lnd.xprv/lnwire/lnwire.go
Valentine Wallace 0fd6004958
multi: partition lnwire.ChanUpdateFlag into ChannelFlags and MessageFlags
In this commit:

* we partition lnwire.ChanUpdateFlag into two (ChanUpdateChanFlags and
ChanUpdateMsgFlags), from a uint16 to a pair of uint8's

* we rename the ChannelUpdate.Flags to ChannelFlags and add an
additional MessageFlags field, which will be used to indicate the
presence of the optional field HtlcMaximumMsat within the ChannelUpdate.

* we partition ChannelEdgePolicy.Flags into message and channel flags.
This change corresponds to the partitioning of the ChannelUpdate's Flags
field into MessageFlags and ChannelFlags.

Co-authored-by: Johan T. Halseth <johanth@gmail.com>
2019-01-22 08:42:26 +01:00

840 lines
19 KiB
Go

package lnwire
import (
"bytes"
"encoding/binary"
"fmt"
"image/color"
"io"
"math"
"net"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/tor"
)
// MaxSliceLength is the maximum allowed length for any opaque byte slices in
// the wire protocol.
const MaxSliceLength = 65535
// PkScript is simple type definition which represents a raw serialized public
// key script.
type PkScript []byte
// addressType specifies the network protocol and version that should be used
// when connecting to a node at a particular address.
type addressType uint8
const (
// noAddr denotes a blank address. An address of this type indicates
// that a node doesn't have any advertised addresses.
noAddr addressType = 0
// tcp4Addr denotes an IPv4 TCP address.
tcp4Addr addressType = 1
// tcp6Addr denotes an IPv6 TCP address.
tcp6Addr addressType = 2
// v2OnionAddr denotes a version 2 Tor onion service address.
v2OnionAddr addressType = 3
// v3OnionAddr denotes a version 3 Tor (prop224) onion service address.
v3OnionAddr addressType = 4
)
// AddrLen returns the number of bytes that it takes to encode the target
// address.
func (a addressType) AddrLen() uint16 {
switch a {
case noAddr:
return 0
case tcp4Addr:
return 6
case tcp6Addr:
return 18
case v2OnionAddr:
return 12
case v3OnionAddr:
return 37
default:
return 0
}
}
// WriteElement is a one-stop shop to write the big endian representation of
// any element which is to be serialized for the wire protocol. The passed
// io.Writer should be backed by an appropriately sized byte slice, or be able
// to dynamically expand to accommodate additional data.
//
// TODO(roasbeef): this should eventually draw from a buffer pool for
// serialization.
func WriteElement(w io.Writer, element interface{}) error {
switch e := element.(type) {
case NodeAlias:
if _, err := w.Write(e[:]); err != nil {
return err
}
case ShortChanIDEncoding:
var b [1]byte
b[0] = uint8(e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case uint8:
var b [1]byte
b[0] = e
if _, err := w.Write(b[:]); err != nil {
return err
}
case FundingFlag:
var b [1]byte
b[0] = uint8(e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case uint16:
var b [2]byte
binary.BigEndian.PutUint16(b[:], e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case ChanUpdateMsgFlags:
var b [1]byte
b[0] = uint8(e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case ChanUpdateChanFlags:
var b [1]byte
b[0] = uint8(e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case ErrorCode:
var b [2]byte
binary.BigEndian.PutUint16(b[:], uint16(e))
if _, err := w.Write(b[:]); err != nil {
return err
}
case MilliSatoshi:
var b [8]byte
binary.BigEndian.PutUint64(b[:], uint64(e))
if _, err := w.Write(b[:]); err != nil {
return err
}
case btcutil.Amount:
var b [8]byte
binary.BigEndian.PutUint64(b[:], uint64(e))
if _, err := w.Write(b[:]); err != nil {
return err
}
case uint32:
var b [4]byte
binary.BigEndian.PutUint32(b[:], e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case uint64:
var b [8]byte
binary.BigEndian.PutUint64(b[:], e)
if _, err := w.Write(b[:]); err != nil {
return err
}
case *btcec.PublicKey:
if e == nil {
return fmt.Errorf("cannot write nil pubkey")
}
var b [33]byte
serializedPubkey := e.SerializeCompressed()
copy(b[:], serializedPubkey)
if _, err := w.Write(b[:]); err != nil {
return err
}
case []Sig:
var b [2]byte
numSigs := uint16(len(e))
binary.BigEndian.PutUint16(b[:], numSigs)
if _, err := w.Write(b[:]); err != nil {
return err
}
for _, sig := range e {
if err := WriteElement(w, sig); err != nil {
return err
}
}
case Sig:
// Write buffer
if _, err := w.Write(e[:]); err != nil {
return err
}
case PingPayload:
var l [2]byte
binary.BigEndian.PutUint16(l[:], uint16(len(e)))
if _, err := w.Write(l[:]); err != nil {
return err
}
if _, err := w.Write(e[:]); err != nil {
return err
}
case PongPayload:
var l [2]byte
binary.BigEndian.PutUint16(l[:], uint16(len(e)))
if _, err := w.Write(l[:]); err != nil {
return err
}
if _, err := w.Write(e[:]); err != nil {
return err
}
case ErrorData:
var l [2]byte
binary.BigEndian.PutUint16(l[:], uint16(len(e)))
if _, err := w.Write(l[:]); err != nil {
return err
}
if _, err := w.Write(e[:]); err != nil {
return err
}
case OpaqueReason:
var l [2]byte
binary.BigEndian.PutUint16(l[:], uint16(len(e)))
if _, err := w.Write(l[:]); err != nil {
return err
}
if _, err := w.Write(e[:]); err != nil {
return err
}
case [33]byte:
if _, err := w.Write(e[:]); err != nil {
return err
}
case []byte:
if _, err := w.Write(e[:]); err != nil {
return err
}
case PkScript:
// The largest script we'll accept is a p2wsh which is exactly
// 34 bytes long.
scriptLength := len(e)
if scriptLength > 34 {
return fmt.Errorf("'PkScript' too long")
}
if err := wire.WriteVarBytes(w, 0, e); err != nil {
return err
}
case *RawFeatureVector:
if e == nil {
return fmt.Errorf("cannot write nil feature vector")
}
if err := e.Encode(w); err != nil {
return err
}
case wire.OutPoint:
var h [32]byte
copy(h[:], e.Hash[:])
if _, err := w.Write(h[:]); err != nil {
return err
}
if e.Index > math.MaxUint16 {
return fmt.Errorf("index for outpoint (%v) is "+
"greater than max index of %v", e.Index,
math.MaxUint16)
}
var idx [2]byte
binary.BigEndian.PutUint16(idx[:], uint16(e.Index))
if _, err := w.Write(idx[:]); err != nil {
return err
}
case ChannelID:
if _, err := w.Write(e[:]); err != nil {
return err
}
case FailCode:
if err := WriteElement(w, uint16(e)); err != nil {
return err
}
case ShortChannelID:
// Check that field fit in 3 bytes and write the blockHeight
if e.BlockHeight > ((1 << 24) - 1) {
return errors.New("block height should fit in 3 bytes")
}
var blockHeight [4]byte
binary.BigEndian.PutUint32(blockHeight[:], e.BlockHeight)
if _, err := w.Write(blockHeight[1:]); err != nil {
return err
}
// Check that field fit in 3 bytes and write the txIndex
if e.TxIndex > ((1 << 24) - 1) {
return errors.New("tx index should fit in 3 bytes")
}
var txIndex [4]byte
binary.BigEndian.PutUint32(txIndex[:], e.TxIndex)
if _, err := w.Write(txIndex[1:]); err != nil {
return err
}
// Write the txPosition
var txPosition [2]byte
binary.BigEndian.PutUint16(txPosition[:], e.TxPosition)
if _, err := w.Write(txPosition[:]); err != nil {
return err
}
case *net.TCPAddr:
if e == nil {
return fmt.Errorf("cannot write nil TCPAddr")
}
if e.IP.To4() != nil {
var descriptor [1]byte
descriptor[0] = uint8(tcp4Addr)
if _, err := w.Write(descriptor[:]); err != nil {
return err
}
var ip [4]byte
copy(ip[:], e.IP.To4())
if _, err := w.Write(ip[:]); err != nil {
return err
}
} else {
var descriptor [1]byte
descriptor[0] = uint8(tcp6Addr)
if _, err := w.Write(descriptor[:]); err != nil {
return err
}
var ip [16]byte
copy(ip[:], e.IP.To16())
if _, err := w.Write(ip[:]); err != nil {
return err
}
}
var port [2]byte
binary.BigEndian.PutUint16(port[:], uint16(e.Port))
if _, err := w.Write(port[:]); err != nil {
return err
}
case *tor.OnionAddr:
if e == nil {
return errors.New("cannot write nil onion address")
}
var suffixIndex int
switch len(e.OnionService) {
case tor.V2Len:
descriptor := []byte{byte(v2OnionAddr)}
if _, err := w.Write(descriptor); err != nil {
return err
}
suffixIndex = tor.V2Len - tor.OnionSuffixLen
case tor.V3Len:
descriptor := []byte{byte(v3OnionAddr)}
if _, err := w.Write(descriptor); err != nil {
return err
}
suffixIndex = tor.V3Len - tor.OnionSuffixLen
default:
return errors.New("unknown onion service length")
}
host, err := tor.Base32Encoding.DecodeString(
e.OnionService[:suffixIndex],
)
if err != nil {
return err
}
if _, err := w.Write(host); err != nil {
return err
}
var port [2]byte
binary.BigEndian.PutUint16(port[:], uint16(e.Port))
if _, err := w.Write(port[:]); err != nil {
return err
}
case []net.Addr:
// First, we'll encode all the addresses into an intermediate
// buffer. We need to do this in order to compute the total
// length of the addresses.
var addrBuf bytes.Buffer
for _, address := range e {
if err := WriteElement(&addrBuf, address); err != nil {
return err
}
}
// With the addresses fully encoded, we can now write out the
// number of bytes needed to encode them.
addrLen := addrBuf.Len()
if err := WriteElement(w, uint16(addrLen)); err != nil {
return err
}
// Finally, we'll write out the raw addresses themselves, but
// only if we have any bytes to write.
if addrLen > 0 {
if _, err := w.Write(addrBuf.Bytes()); err != nil {
return err
}
}
case color.RGBA:
if err := WriteElements(w, e.R, e.G, e.B); err != nil {
return err
}
case DeliveryAddress:
var length [2]byte
binary.BigEndian.PutUint16(length[:], uint16(len(e)))
if _, err := w.Write(length[:]); err != nil {
return err
}
if _, err := w.Write(e[:]); err != nil {
return err
}
default:
return fmt.Errorf("Unknown type in WriteElement: %T", e)
}
return nil
}
// WriteElements is writes each element in the elements slice to the passed
// io.Writer using WriteElement.
func WriteElements(w io.Writer, elements ...interface{}) error {
for _, element := range elements {
err := WriteElement(w, element)
if err != nil {
return err
}
}
return nil
}
// ReadElement is a one-stop utility function to deserialize any datastructure
// encoded using the serialization format of lnwire.
func ReadElement(r io.Reader, element interface{}) error {
var err error
switch e := element.(type) {
case *NodeAlias:
var a [32]byte
if _, err := io.ReadFull(r, a[:]); err != nil {
return err
}
alias, err := NewNodeAlias(string(a[:]))
if err != nil {
return err
}
*e = alias
case *ShortChanIDEncoding:
var b [1]uint8
if _, err := r.Read(b[:]); err != nil {
return err
}
*e = ShortChanIDEncoding(b[0])
case *uint8:
var b [1]uint8
if _, err := r.Read(b[:]); err != nil {
return err
}
*e = b[0]
case *FundingFlag:
var b [1]uint8
if _, err := r.Read(b[:]); err != nil {
return err
}
*e = FundingFlag(b[0])
case *uint16:
var b [2]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = binary.BigEndian.Uint16(b[:])
case *ChanUpdateMsgFlags:
var b [1]uint8
if _, err := r.Read(b[:]); err != nil {
return err
}
*e = ChanUpdateMsgFlags(b[0])
case *ChanUpdateChanFlags:
var b [1]uint8
if _, err := r.Read(b[:]); err != nil {
return err
}
*e = ChanUpdateChanFlags(b[0])
case *ErrorCode:
var b [2]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = ErrorCode(binary.BigEndian.Uint16(b[:]))
case *uint32:
var b [4]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = binary.BigEndian.Uint32(b[:])
case *uint64:
var b [8]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = binary.BigEndian.Uint64(b[:])
case *MilliSatoshi:
var b [8]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = MilliSatoshi(int64(binary.BigEndian.Uint64(b[:])))
case *btcutil.Amount:
var b [8]byte
if _, err := io.ReadFull(r, b[:]); err != nil {
return err
}
*e = btcutil.Amount(int64(binary.BigEndian.Uint64(b[:])))
case **btcec.PublicKey:
var b [btcec.PubKeyBytesLenCompressed]byte
if _, err = io.ReadFull(r, b[:]); err != nil {
return err
}
pubKey, err := btcec.ParsePubKey(b[:], btcec.S256())
if err != nil {
return err
}
*e = pubKey
case **RawFeatureVector:
f := NewRawFeatureVector()
err = f.Decode(r)
if err != nil {
return err
}
*e = f
case *[]Sig:
var l [2]byte
if _, err := io.ReadFull(r, l[:]); err != nil {
return err
}
numSigs := binary.BigEndian.Uint16(l[:])
var sigs []Sig
if numSigs > 0 {
sigs = make([]Sig, numSigs)
for i := 0; i < int(numSigs); i++ {
if err := ReadElement(r, &sigs[i]); err != nil {
return err
}
}
}
*e = sigs
case *Sig:
if _, err := io.ReadFull(r, e[:]); err != nil {
return err
}
case *OpaqueReason:
var l [2]byte
if _, err := io.ReadFull(r, l[:]); err != nil {
return err
}
reasonLen := binary.BigEndian.Uint16(l[:])
*e = OpaqueReason(make([]byte, reasonLen))
if _, err := io.ReadFull(r, *e); err != nil {
return err
}
case *ErrorData:
var l [2]byte
if _, err := io.ReadFull(r, l[:]); err != nil {
return err
}
errorLen := binary.BigEndian.Uint16(l[:])
*e = ErrorData(make([]byte, errorLen))
if _, err := io.ReadFull(r, *e); err != nil {
return err
}
case *PingPayload:
var l [2]byte
if _, err := io.ReadFull(r, l[:]); err != nil {
return err
}
pingLen := binary.BigEndian.Uint16(l[:])
*e = PingPayload(make([]byte, pingLen))
if _, err := io.ReadFull(r, *e); err != nil {
return err
}
case *PongPayload:
var l [2]byte
if _, err := io.ReadFull(r, l[:]); err != nil {
return err
}
pongLen := binary.BigEndian.Uint16(l[:])
*e = PongPayload(make([]byte, pongLen))
if _, err := io.ReadFull(r, *e); err != nil {
return err
}
case *[33]byte:
if _, err := io.ReadFull(r, e[:]); err != nil {
return err
}
case []byte:
if _, err := io.ReadFull(r, e); err != nil {
return err
}
case *PkScript:
pkScript, err := wire.ReadVarBytes(r, 0, 34, "pkscript")
if err != nil {
return err
}
*e = pkScript
case *wire.OutPoint:
var h [32]byte
if _, err = io.ReadFull(r, h[:]); err != nil {
return err
}
hash, err := chainhash.NewHash(h[:])
if err != nil {
return err
}
var idxBytes [2]byte
_, err = io.ReadFull(r, idxBytes[:])
if err != nil {
return err
}
index := binary.BigEndian.Uint16(idxBytes[:])
*e = wire.OutPoint{
Hash: *hash,
Index: uint32(index),
}
case *FailCode:
if err := ReadElement(r, (*uint16)(e)); err != nil {
return err
}
case *ChannelID:
if _, err := io.ReadFull(r, e[:]); err != nil {
return err
}
case *ShortChannelID:
var blockHeight [4]byte
if _, err = io.ReadFull(r, blockHeight[1:]); err != nil {
return err
}
var txIndex [4]byte
if _, err = io.ReadFull(r, txIndex[1:]); err != nil {
return err
}
var txPosition [2]byte
if _, err = io.ReadFull(r, txPosition[:]); err != nil {
return err
}
*e = ShortChannelID{
BlockHeight: binary.BigEndian.Uint32(blockHeight[:]),
TxIndex: binary.BigEndian.Uint32(txIndex[:]),
TxPosition: binary.BigEndian.Uint16(txPosition[:]),
}
case *[]net.Addr:
// First, we'll read the number of total bytes that have been
// used to encode the set of addresses.
var numAddrsBytes [2]byte
if _, err = io.ReadFull(r, numAddrsBytes[:]); err != nil {
return err
}
addrsLen := binary.BigEndian.Uint16(numAddrsBytes[:])
// With the number of addresses, read, we'll now pull in the
// buffer of the encoded addresses into memory.
addrs := make([]byte, addrsLen)
if _, err := io.ReadFull(r, addrs[:]); err != nil {
return err
}
addrBuf := bytes.NewReader(addrs)
// Finally, we'll parse the remaining address payload in
// series, using the first byte to denote how to decode the
// address itself.
var (
addresses []net.Addr
addrBytesRead uint16
)
for addrBytesRead < addrsLen {
var descriptor [1]byte
if _, err = io.ReadFull(addrBuf, descriptor[:]); err != nil {
return err
}
addrBytesRead++
var address net.Addr
switch aType := addressType(descriptor[0]); aType {
case noAddr:
addrBytesRead += aType.AddrLen()
continue
case tcp4Addr:
var ip [4]byte
if _, err := io.ReadFull(addrBuf, ip[:]); err != nil {
return err
}
var port [2]byte
if _, err := io.ReadFull(addrBuf, port[:]); err != nil {
return err
}
address = &net.TCPAddr{
IP: net.IP(ip[:]),
Port: int(binary.BigEndian.Uint16(port[:])),
}
addrBytesRead += aType.AddrLen()
case tcp6Addr:
var ip [16]byte
if _, err := io.ReadFull(addrBuf, ip[:]); err != nil {
return err
}
var port [2]byte
if _, err := io.ReadFull(addrBuf, port[:]); err != nil {
return err
}
address = &net.TCPAddr{
IP: net.IP(ip[:]),
Port: int(binary.BigEndian.Uint16(port[:])),
}
addrBytesRead += aType.AddrLen()
case v2OnionAddr:
var h [tor.V2DecodedLen]byte
if _, err := io.ReadFull(addrBuf, h[:]); err != nil {
return err
}
var p [2]byte
if _, err := io.ReadFull(addrBuf, p[:]); err != nil {
return err
}
onionService := tor.Base32Encoding.EncodeToString(h[:])
onionService += tor.OnionSuffix
port := int(binary.BigEndian.Uint16(p[:]))
address = &tor.OnionAddr{
OnionService: onionService,
Port: port,
}
addrBytesRead += aType.AddrLen()
case v3OnionAddr:
var h [tor.V3DecodedLen]byte
if _, err := io.ReadFull(addrBuf, h[:]); err != nil {
return err
}
var p [2]byte
if _, err := io.ReadFull(addrBuf, p[:]); err != nil {
return err
}
onionService := tor.Base32Encoding.EncodeToString(h[:])
onionService += tor.OnionSuffix
port := int(binary.BigEndian.Uint16(p[:]))
address = &tor.OnionAddr{
OnionService: onionService,
Port: port,
}
addrBytesRead += aType.AddrLen()
default:
return &ErrUnknownAddrType{aType}
}
addresses = append(addresses, address)
}
*e = addresses
case *color.RGBA:
err := ReadElements(r,
&e.R,
&e.G,
&e.B,
)
if err != nil {
return err
}
case *DeliveryAddress:
var addrLen [2]byte
if _, err = io.ReadFull(r, addrLen[:]); err != nil {
return err
}
length := binary.BigEndian.Uint16(addrLen[:])
var addrBytes [34]byte
if length > 34 {
return fmt.Errorf("Cannot read %d bytes into addrBytes", length)
}
if _, err = io.ReadFull(r, addrBytes[:length]); err != nil {
return err
}
*e = addrBytes[:length]
default:
return fmt.Errorf("Unknown type in ReadElement: %T", e)
}
return nil
}
// ReadElements deserializes a variable number of elements into the passed
// io.Reader, with each element being deserialized according to the ReadElement
// function.
func ReadElements(r io.Reader, elements ...interface{}) error {
for _, element := range elements {
err := ReadElement(r, element)
if err != nil {
return err
}
}
return nil
}