lnd.xprv/lnwallet/script_utils_test.go
Olaoluwa Osuntokun 22074eb737
lnwallet: integrate obfuscated state hints into funding workflow
This commit finalizes the implementation of #58 by integrating passing
around the obfuscate state hints into the funding workflow of the
wallet, and also the daemon’s funding manager.

In order to amend the tests, the functions to set and receive the state
hints are now publicly exported.
2016-11-16 12:54:39 -08:00

562 lines
17 KiB
Go

package lnwallet
import (
"bytes"
"fmt"
"testing"
"github.com/btcsuite/fastsha256"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
// TestCommitmentSpendValidation test the spendability of both outputs within
// the commitment transaction.
//
// The following spending cases are covered by this test:
// * Alice's spend from the delayed output on her commitment transaction.
// * Bob's spend from Alice's delayed output when she broadcasts a revoked
// commitment transaction.
// * Bob's spend from his unencumbered output within Alice's commitment
// transaction.
func TestCommitmentSpendValidation(t *testing.T) {
// We generate a fake output, and the corresponding txin. This output
// doesn't need to exist, as we'll only be validating spending from the
// transaction that references this.
fundingOut := &wire.OutPoint{
Hash: testHdSeed,
Index: 50,
}
fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)
// We also set up set some resources for the commitment transaction.
// Each side currently has 1 BTC within the channel, with a total
// channel capacity of 2BTC.
aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
testWalletPrivKey)
bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
bobsPrivKey)
channelBalance := btcutil.Amount(1 * 10e8)
csvTimeout := uint32(5)
revocationPreimage := testHdSeed[:]
revokePubKey := DeriveRevocationPubkey(bobKeyPub, revocationPreimage)
aliceSelfOutputSigner := &mockSigner{aliceKeyPriv}
// With all the test data set up, we create the commitment transaction.
// We only focus on a single party's transactions, as the scripts are
// identical with the roles reversed.
//
// This is Alice's commitment transaction, so she must wait a CSV delay
// of 5 blocks before sweeping the output, while bob can spend
// immediately with either the revocation key, or his regular key.
commitmentTx, err := CreateCommitTx(fakeFundingTxIn, aliceKeyPub,
bobKeyPub, revokePubKey, csvTimeout, channelBalance, channelBalance)
if err != nil {
t.Fatalf("unable to create commitment transaction: %v", nil)
}
delayOutput := commitmentTx.TxOut[0]
regularOutput := commitmentTx.TxOut[1]
// We're testing an uncooperative close, output sweep, so construct a
// transaction which sweeps the funds to a random address.
targetOutput, err := commitScriptUnencumbered(aliceKeyPub)
if err != nil {
t.Fatalf("unable to create target output: %v")
}
sweepTx := wire.NewMsgTx()
sweepTx.Version = 2
sweepTx.AddTxIn(wire.NewTxIn(&wire.OutPoint{commitmentTx.TxSha(), 0}, nil, nil))
sweepTx.AddTxOut(&wire.TxOut{
PkScript: targetOutput,
Value: 0.5 * 10e8,
})
// First, we'll test spending with Alice's key after the timeout.
delayScript, err := commitScriptToSelf(csvTimeout, aliceKeyPub, revokePubKey)
if err != nil {
t.Fatalf("unable to generate alice delay script: %v")
}
sweepTx.TxIn[0].Sequence = lockTimeToSequence(false, csvTimeout)
signDesc := &SignDescriptor{
WitnessScript: delayScript,
SigHashes: txscript.NewTxSigHashes(sweepTx),
Output: &wire.TxOut{
Value: int64(channelBalance),
},
HashType: txscript.SigHashAll,
InputIndex: 0,
}
aliceWitnessSpend, err := CommitSpendTimeout(aliceSelfOutputSigner,
signDesc, sweepTx)
if err != nil {
t.Fatalf("unable to generate delay commit spend witness :%v")
}
sweepTx.TxIn[0].Witness = aliceWitnessSpend
vm, err := txscript.NewEngine(delayOutput.PkScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(channelBalance))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("spend from delay output is invalid: %v", err)
}
// Next, we'll test bob spending with the derived revocation key to
// simulate the scenario when alice broadcasts this commitmen
// transaction after it's been revoked.
revokePrivKey := DeriveRevocationPrivKey(bobKeyPriv, revocationPreimage)
bobWitnessSpend, err := commitSpendRevoke(delayScript, channelBalance,
revokePrivKey, sweepTx)
if err != nil {
t.Fatalf("unable to generate revocation witness: %v", err)
}
sweepTx.TxIn[0].Witness = bobWitnessSpend
vm, err = txscript.NewEngine(delayOutput.PkScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(channelBalance))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("revocation spend is invalid: %v", err)
}
// Finally, we test bob sweeping his output as normal in the case that
// alice broadcasts this commitment transaction.
bobScriptp2wkh, err := commitScriptUnencumbered(bobKeyPub)
if err != nil {
t.Fatalf("unable to create bob p2wkh script: %v", err)
}
bobRegularSpend, err := commitSpendNoDelay(bobScriptp2wkh,
channelBalance, bobKeyPriv, sweepTx)
if err != nil {
t.Fatalf("unable to create bob regular spend: %v", err)
}
sweepTx.TxIn[0].Witness = bobRegularSpend
vm, err = txscript.NewEngine(regularOutput.PkScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(channelBalance))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("bob p2wkh spend is invalid: %v", err)
}
}
// TestRevocationKeyDerivation tests that given a public key, and a revocation
// hash, the homomorphic revocation public and private key derivation work
// properly.
func TestRevocationKeyDerivation(t *testing.T) {
revocationPreimage := testHdSeed[:]
priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), testWalletPrivKey)
revocationPub := DeriveRevocationPubkey(pub, revocationPreimage)
revocationPriv := DeriveRevocationPrivKey(priv, revocationPreimage)
x, y := btcec.S256().ScalarBaseMult(revocationPriv.D.Bytes())
derivedRevPub := &btcec.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
}
// The the revocation public key derived from the original public key,
// and the one derived from the private key should be identical.
if !revocationPub.IsEqual(derivedRevPub) {
t.Fatalf("derived public keys don't match!")
}
}
// makeWitnessTestCase is a helper function used within test cases involving
// the validity of a crafted witness. This function is a wrapper function which
// allows constructing table-driven tests. In the case of an error while
// constructing the witness, the test fails fataly.
func makeWitnessTestCase(t *testing.T, f func() (wire.TxWitness, error)) func() wire.TxWitness {
return func() wire.TxWitness {
witness, err := f()
if err != nil {
t.Fatalf("unable to create witness test case: %v", err)
}
return witness
}
}
// TestHTLCSenderSpendValidation tests all possible valid+invalid redemption
// paths in the script used within the sender's commitment transaction for an
// outgoing HTLC.
//
// The following cases are exercised by this test:
// sender script:
// * reciever spends
// * revoke w/ sig
// * HTLC with invalid pre-image size
// * HTLC with valid pre-image size + sig
// * sender spends
// * invalid lock-time for CLTV
// * invalid sequence for CSV
// * valid lock-time+sequence, valid sig
func TestHTLCSenderSpendValidation(t *testing.T) {
// TODO(roasbeef): eliminate duplication with other HTLC tests.
// We generate a fake output, and the coresponding txin. This output
// doesn't need to exist, as we'll only be validating spending from the
// transaction that references this.
fundingOut := &wire.OutPoint{
Hash: testHdSeed,
Index: 50,
}
fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)
// Generate a payment and revocation pre-image to be used below.
revokePreimage := testHdSeed[:]
revokeHash := fastsha256.Sum256(revokePreimage)
paymentPreimage := revokeHash
paymentPreimage[0] ^= 1
paymentHash := fastsha256.Sum256(paymentPreimage[:])
// We'll also need some tests keys for alice and bob, and meta-data of
// the HTLC output.
aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
testWalletPrivKey)
bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
bobsPrivKey)
paymentAmt := btcutil.Amount(1 * 10e8)
cltvTimeout := uint32(8)
csvTimeout := uint32(5)
// Generate the raw HTLC redemption scripts, and its p2wsh counterpart.
htlcScript, err := senderHTLCScript(cltvTimeout, csvTimeout,
aliceKeyPub, bobKeyPub, revokeHash[:], paymentHash[:])
if err != nil {
t.Fatalf("unable to create htlc sender script: %v", err)
}
htlcWitnessScript, err := witnessScriptHash(htlcScript)
if err != nil {
t.Fatalf("unable to create p2wsh htlc script: %v", err)
}
// This will be Alice's commitment transaction. In this scenario Alice
// is sending an HTLC to a node she has a a path to (could be Bob,
// could be multiple hops down, it doesn't really matter).
senderCommitTx := wire.NewMsgTx()
senderCommitTx.AddTxIn(fakeFundingTxIn)
senderCommitTx.AddTxOut(&wire.TxOut{
Value: int64(paymentAmt),
PkScript: htlcWitnessScript,
})
prevOut := &wire.OutPoint{
Hash: senderCommitTx.TxSha(),
Index: 0,
}
sweepTx := wire.NewMsgTx()
sweepTx.AddTxIn(wire.NewTxIn(prevOut, nil, nil))
sweepTx.AddTxOut(
&wire.TxOut{
PkScript: []byte("doesn't matter"),
Value: 1 * 10e8,
},
)
testCases := []struct {
witness func() wire.TxWitness
valid bool
}{
{
// revoke w/ sig
// TODO(roasbeef): test invalid revoke
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendRevoke(htlcScript, paymentAmt,
bobKeyPriv, sweepTx,
revokePreimage)
}),
true,
},
{
// HTLC with invalid pre-image size
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendRedeem(htlcScript, paymentAmt,
bobKeyPriv, sweepTx,
// Invalid pre-image length
bytes.Repeat([]byte{1}, 45))
}),
false,
},
{
// HTLC with valid pre-image size + sig
// TODO(roabeef): invalid pre-image
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendRedeem(htlcScript, paymentAmt,
bobKeyPriv, sweepTx,
paymentPreimage[:])
}),
true,
},
{
// invalid lock-time for CLTV
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendTimeout(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, cltvTimeout-2, csvTimeout)
}),
false,
},
{
// invalid sequence for CSV
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendTimeout(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, cltvTimeout, csvTimeout-2)
}),
false,
},
{
// valid lock-time+sequence, valid sig
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return senderHtlcSpendTimeout(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, cltvTimeout, csvTimeout)
}),
true,
},
}
for i, testCase := range testCases {
sweepTx.TxIn[0].Witness = testCase.witness()
vm, err := txscript.NewEngine(htlcWitnessScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(paymentAmt))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
// This buffer will trace execution of the Script, only dumping
// out to stdout in the case that a test fails.
var debugBuf bytes.Buffer
done := false
for !done {
dis, err := vm.DisasmPC()
if err != nil {
t.Fatalf("stepping (%v)\n", err)
}
debugBuf.WriteString(fmt.Sprintf("stepping %v\n", dis))
done, err = vm.Step()
if err != nil && testCase.valid {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case #%v failed, spend should be valid: %v", i, err)
} else if err == nil && !testCase.valid && done {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case #%v succeed, spend should be invalid: %v", i, err)
}
debugBuf.WriteString(fmt.Sprintf("Stack: ", vm.GetStack()))
debugBuf.WriteString(fmt.Sprintf("AltStack: ", vm.GetAltStack()))
}
}
}
// TestHTLCReceiverSpendValidation tests all possible valid+invalid redemption
// paths in the script used within the reciever's commitment transaction for an
// incoming HTLC.
//
// The following cases are exercised by this test:
// * reciever spends
// * HTLC redemption w/ invalid preimage size
// * HTLC redemption w/ invalid sequence
// * HTLC redemption w/ valid preimage size
// * sender spends
// * revoke w/ sig
// * refund w/ invalid lock time
// * refund w/ valid lock time
func TestHTLCReceiverSpendValidation(t *testing.T) {
// We generate a fake output, and the coresponding txin. This output
// doesn't need to exist, as we'll only be validating spending from the
// transaction that references this.
fundingOut := &wire.OutPoint{
Hash: testHdSeed,
Index: 50,
}
fakeFundingTxIn := wire.NewTxIn(fundingOut, nil, nil)
// Generate a payment and revocation pre-image to be used below.
revokePreimage := testHdSeed[:]
revokeHash := fastsha256.Sum256(revokePreimage)
paymentPreimage := revokeHash
paymentPreimage[0] ^= 1
paymentHash := fastsha256.Sum256(paymentPreimage[:])
// We'll also need some tests keys for alice and bob, and meta-data of
// the HTLC output.
aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
testWalletPrivKey)
bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
bobsPrivKey)
paymentAmt := btcutil.Amount(1 * 10e8)
cltvTimeout := uint32(8)
csvTimeout := uint32(5)
// Generate the raw HTLC redemption scripts, and its p2wsh counterpart.
htlcScript, err := receiverHTLCScript(cltvTimeout, csvTimeout,
aliceKeyPub, bobKeyPub, revokeHash[:], paymentHash[:])
if err != nil {
t.Fatalf("unable to create htlc sender script: %v", err)
}
htlcWitnessScript, err := witnessScriptHash(htlcScript)
if err != nil {
t.Fatalf("unable to create p2wsh htlc script: %v", err)
}
// This will be Bob's commitment transaction. In this scenario Alice
// is sending an HTLC to a node she has a a path to (could be Bob,
// could be multiple hops down, it doesn't really matter).
recieverCommitTx := wire.NewMsgTx()
recieverCommitTx.AddTxIn(fakeFundingTxIn)
recieverCommitTx.AddTxOut(&wire.TxOut{
Value: int64(paymentAmt),
PkScript: htlcWitnessScript,
})
prevOut := &wire.OutPoint{
Hash: recieverCommitTx.TxSha(),
Index: 0,
}
sweepTx := wire.NewMsgTx()
sweepTx.AddTxIn(wire.NewTxIn(prevOut, nil, nil))
sweepTx.AddTxOut(
&wire.TxOut{
PkScript: []byte("doesn't matter"),
Value: 1 * 10e8,
},
)
testCases := []struct {
witness func() wire.TxWitness
valid bool
}{
{
// HTLC redemption w/ invalid preimage size
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendRedeem(htlcScript,
paymentAmt, bobKeyPriv, sweepTx,
bytes.Repeat([]byte{1}, 45), csvTimeout,
)
}),
false,
},
{
// HTLC redemption w/ invalid sequence
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendRedeem(htlcScript,
paymentAmt, bobKeyPriv, sweepTx,
paymentPreimage[:], csvTimeout-2,
)
}),
false,
},
{
// HTLC redemption w/ valid preimage size
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendRedeem(htlcScript,
paymentAmt, bobKeyPriv, sweepTx,
paymentPreimage[:], csvTimeout,
)
}),
true,
},
{
// revoke w/ sig
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendRevoke(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, revokePreimage[:],
)
}),
true,
},
{
// refund w/ invalid lock time
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendTimeout(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, cltvTimeout-2)
}),
false,
},
{
// refund w/ valid lock time
makeWitnessTestCase(t, func() (wire.TxWitness, error) {
return receiverHtlcSpendTimeout(htlcScript, paymentAmt,
aliceKeyPriv, sweepTx, cltvTimeout)
}),
true,
},
}
for i, testCase := range testCases {
sweepTx.TxIn[0].Witness = testCase.witness()
vm, err := txscript.NewEngine(htlcWitnessScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(paymentAmt))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
// This buffer will trace execution of the Script, only dumping
// out to stdout in the case that a test fails.
var debugBuf bytes.Buffer
done := false
for !done {
dis, err := vm.DisasmPC()
if err != nil {
t.Fatalf("stepping (%v)\n", err)
}
debugBuf.WriteString(fmt.Sprintf("stepping %v\n", dis))
done, err = vm.Step()
if err != nil && testCase.valid {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case #%v failed, spend should be valid: %v", i, err)
} else if err == nil && !testCase.valid && done {
fmt.Println(debugBuf.String())
t.Fatalf("spend test case #%v succeed, spend should be invalid: %v", i, err)
}
debugBuf.WriteString(fmt.Sprintf("Stack: ", vm.GetStack()))
debugBuf.WriteString(fmt.Sprintf("AltStack: ", vm.GetAltStack()))
}
}
}
func TestCommitTxStateHint(t *testing.T) {
commitTx := wire.NewMsgTx()
commitTx.AddTxIn(&wire.TxIn{})
var obsfucator [StateHintSize]byte
copy(obsfucator[:], testHdSeed[:StateHintSize])
for i := 0; i < 10000; i++ {
stateNum := uint32(i)
err := SetStateNumHint(commitTx, stateNum, obsfucator)
if err != nil {
t.Fatalf("unable to set state num %v: %v", i, err)
}
extractedStateNum := GetStateNumHint(commitTx, obsfucator)
if extractedStateNum != stateNum {
t.Fatalf("state number mismatched, expected %v, got %v",
stateNum, extractedStateNum)
}
}
}