); i++ {
channel.advanceState(h.t)
commitTx, _ := h.channel(id).getState(i)
breachTxID := commitTx.TxHash()
hints = append(hints, wtdb.NewBreachHintFromHash(&breachTxID))
}
return hints
}
// backupStates instructs the channel identified by id to send backups to the
// client for states in the range [to, from).
func (h *testHarness) backupStates(id, from, to uint64, expErr error) {
h.t.Helper()
for i := from; i < to; i++ {
h.backupState(id, i, expErr)
}
}
// backupStates instructs the channel identified by id to send a backup for
// state i.
func (h *testHarness) backupState(id, i uint64, expErr error) {
_, retribution := h.channel(id).getState(i)
chanID := chanIDFromInt(id)
err := h.client.BackupState(&chanID, retribution)
if err != expErr {
h.t.Fatalf("back error mismatch, want: %v, got: %v",
expErr, err)
}
}
// sendPayments instructs the channel identified by id to send amt to the remote
// party for each state in from-to times and returns the breach hints for states
// [from, to).
func (h *testHarness) sendPayments(id, from, to uint64,
amt lnwire.MilliSatoshi) []wtdb.BreachHint {
h.t.Helper()
channel := h.channel(id)
var hints []wtdb.BreachHint
for i := from; i < to; i++ {
h.channel(id).sendPayment(h.t, amt)
commitTx, _ := channel.getState(i)
breachTxID := commitTx.TxHash()
hints = append(hints, wtdb.NewBreachHintFromHash(&breachTxID))
}
return hints
}
// receivePayment instructs the channel identified by id to recv amt from the
// remote party for each state in from-to times and returns the breach hints for
// states [from, to).
func (h *testHarness) recvPayments(id, from, to uint64,
amt lnwire.MilliSatoshi) []wtdb.BreachHint {
h.t.Helper()
channel := h.channel(id)
var hints []wtdb.BreachHint
for i := from; i < to; i++ {
channel.receivePayment(h.t, amt)
commitTx, _ := channel.getState(i)
breachTxID := commitTx.TxHash()
hints = append(hints, wtdb.NewBreachHintFromHash(&breachTxID))
}
return hints
}
// waitServerUpdates blocks until the breach hints provided all appear in the
// watchtower's database or the timeout expires. This is used to test that the
// client in fact sends the updates to the server, even if it is offline.
func (h *testHarness) waitServerUpdates(hints []wtdb.BreachHint,
timeout time.Duration) {
h.t.Helper()
// If no breach hints are provided, we will wait out the full timeout to
// assert that no updates appear.
wantUpdates := len(hints) > 0
hintSet := make(map[wtdb.BreachHint]struct{})
for _, hint := range hints {
hintSet[hint] = struct{}{}
}
if len(hints) != len(hintSet) {
h.t.Fatalf("breach hints are not unique, list-len: %d "+
"set-len: %d", len(hints), len(hintSet))
}
// Closure to assert the server's matches are consistent with the hint
// set.
serverHasHints := func(matches []wtdb.Match) bool {
if len(hintSet) != len(matches) {
return false
}
for _, match := range matches {
if _, ok := hintSet[match.Hint]; ok {
continue
}
h.t.Fatalf("match %v in db is not in hint set",
match.Hint)
}
return true
}
failTimeout := time.After(timeout)
for {
select {
case <-time.After(time.Second):
matches, err := h.serverDB.QueryMatches(hints)
switch {
case err != nil:
h.t.Fatalf("unable to query for hints: %v", err)
case wantUpdates && serverHasHints(matches):
return
case wantUpdates:
h.t.Logf("Received %d/%d\n", len(matches),
len(hints))
}
case <-failTimeout:
matches, err := h.serverDB.QueryMatches(hints)
switch {
case err != nil:
h.t.Fatalf("unable to query for hints: %v", err)
case serverHasHints(matches):
return
default:
h.t.Fatalf("breach hints not received, only "+
"got %d/%d", len(matches), len(hints))
}
}
}
}
const (
localBalance = lnwire.MilliSatoshi(100000000)
remoteBalance = lnwire.MilliSatoshi(200000000)
)
type clientTest struct {
name string
cfg harnessCfg
fn func(*testHarness)
}
var clientTests = []clientTest{
{
// Asserts that client will return the ErrUnregisteredChannel
// error when trying to backup states for a channel that has not
// been registered (and received it's pkscript).
name: "backup unregistered channel",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 20000,
SweepFeeRate: 1,
},
noRegisterChan0: true,
},
fn: func(h *testHarness) {
const (
numUpdates = 5
chanID = 0
)
// Advance the channel and backup the retributions. We
// expect ErrUnregisteredChannel to be returned since
// the channel was not registered during harness
// creation.
h.advanceChannelN(chanID, numUpdates)
h.backupStates(
chanID, 0, numUpdates,
wtclient.ErrUnregisteredChannel,
)
},
},
{
// Asserts that the client returns an ErrClientExiting when
// trying to backup channels after the Stop method has been
// called.
name: "backup after stop",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 20000,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
const (
numUpdates = 5
chanID = 0
)
// Stop the client, subsequent backups should fail.
h.client.Stop()
// Advance the channel and try to back up the states. We
// expect ErrClientExiting to be returned from
// BackupState.
h.advanceChannelN(chanID, numUpdates)
h.backupStates(
chanID, 0, numUpdates,
wtclient.ErrClientExiting,
)
},
},
{
// Asserts that the client will continue to back up all states
// that have previously been enqueued before it finishes
// exiting.
name: "backup reliable flush",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 5,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
const (
numUpdates = 5
chanID = 0
)
// Generate numUpdates retributions and back them up to
// the tower.
hints := h.advanceChannelN(chanID, numUpdates)
h.backupStates(chanID, 0, numUpdates, nil)
// Stop the client in the background, to assert the
// pipeline is always flushed before it exits.
go h.client.Stop()
// Wait for all of the updates to be populated in the
// server's database.
h.waitServerUpdates(hints, time.Second)
},
},
{
// Assert that the client will not send out backups for states
// whose justice transactions are ineligible for backup, e.g.
// creating dust outputs.
name: "backup dust ineligible",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 20000,
SweepFeeRate: 1000000, // high sweep fee creates dust
},
},
fn: func(h *testHarness) {
const (
numUpdates = 5
chanID = 0
)
// Create the retributions and queue them for backup.
h.advanceChannelN(chanID, numUpdates)
h.backupStates(chanID, 0, numUpdates, nil)
// Ensure that no updates are received by the server,
// since they should all be marked as ineligible.
h.waitServerUpdates(nil, time.Second)
},
},
{
// Verifies that the client will properly retransmit a committed
// state update to the watchtower after a restart if the update
// was not acked while the client was active last.
name: "committed update restart",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 20000,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
const (
numUpdates = 5
chanID = 0
)
hints := h.advanceChannelN(0, numUpdates)
var numSent uint64
// Add the first two states to the client's pipeline.
h.backupStates(chanID, 0, 2, nil)
numSent = 2
// Wait for both to be reflected in the server's
// database.
h.waitServerUpdates(hints[:numSent], time.Second)
// Now, restart the server and prevent it from acking
// state updates.
h.server.Stop()
h.serverCfg.NoAckUpdates = true
h.startServer()
defer h.server.Stop()
// Send the next state update to the tower. Since the
// tower isn't acking state updates, we expect this
// update to be committed and sent by the session queue,
// but it will never receive an ack.
h.backupState(chanID, numSent, nil)
numSent++
// Force quit the client to abort the state updates it
// has queued. The sleep ensures that the session queues
// have enough time to commit the state updates before
// the client is killed.
time.Sleep(time.Second)
h.client.ForceQuit()
// Restart the server and allow it to ack the updates
// after the client retransmits the unacked update.
h.server.Stop()
h.serverCfg.NoAckUpdates = false
h.startServer()
defer h.server.Stop()
// Restart the client and allow it to process the
// committed update.
h.startClient()
defer h.client.ForceQuit()
// Wait for the committed update to be accepted by the
// tower.
h.waitServerUpdates(hints[:numSent], time.Second)
// Finally, send the rest of the updates and wait for
// the tower to receive the remaining states.
h.backupStates(chanID, numSent, numUpdates, nil)
// Wait for all of the updates to be populated in the
// server's database.
h.waitServerUpdates(hints, time.Second)
},
},
{
// Asserts that the client will continue to retry sending state
// updates if it doesn't receive an ack from the server. The
// client is expected to flush everything in its in-memory
// pipeline once the server begins sending acks again.
name: "no ack from server",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 5,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
const (
numUpdates = 100
chanID = 0
)
// Generate the retributions that will be backed up.
hints := h.advanceChannelN(chanID, numUpdates)
// Restart the server and prevent it from acking state
// updates.
h.server.Stop()
h.serverCfg.NoAckUpdates = true
h.startServer()
defer h.server.Stop()
// Now, queue the retributions for backup.
h.backupStates(chanID, 0, numUpdates, nil)
// Stop the client in the background, to assert the
// pipeline is always flushed before it exits.
go h.client.Stop()
// Give the client time to saturate a large number of
// session queues for which the server has not acked the
// state updates that it has received.
time.Sleep(time.Second)
// Restart the server and allow it to ack the updates
// after the client retransmits the unacked updates.
h.server.Stop()
h.serverCfg.NoAckUpdates = false
h.startServer()
defer h.server.Stop()
// Wait for all of the updates to be populated in the
// server's database.
h.waitServerUpdates(hints, 5*time.Second)
},
},
{
// Asserts that the client is able to send state updates to the
// tower for a full range of channel values, assuming the sweep
// fee rates permit it. We expect all of these to be successful
// since a sweep transactions spending only from one output is
// less expensive than one that sweeps both.
name: "send and recv",
cfg: harnessCfg{
localBalance: 10000001, // ensure (% amt != 0)
remoteBalance: 20000001, // ensure (% amt != 0)
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 1000,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
var (
capacity = h.cfg.localBalance + h.cfg.remoteBalance
paymentAmt = lnwire.MilliSatoshi(200000)
numSends = uint64(h.cfg.localBalance / paymentAmt)
numRecvs = uint64(capacity / paymentAmt)
numUpdates = numSends + numRecvs // 200 updates
chanID = uint64(0)
)
// Send money to the remote party until all funds are
// depleted.
sendHints := h.sendPayments(chanID, 0, numSends, paymentAmt)
// Now, sequentially receive the entire channel balance
// from the remote party.
recvHints := h.recvPayments(chanID, numSends, numUpdates, paymentAmt)
// Collect the hints generated by both sending and
// receiving.
hints := append(sendHints, recvHints...)
// Backup the channel's states the client.
h.backupStates(chanID, 0, numUpdates, nil)
// Wait for all of the updates to be populated in the
// server's database.
h.waitServerUpdates(hints, 3*time.Second)
},
},
{
// Asserts that the client is able to support multiple links.
name: "multiple link backup",
cfg: harnessCfg{
localBalance: localBalance,
remoteBalance: remoteBalance,
policy: wtpolicy.Policy{
BlobType: blob.TypeDefault,
MaxUpdates: 5,
SweepFeeRate: 1,
},
},
fn: func(h *testHarness) {
const (
numUpdates = 5
numChans = 10
)
// Initialize and register an additional 9 channels.
for id := uint64(1); id < 10; id++ {
h.makeChannel(
id, h.cfg.localBalance,
h.cfg.remoteBalance,
)
h.registerChannel(id)
}
// Generate the retributions for all 10 channels and
// collect the breach hints.
var hints []wtdb.BreachHint
for id := uint64(0); id < 10; id++ {
chanHints := h.advanceChannelN(id, numUpdates)
hints = append(hints, chanHints...)
}
// Provided all retributions to the client from all
// channels.
for id := uint64(0); id < 10; id++ {
h.backupStates(id, 0, numUpdates, nil)
}
// Test reliable flush under multi-client scenario.
go h.client.Stop()
// Wait for all of the updates to be populated in the
// server's database.
h.waitServerUpdates(hints, 10*time.Second)
},
},
}
// TestClient executes the client test suite, asserting the ability to backup
// states in a number of failure cases and it's reliability during shutdown.
func TestClient(t *testing.T) {
for _, test := range clientTests {
tc := test
t.Run(tc.name, func(t *testing.T) {
t.Parallel()
h := newHarness(t, tc.cfg)
defer h.server.Stop()
defer h.client.ForceQuit()
tc.fn(h)
})
}
}