0016b3f458
In this commit, we create a new concrete implementation for the new discovery.ChannelGraphTimeSeries interface. We also export the createChannelAnnouncement method to allow the chanSeries struct to re-use the existing code for creating wire messages from the database structs.
2431 lines
77 KiB
Go
2431 lines
77 KiB
Go
package discovery
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"runtime"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/coreos/bbolt"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/go-errors/errors"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/multimutex"
|
|
"github.com/lightningnetwork/lnd/routing"
|
|
"github.com/roasbeef/btcd/btcec"
|
|
"github.com/roasbeef/btcd/chaincfg/chainhash"
|
|
"github.com/roasbeef/btcd/wire"
|
|
)
|
|
|
|
var (
|
|
// messageStoreKey is a key used to create a top level bucket in
|
|
// the gossiper database, used for storing messages that are to
|
|
// be sent to peers. Currently this is used for reliably sending
|
|
// AnnounceSignatures messages, by persisting them until a send
|
|
// operation has succeeded.
|
|
messageStoreKey = []byte("message-store")
|
|
)
|
|
|
|
// networkMsg couples a routing related wire message with the peer that
|
|
// originally sent it.
|
|
type networkMsg struct {
|
|
peer *btcec.PublicKey
|
|
msg lnwire.Message
|
|
|
|
isRemote bool
|
|
|
|
err chan error
|
|
}
|
|
|
|
// chanPolicyUpdateRequest is a request that is sent to the server when a caller
|
|
// wishes to update the channel policy (fees e.g.) for a particular set of
|
|
// channels. New ChannelUpdate messages will be crafted to be sent out during
|
|
// the next broadcast epoch and the fee updates committed to the lower layer.
|
|
type chanPolicyUpdateRequest struct {
|
|
targetChans []wire.OutPoint
|
|
newSchema routing.ChannelPolicy
|
|
|
|
errResp chan error
|
|
}
|
|
|
|
// Config defines the configuration for the service. ALL elements within the
|
|
// configuration MUST be non-nil for the service to carry out its duties.
|
|
type Config struct {
|
|
// ChainHash is a hash that indicates which resident chain of the
|
|
// AuthenticatedGossiper. Any announcements that don't match this
|
|
// chain hash will be ignored.
|
|
//
|
|
// TODO(roasbeef): eventually make into map so can de-multiplex
|
|
// incoming announcements
|
|
// * also need to do same for Notifier
|
|
ChainHash chainhash.Hash
|
|
|
|
// Router is the subsystem which is responsible for managing the
|
|
// topology of lightning network. After incoming channel, node, channel
|
|
// updates announcements are validated they are sent to the router in
|
|
// order to be included in the LN graph.
|
|
Router routing.ChannelGraphSource
|
|
|
|
// ChanSeries is an interfaces that provides access to a time series
|
|
// view of the current known channel graph. Each gossipSyncer enabled
|
|
// peer will utilize this in order to create and respond to channel
|
|
// graph time series queries.
|
|
ChanSeries ChannelGraphTimeSeries
|
|
|
|
// Notifier is used for receiving notifications of incoming blocks.
|
|
// With each new incoming block found we process previously premature
|
|
// announcements.
|
|
//
|
|
// TODO(roasbeef): could possibly just replace this with an epoch
|
|
// channel.
|
|
Notifier chainntnfs.ChainNotifier
|
|
|
|
// Broadcast broadcasts a particular set of announcements to all peers
|
|
// that the daemon is connected to. If supplied, the exclude parameter
|
|
// indicates that the target peer should be excluded from the
|
|
// broadcast.
|
|
Broadcast func(skips map[routing.Vertex]struct{},
|
|
msg ...lnwire.Message) error
|
|
|
|
// SendToPeer is a function which allows the service to send a set of
|
|
// messages to a particular peer identified by the target public key.
|
|
SendToPeer func(target *btcec.PublicKey, msg ...lnwire.Message) error
|
|
|
|
// NotifyWhenOnline is a function that allows the gossiper to be
|
|
// notified when a certain peer comes online, allowing it to
|
|
// retry sending a peer message.
|
|
NotifyWhenOnline func(peer *btcec.PublicKey, connectedChan chan<- struct{})
|
|
|
|
// ProofMatureDelta the number of confirmations which is needed before
|
|
// exchange the channel announcement proofs.
|
|
ProofMatureDelta uint32
|
|
|
|
// TrickleDelay the period of trickle timer which flushes to the
|
|
// network the pending batch of new announcements we've received since
|
|
// the last trickle tick.
|
|
TrickleDelay time.Duration
|
|
|
|
// RetransmitDelay is the period of a timer which indicates that we
|
|
// should check if we need re-broadcast any of our personal channels.
|
|
RetransmitDelay time.Duration
|
|
|
|
// DB is a global boltdb instance which is needed to pass it in waiting
|
|
// proof storage to make waiting proofs persistent.
|
|
DB *channeldb.DB
|
|
|
|
// AnnSigner is an instance of the MessageSigner interface which will
|
|
// be used to manually sign any outgoing channel updates. The signer
|
|
// implementation should be backed by the public key of the backing
|
|
// Lightning node.
|
|
//
|
|
// TODO(roasbeef): extract ann crafting + sign from fundingMgr into
|
|
// here?
|
|
AnnSigner lnwallet.MessageSigner
|
|
}
|
|
|
|
// AuthenticatedGossiper is a subsystem which is responsible for receiving
|
|
// announcements, validating them and applying the changes to router, syncing
|
|
// lightning network with newly connected nodes, broadcasting announcements
|
|
// after validation, negotiating the channel announcement proofs exchange and
|
|
// handling the premature announcements. All outgoing announcements are
|
|
// expected to be properly signed as dictated in BOLT#7, additionally, all
|
|
// incoming message are expected to be well formed and signed. Invalid messages
|
|
// will be rejected by this struct.
|
|
type AuthenticatedGossiper struct {
|
|
// Parameters which are needed to properly handle the start and stop of
|
|
// the service.
|
|
started uint32
|
|
stopped uint32
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
|
|
// cfg is a copy of the configuration struct that the gossiper service
|
|
// was initialized with.
|
|
cfg *Config
|
|
|
|
// newBlocks is a channel in which new blocks connected to the end of
|
|
// the main chain are sent over.
|
|
newBlocks <-chan *chainntnfs.BlockEpoch
|
|
|
|
// prematureAnnouncements maps a block height to a set of network
|
|
// messages which are "premature" from our PoV. A message is premature
|
|
// if it claims to be anchored in a block which is beyond the current
|
|
// main chain tip as we know it. Premature network messages will be
|
|
// processed once the chain tip as we know it extends to/past the
|
|
// premature height.
|
|
//
|
|
// TODO(roasbeef): limit premature networkMsgs to N
|
|
prematureAnnouncements map[uint32][]*networkMsg
|
|
|
|
// prematureChannelUpdates is a map of ChannelUpdates we have received
|
|
// that wasn't associated with any channel we know about. We store
|
|
// them temporarily, such that we can reprocess them when a
|
|
// ChannelAnnouncement for the channel is received.
|
|
prematureChannelUpdates map[uint64][]*networkMsg
|
|
pChanUpdMtx sync.Mutex
|
|
|
|
// waitingProofs is a persistent storage of partial channel proof
|
|
// announcement messages. We use it to buffer half of the material
|
|
// needed to reconstruct a full authenticated channel announcement.
|
|
// Once we receive the other half the channel proof, we'll be able to
|
|
// properly validate it and re-broadcast it out to the network.
|
|
waitingProofs *channeldb.WaitingProofStore
|
|
|
|
// networkMsgs is a channel that carries new network broadcasted
|
|
// message from outside the gossiper service to be processed by the
|
|
// networkHandler.
|
|
networkMsgs chan *networkMsg
|
|
|
|
// chanPolicyUpdates is a channel that requests to update the
|
|
// forwarding policy of a set of channels is sent over.
|
|
chanPolicyUpdates chan *chanPolicyUpdateRequest
|
|
|
|
// bestHeight is the height of the block at the tip of the main chain
|
|
// as we know it.
|
|
bestHeight uint32
|
|
|
|
// selfKey is the identity public key of the backing Lightning node.
|
|
selfKey *btcec.PublicKey
|
|
|
|
// channelMtx is used to restrict the database access to one
|
|
// goroutine per channel ID. This is done to ensure that when
|
|
// the gossiper is handling an announcement, the db state stays
|
|
// consistent between when the DB is first read until it's written.
|
|
channelMtx *multimutex.Mutex
|
|
|
|
rejectMtx sync.RWMutex
|
|
recentRejects map[uint64]struct{}
|
|
|
|
// peerSyncers keeps track of all the gossip syncers we're maintain for
|
|
// peers that understand this mode of operation. When we go to send out
|
|
// new updates, for all peers in the map, we'll send the messages
|
|
// directly to their gossiper, rather than broadcasting them. With this
|
|
// change, we ensure we filter out all updates properly.
|
|
syncerMtx sync.RWMutex
|
|
peerSyncers map[routing.Vertex]*gossipSyncer
|
|
|
|
sync.Mutex
|
|
}
|
|
|
|
// New creates a new AuthenticatedGossiper instance, initialized with the
|
|
// passed configuration parameters.
|
|
func New(cfg Config, selfKey *btcec.PublicKey) (*AuthenticatedGossiper, error) {
|
|
storage, err := channeldb.NewWaitingProofStore(cfg.DB)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &AuthenticatedGossiper{
|
|
selfKey: selfKey,
|
|
cfg: &cfg,
|
|
networkMsgs: make(chan *networkMsg),
|
|
quit: make(chan struct{}),
|
|
chanPolicyUpdates: make(chan *chanPolicyUpdateRequest),
|
|
prematureAnnouncements: make(map[uint32][]*networkMsg),
|
|
prematureChannelUpdates: make(map[uint64][]*networkMsg),
|
|
waitingProofs: storage,
|
|
channelMtx: multimutex.NewMutex(),
|
|
recentRejects: make(map[uint64]struct{}),
|
|
peerSyncers: make(map[routing.Vertex]*gossipSyncer),
|
|
}, nil
|
|
}
|
|
|
|
// SynchronizeNode sends a message to the service indicating it should
|
|
// synchronize lightning topology state with the target node. This method is to
|
|
// be utilized when a node connections for the first time to provide it with
|
|
// the latest topology update state. In order to accomplish this, (currently)
|
|
// the entire network graph is read from disk, then serialized to the format
|
|
// defined within the current wire protocol. This cache of graph data is then
|
|
// sent directly to the target node.
|
|
func (d *AuthenticatedGossiper) SynchronizeNode(pub *btcec.PublicKey) error {
|
|
// TODO(roasbeef): need to also store sig data in db
|
|
// * will be nice when we switch to pairing sigs would only need one ^_^
|
|
|
|
// We'll collate all the gathered routing messages into a single slice
|
|
// containing all the messages to be sent to the target peer.
|
|
var announceMessages []lnwire.Message
|
|
|
|
makeNodeAnn := func(n *channeldb.LightningNode) (*lnwire.NodeAnnouncement, error) {
|
|
alias, _ := lnwire.NewNodeAlias(n.Alias)
|
|
|
|
wireSig, err := lnwire.NewSigFromRawSignature(n.AuthSigBytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return &lnwire.NodeAnnouncement{
|
|
Signature: wireSig,
|
|
Timestamp: uint32(n.LastUpdate.Unix()),
|
|
Addresses: n.Addresses,
|
|
NodeID: n.PubKeyBytes,
|
|
Features: n.Features.RawFeatureVector,
|
|
RGBColor: n.Color,
|
|
Alias: alias,
|
|
}, nil
|
|
}
|
|
|
|
// As peers are expecting channel announcements before node
|
|
// announcements, we first retrieve the initial announcement, as well as
|
|
// the latest channel update announcement for both of the directed edges
|
|
// that make up each channel, and queue these to be sent to the peer.
|
|
var (
|
|
numEdges uint32
|
|
numNodes uint32
|
|
)
|
|
if err := d.cfg.Router.ForEachChannel(func(chanInfo *channeldb.ChannelEdgeInfo,
|
|
e1, e2 *channeldb.ChannelEdgePolicy) error {
|
|
|
|
// First, using the parameters of the channel, along with the
|
|
// channel authentication proof, we'll create re-create the
|
|
// original authenticated channel announcement. If the channel
|
|
// also has known validated nodes, then we'll send that as
|
|
// well.
|
|
if chanInfo.AuthProof != nil {
|
|
chanAnn, e1Ann, e2Ann, err := CreateChanAnnouncement(
|
|
chanInfo.AuthProof, chanInfo, e1, e2,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
announceMessages = append(announceMessages, chanAnn)
|
|
if e1Ann != nil {
|
|
announceMessages = append(announceMessages, e1Ann)
|
|
|
|
// If this edge has a validated node
|
|
// announcement, then we'll send that as well.
|
|
if e1.Node.HaveNodeAnnouncement {
|
|
nodeAnn, err := makeNodeAnn(e1.Node)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
announceMessages = append(
|
|
announceMessages, nodeAnn,
|
|
)
|
|
numNodes++
|
|
}
|
|
}
|
|
if e2Ann != nil {
|
|
announceMessages = append(announceMessages, e2Ann)
|
|
|
|
// If this edge has a validated node
|
|
// announcement, then we'll send that as well.
|
|
if e2.Node.HaveNodeAnnouncement {
|
|
nodeAnn, err := makeNodeAnn(e2.Node)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
announceMessages = append(
|
|
announceMessages, nodeAnn,
|
|
)
|
|
numNodes++
|
|
}
|
|
}
|
|
|
|
numEdges++
|
|
}
|
|
|
|
return nil
|
|
}); err != nil && err != channeldb.ErrGraphNoEdgesFound {
|
|
log.Errorf("unable to sync infos with peer: %v", err)
|
|
return err
|
|
}
|
|
|
|
log.Infof("Syncing channel graph state with %x, sending %v "+
|
|
"vertexes and %v edges", pub.SerializeCompressed(),
|
|
numNodes, numEdges)
|
|
|
|
// With all the announcement messages gathered, send them all in a
|
|
// single batch to the target peer.
|
|
return d.cfg.SendToPeer(pub, announceMessages...)
|
|
}
|
|
|
|
// PropagateChanPolicyUpdate signals the AuthenticatedGossiper to update the
|
|
// channel forwarding policies for the specified channels. If no channels are
|
|
// specified, then the update will be applied to all outgoing channels from the
|
|
// source node. Policy updates are done in two stages: first, the
|
|
// AuthenticatedGossiper ensures the update has been committed by dependent
|
|
// sub-systems, then it signs and broadcasts new updates to the network.
|
|
func (d *AuthenticatedGossiper) PropagateChanPolicyUpdate(
|
|
newSchema routing.ChannelPolicy, chanPoints ...wire.OutPoint) error {
|
|
|
|
errChan := make(chan error, 1)
|
|
policyUpdate := &chanPolicyUpdateRequest{
|
|
targetChans: chanPoints,
|
|
newSchema: newSchema,
|
|
errResp: errChan,
|
|
}
|
|
|
|
select {
|
|
case d.chanPolicyUpdates <- policyUpdate:
|
|
return <-errChan
|
|
case <-d.quit:
|
|
return fmt.Errorf("AuthenticatedGossiper shutting down")
|
|
}
|
|
}
|
|
|
|
// Start spawns network messages handler goroutine and registers on new block
|
|
// notifications in order to properly handle the premature announcements.
|
|
func (d *AuthenticatedGossiper) Start() error {
|
|
if !atomic.CompareAndSwapUint32(&d.started, 0, 1) {
|
|
return nil
|
|
}
|
|
|
|
log.Info("Authenticated Gossiper is starting")
|
|
|
|
// First we register for new notifications of newly discovered blocks.
|
|
// We do this immediately so we'll later be able to consume any/all
|
|
// blocks which were discovered.
|
|
blockEpochs, err := d.cfg.Notifier.RegisterBlockEpochNtfn()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d.newBlocks = blockEpochs.Epochs
|
|
|
|
height, err := d.cfg.Router.CurrentBlockHeight()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d.bestHeight = height
|
|
|
|
// In case we had an AnnounceSignatures ready to be sent when the
|
|
// gossiper was last shut down, we must continue on our quest to
|
|
// deliver this message to our peer such that they can craft the
|
|
// full channel proof.
|
|
if err := d.resendAnnounceSignatures(); err != nil {
|
|
return err
|
|
}
|
|
|
|
d.wg.Add(1)
|
|
go d.networkHandler()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Stop signals any active goroutines for a graceful closure.
|
|
func (d *AuthenticatedGossiper) Stop() {
|
|
if !atomic.CompareAndSwapUint32(&d.stopped, 0, 1) {
|
|
return
|
|
}
|
|
|
|
log.Info("Authenticated Gossiper is stopping")
|
|
|
|
d.syncerMtx.RLock()
|
|
for _, syncer := range d.peerSyncers {
|
|
syncer.Stop()
|
|
}
|
|
d.syncerMtx.RUnlock()
|
|
|
|
close(d.quit)
|
|
d.wg.Wait()
|
|
}
|
|
|
|
// TODO(roasbeef): need method to get current gossip timestamp?
|
|
// * using mtx, check time rotate forward is needed?
|
|
|
|
// ProcessRemoteAnnouncement sends a new remote announcement message along with
|
|
// the peer that sent the routing message. The announcement will be processed
|
|
// then added to a queue for batched trickled announcement to all connected
|
|
// peers. Remote channel announcements should contain the announcement proof
|
|
// and be fully validated.
|
|
func (d *AuthenticatedGossiper) ProcessRemoteAnnouncement(msg lnwire.Message,
|
|
src *btcec.PublicKey) chan error {
|
|
|
|
nMsg := &networkMsg{
|
|
msg: msg,
|
|
isRemote: true,
|
|
peer: src,
|
|
err: make(chan error, 1),
|
|
}
|
|
|
|
select {
|
|
case d.networkMsgs <- nMsg:
|
|
case <-d.quit:
|
|
nMsg.err <- errors.New("gossiper has shut down")
|
|
}
|
|
|
|
return nMsg.err
|
|
}
|
|
|
|
// ProcessLocalAnnouncement sends a new remote announcement message along with
|
|
// the peer that sent the routing message. The announcement will be processed
|
|
// then added to a queue for batched trickled announcement to all connected
|
|
// peers. Local channel announcements don't contain the announcement proof and
|
|
// will not be fully validated. Once the channel proofs are received, the
|
|
// entire channel announcement and update messages will be re-constructed and
|
|
// broadcast to the rest of the network.
|
|
func (d *AuthenticatedGossiper) ProcessLocalAnnouncement(msg lnwire.Message,
|
|
src *btcec.PublicKey) chan error {
|
|
|
|
nMsg := &networkMsg{
|
|
msg: msg,
|
|
isRemote: false,
|
|
peer: src,
|
|
err: make(chan error, 1),
|
|
}
|
|
|
|
select {
|
|
case d.networkMsgs <- nMsg:
|
|
case <-d.quit:
|
|
nMsg.err <- errors.New("gossiper has shut down")
|
|
}
|
|
|
|
return nMsg.err
|
|
}
|
|
|
|
// channelUpdateID is a unique identifier for ChannelUpdate messages, as
|
|
// channel updates can be identified by the (ShortChannelID, Flags)
|
|
// tuple.
|
|
type channelUpdateID struct {
|
|
// channelID represents the set of data which is needed to
|
|
// retrieve all necessary data to validate the channel existence.
|
|
channelID lnwire.ShortChannelID
|
|
|
|
// Flags least-significant bit must be set to 0 if the creating node
|
|
// corresponds to the first node in the previously sent channel
|
|
// announcement and 1 otherwise.
|
|
flags lnwire.ChanUpdateFlag
|
|
}
|
|
|
|
// msgWithSenders is a wrapper struct around a message, and the set of peers
|
|
// that originally sent us this message. Using this struct, we can ensure that
|
|
// we don't re-send a message to the peer that sent it to us in the first
|
|
// place.
|
|
type msgWithSenders struct {
|
|
// msg is the wire message itself.
|
|
msg lnwire.Message
|
|
|
|
// sender is the set of peers that sent us this message.
|
|
senders map[routing.Vertex]struct{}
|
|
}
|
|
|
|
// mergeSyncerMap is used to merge the set of senders of a particular message
|
|
// with peers that we have an active gossipSyncer with. We do this to ensure
|
|
// that we don't broadcast messages to any peers that we have active gossip
|
|
// syncers for.
|
|
func (m *msgWithSenders) mergeSyncerMap(syncers map[routing.Vertex]struct{}) {
|
|
for peerPub := range syncers {
|
|
m.senders[peerPub] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// deDupedAnnouncements de-duplicates announcements that have been added to the
|
|
// batch. Internally, announcements are stored in three maps
|
|
// (one each for channel announcements, channel updates, and node
|
|
// announcements). These maps keep track of unique announcements and ensure no
|
|
// announcements are duplicated. We keep the three message types separate, such
|
|
// that we can send channel announcements first, then channel updates, and
|
|
// finally node announcements when it's time to broadcast them.
|
|
type deDupedAnnouncements struct {
|
|
// channelAnnouncements are identified by the short channel id field.
|
|
channelAnnouncements map[lnwire.ShortChannelID]msgWithSenders
|
|
|
|
// channelUpdates are identified by the channel update id field.
|
|
channelUpdates map[channelUpdateID]msgWithSenders
|
|
|
|
// nodeAnnouncements are identified by the Vertex field.
|
|
nodeAnnouncements map[routing.Vertex]msgWithSenders
|
|
|
|
sync.Mutex
|
|
}
|
|
|
|
// Reset operates on deDupedAnnouncements to reset the storage of
|
|
// announcements.
|
|
func (d *deDupedAnnouncements) Reset() {
|
|
d.Lock()
|
|
defer d.Unlock()
|
|
|
|
d.reset()
|
|
}
|
|
|
|
// reset is the private version of the Reset method. We have this so we can
|
|
// call this method within method that are already holding the lock.
|
|
func (d *deDupedAnnouncements) reset() {
|
|
// Storage of each type of announcement (channel announcements, channel
|
|
// updates, node announcements) is set to an empty map where the
|
|
// appropriate key points to the corresponding lnwire.Message.
|
|
d.channelAnnouncements = make(map[lnwire.ShortChannelID]msgWithSenders)
|
|
d.channelUpdates = make(map[channelUpdateID]msgWithSenders)
|
|
d.nodeAnnouncements = make(map[routing.Vertex]msgWithSenders)
|
|
}
|
|
|
|
// addMsg adds a new message to the current batch. If the message is already
|
|
// present in the current batch, then this new instance replaces the latter,
|
|
// and the set of senders is updated to reflect which node sent us this
|
|
// message.
|
|
func (d *deDupedAnnouncements) addMsg(message networkMsg) {
|
|
// Depending on the message type (channel announcement, channel update,
|
|
// or node announcement), the message is added to the corresponding map
|
|
// in deDupedAnnouncements. Because each identifying key can have at
|
|
// most one value, the announcements are de-duplicated, with newer ones
|
|
// replacing older ones.
|
|
switch msg := message.msg.(type) {
|
|
|
|
// Channel announcements are identified by the short channel id field.
|
|
case *lnwire.ChannelAnnouncement:
|
|
deDupKey := msg.ShortChannelID
|
|
sender := routing.NewVertex(message.peer)
|
|
|
|
mws, ok := d.channelAnnouncements[deDupKey]
|
|
if !ok {
|
|
mws = msgWithSenders{
|
|
msg: msg,
|
|
senders: make(map[routing.Vertex]struct{}),
|
|
}
|
|
mws.senders[sender] = struct{}{}
|
|
|
|
d.channelAnnouncements[deDupKey] = mws
|
|
|
|
return
|
|
}
|
|
|
|
mws.msg = msg
|
|
mws.senders[sender] = struct{}{}
|
|
d.channelAnnouncements[deDupKey] = mws
|
|
|
|
// Channel updates are identified by the (short channel id, flags)
|
|
// tuple.
|
|
case *lnwire.ChannelUpdate:
|
|
sender := routing.NewVertex(message.peer)
|
|
deDupKey := channelUpdateID{
|
|
msg.ShortChannelID,
|
|
msg.Flags,
|
|
}
|
|
|
|
oldTimestamp := uint32(0)
|
|
mws, ok := d.channelUpdates[deDupKey]
|
|
if ok {
|
|
// If we already have seen this message, record its
|
|
// timestamp.
|
|
oldTimestamp = mws.msg.(*lnwire.ChannelUpdate).Timestamp
|
|
}
|
|
|
|
// If we already had this message with a strictly newer
|
|
// timestamp, then we'll just discard the message we got.
|
|
if oldTimestamp > msg.Timestamp {
|
|
return
|
|
}
|
|
|
|
// If the message we just got is newer than what we previously
|
|
// have seen, or this is the first time we see it, then we'll
|
|
// add it to our map of announcements.
|
|
if oldTimestamp < msg.Timestamp {
|
|
mws = msgWithSenders{
|
|
msg: msg,
|
|
senders: make(map[routing.Vertex]struct{}),
|
|
}
|
|
|
|
// We'll mark the sender of the message in the
|
|
// senders map.
|
|
mws.senders[sender] = struct{}{}
|
|
|
|
d.channelUpdates[deDupKey] = mws
|
|
|
|
return
|
|
}
|
|
|
|
// Lastly, if we had seen this exact message from before, with
|
|
// the same timestamp, we'll add the sender to the map of
|
|
// senders, such that we can skip sending this message back in
|
|
// the next batch.
|
|
mws.msg = msg
|
|
mws.senders[sender] = struct{}{}
|
|
d.channelUpdates[deDupKey] = mws
|
|
|
|
// Node announcements are identified by the Vertex field. Use the
|
|
// NodeID to create the corresponding Vertex.
|
|
case *lnwire.NodeAnnouncement:
|
|
sender := routing.NewVertex(message.peer)
|
|
deDupKey := routing.Vertex(msg.NodeID)
|
|
|
|
// We do the same for node announcements as we did for channel
|
|
// updates, as they also carry a timestamp.
|
|
oldTimestamp := uint32(0)
|
|
mws, ok := d.nodeAnnouncements[deDupKey]
|
|
if ok {
|
|
oldTimestamp = mws.msg.(*lnwire.NodeAnnouncement).Timestamp
|
|
}
|
|
|
|
// Discard the message if it's old.
|
|
if oldTimestamp > msg.Timestamp {
|
|
return
|
|
}
|
|
|
|
// Replace if it's newer.
|
|
if oldTimestamp < msg.Timestamp {
|
|
mws = msgWithSenders{
|
|
msg: msg,
|
|
senders: make(map[routing.Vertex]struct{}),
|
|
}
|
|
|
|
mws.senders[sender] = struct{}{}
|
|
|
|
d.nodeAnnouncements[deDupKey] = mws
|
|
|
|
return
|
|
}
|
|
|
|
// Add to senders map if it's the same as we had.
|
|
mws.msg = msg
|
|
mws.senders[sender] = struct{}{}
|
|
d.nodeAnnouncements[deDupKey] = mws
|
|
}
|
|
}
|
|
|
|
// AddMsgs is a helper method to add multiple messages to the announcement
|
|
// batch.
|
|
func (d *deDupedAnnouncements) AddMsgs(msgs ...networkMsg) {
|
|
d.Lock()
|
|
defer d.Unlock()
|
|
|
|
for _, msg := range msgs {
|
|
d.addMsg(msg)
|
|
}
|
|
}
|
|
|
|
// Emit returns the set of de-duplicated announcements to be sent out during
|
|
// the next announcement epoch, in the order of channel announcements, channel
|
|
// updates, and node announcements. Each message emitted, contains the set of
|
|
// peers that sent us the message. This way, we can ensure that we don't waste
|
|
// bandwidth by re-sending a message to the peer that sent it to us in the
|
|
// first place. Additionally, the set of stored messages are reset.
|
|
func (d *deDupedAnnouncements) Emit() []msgWithSenders {
|
|
d.Lock()
|
|
defer d.Unlock()
|
|
|
|
// Get the total number of announcements.
|
|
numAnnouncements := len(d.channelAnnouncements) + len(d.channelUpdates) +
|
|
len(d.nodeAnnouncements)
|
|
|
|
// Create an empty array of lnwire.Messages with a length equal to
|
|
// the total number of announcements.
|
|
msgs := make([]msgWithSenders, 0, numAnnouncements)
|
|
|
|
// Add the channel announcements to the array first.
|
|
for _, message := range d.channelAnnouncements {
|
|
msgs = append(msgs, message)
|
|
}
|
|
|
|
// Then add the channel updates.
|
|
for _, message := range d.channelUpdates {
|
|
msgs = append(msgs, message)
|
|
}
|
|
|
|
// Finally add the node announcements.
|
|
for _, message := range d.nodeAnnouncements {
|
|
msgs = append(msgs, message)
|
|
}
|
|
|
|
d.reset()
|
|
|
|
// Return the array of lnwire.messages.
|
|
return msgs
|
|
}
|
|
|
|
// resendAnnounceSignatures will inspect the messageStore database bucket for
|
|
// AnnounceSignatures messages that we recently tried to send to a peer. If the
|
|
// associated channels still not have the full channel proofs assembled, we
|
|
// will try to resend them. If we have the full proof, we can safely delete the
|
|
// message from the messageStore.
|
|
func (d *AuthenticatedGossiper) resendAnnounceSignatures() error {
|
|
type msgTuple struct {
|
|
peer *btcec.PublicKey
|
|
msg *lnwire.AnnounceSignatures
|
|
dbKey []byte
|
|
}
|
|
|
|
// Fetch all the AnnounceSignatures messages that was added to the
|
|
// database.
|
|
//
|
|
// TODO(halseth): database access should be abstracted
|
|
// behind interface.
|
|
var msgsResend []msgTuple
|
|
if err := d.cfg.DB.View(func(tx *bolt.Tx) error {
|
|
bucket := tx.Bucket(messageStoreKey)
|
|
if bucket == nil {
|
|
return nil
|
|
}
|
|
|
|
if err := bucket.ForEach(func(k, v []byte) error {
|
|
// The database value represents the encoded
|
|
// AnnounceSignatures message.
|
|
r := bytes.NewReader(v)
|
|
msg := &lnwire.AnnounceSignatures{}
|
|
if err := msg.Decode(r, 0); err != nil {
|
|
return err
|
|
}
|
|
|
|
// The first 33 bytes of the database key is the peer's
|
|
// public key.
|
|
peer, err := btcec.ParsePubKey(k[:33], btcec.S256())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
t := msgTuple{peer, msg, k}
|
|
|
|
// Add the message to the slice, such that we can
|
|
// resend it after the database transaction is over.
|
|
msgsResend = append(msgsResend, t)
|
|
return nil
|
|
}); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}); err != nil {
|
|
return err
|
|
}
|
|
|
|
// deleteMsg removes the message associated with the passed msgTuple
|
|
// from the messageStore.
|
|
deleteMsg := func(t msgTuple) error {
|
|
log.Debugf("Deleting message for chanID=%v from "+
|
|
"messageStore", t.msg.ChannelID)
|
|
if err := d.cfg.DB.Update(func(tx *bolt.Tx) error {
|
|
bucket := tx.Bucket(messageStoreKey)
|
|
if bucket == nil {
|
|
return fmt.Errorf("bucket " +
|
|
"unexpectedly did not exist")
|
|
}
|
|
|
|
return bucket.Delete(t.dbKey[:])
|
|
}); err != nil {
|
|
return fmt.Errorf("Failed deleting message "+
|
|
"from database: %v", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// We now iterate over these messages, resending those that we don't
|
|
// have the full proof for, deleting the rest.
|
|
for _, t := range msgsResend {
|
|
// Check if the full channel proof exists in our graph.
|
|
chanInfo, _, _, err := d.cfg.Router.GetChannelByID(
|
|
t.msg.ShortChannelID)
|
|
if err != nil {
|
|
// If the channel cannot be found, it is most likely a
|
|
// leftover message for a channel that was closed. In
|
|
// this case we delete it from the message store.
|
|
log.Warnf("unable to fetch channel info for "+
|
|
"chanID=%v from graph: %v. Will delete local"+
|
|
"proof from database",
|
|
t.msg.ChannelID, err)
|
|
if err := deleteMsg(t); err != nil {
|
|
return err
|
|
}
|
|
continue
|
|
}
|
|
|
|
// 1. If the full proof does not exist in the graph, it means
|
|
// that we haven't received the remote proof yet (or that we
|
|
// crashed before able to assemble the full proof). Since the
|
|
// remote node might think they have delivered their proof to
|
|
// us, we will resend _our_ proof to trigger a resend on their
|
|
// part: they will then be able to assemble and send us the
|
|
// full proof.
|
|
if chanInfo.AuthProof == nil {
|
|
err := d.sendAnnSigReliably(t.msg, t.peer)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
continue
|
|
}
|
|
|
|
// 2. If the proof does exist in the graph, we have
|
|
// successfully received the remote proof and assembled the
|
|
// full proof. In this case we can safely delete the local
|
|
// proof from the database. In case the remote hasn't been able
|
|
// to assemble the full proof yet (maybe because of a crash),
|
|
// we will send them the full proof if we notice that they
|
|
// retry sending their half proof.
|
|
if chanInfo.AuthProof != nil {
|
|
log.Debugf("Deleting message for chanID=%v from "+
|
|
"messageStore", t.msg.ChannelID)
|
|
if err := deleteMsg(t); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// findGossipSyncer is a utility method used by the gossiper to locate the
|
|
// gossip syncer for an inbound message so we can properly dispatch the
|
|
// incoming message.
|
|
func (d *AuthenticatedGossiper) findGossipSyncer(pub *btcec.PublicKey) (*gossipSyncer, error) {
|
|
target := routing.NewVertex(pub)
|
|
d.syncerMtx.RLock()
|
|
syncer, ok := d.peerSyncers[target]
|
|
d.syncerMtx.RUnlock()
|
|
if !ok {
|
|
return nil, fmt.Errorf("received chan time series message for "+
|
|
"unknown peer: %x", target[:])
|
|
}
|
|
|
|
return syncer, nil
|
|
}
|
|
|
|
// networkHandler is the primary goroutine that drives this service. The roles
|
|
// of this goroutine includes answering queries related to the state of the
|
|
// network, syncing up newly connected peers, and also periodically
|
|
// broadcasting our latest topology state to all connected peers.
|
|
//
|
|
// NOTE: This MUST be run as a goroutine.
|
|
func (d *AuthenticatedGossiper) networkHandler() {
|
|
defer d.wg.Done()
|
|
|
|
// Initialize empty deDupedAnnouncements to store announcement batch.
|
|
announcements := deDupedAnnouncements{}
|
|
announcements.Reset()
|
|
|
|
retransmitTimer := time.NewTicker(d.cfg.RetransmitDelay)
|
|
defer retransmitTimer.Stop()
|
|
|
|
trickleTimer := time.NewTicker(d.cfg.TrickleDelay)
|
|
defer trickleTimer.Stop()
|
|
|
|
// To start, we'll first check to see if there are any stale channels
|
|
// that we need to re-transmit.
|
|
if err := d.retransmitStaleChannels(); err != nil {
|
|
log.Errorf("unable to rebroadcast stale channels: %v",
|
|
err)
|
|
}
|
|
|
|
// We'll use this validation to ensure that we process jobs in their
|
|
// dependency order during parallel validation.
|
|
validationBarrier := routing.NewValidationBarrier(
|
|
runtime.NumCPU()*4, d.quit,
|
|
)
|
|
|
|
for {
|
|
select {
|
|
// A new policy update has arrived. We'll commit it to the
|
|
// sub-systems below us, then craft, sign, and broadcast a new
|
|
// ChannelUpdate for the set of affected clients.
|
|
case policyUpdate := <-d.chanPolicyUpdates:
|
|
// First, we'll now create new fully signed updates for
|
|
// the affected channels and also update the underlying
|
|
// graph with the new state.
|
|
newChanUpdates, err := d.processChanPolicyUpdate(policyUpdate)
|
|
if err != nil {
|
|
log.Errorf("Unable to craft policy updates: %v",
|
|
err)
|
|
policyUpdate.errResp <- err
|
|
continue
|
|
}
|
|
|
|
// Finally, with the updates committed, we'll now add
|
|
// them to the announcement batch to be flushed at the
|
|
// start of the next epoch.
|
|
announcements.AddMsgs(newChanUpdates...)
|
|
|
|
policyUpdate.errResp <- nil
|
|
|
|
case announcement := <-d.networkMsgs:
|
|
switch msg := announcement.msg.(type) {
|
|
// Channel announcement signatures are amongst the only
|
|
// messages that we'll process serially.
|
|
case *lnwire.AnnounceSignatures:
|
|
emittedAnnouncements := d.processNetworkAnnouncement(
|
|
announcement,
|
|
)
|
|
if emittedAnnouncements != nil {
|
|
announcements.AddMsgs(
|
|
emittedAnnouncements...,
|
|
)
|
|
}
|
|
continue
|
|
|
|
// If a peer is updating its current update horizon,
|
|
// then we'll dispatch that directly to the proper
|
|
// gossipSyncer.
|
|
case *lnwire.GossipTimestampRange:
|
|
syncer, err := d.findGossipSyncer(announcement.peer)
|
|
if err != nil {
|
|
log.Error(err)
|
|
continue
|
|
}
|
|
|
|
// If we've found the message target, then
|
|
// we'll dispatch the message directly to it.
|
|
err = syncer.ApplyGossipFilter(msg)
|
|
if err != nil {
|
|
log.Warnf("unable to apply gossip "+
|
|
"filter for peer=%x: %v",
|
|
announcement.peer.SerializeCompressed(), err)
|
|
}
|
|
continue
|
|
|
|
// For messages in the known set of channel series
|
|
// queries, we'll dispatch the message directly to the
|
|
// peer, and skip the main processing loop.
|
|
case *lnwire.QueryShortChanIDs,
|
|
*lnwire.QueryChannelRange,
|
|
*lnwire.ReplyChannelRange,
|
|
*lnwire.ReplyShortChanIDsEnd:
|
|
|
|
syncer, err := d.findGossipSyncer(announcement.peer)
|
|
if err != nil {
|
|
log.Error(err)
|
|
continue
|
|
}
|
|
|
|
syncer.ProcessQueryMsg(announcement.msg)
|
|
continue
|
|
}
|
|
|
|
// If this message was recently rejected, then we won't
|
|
// attempt to re-process it.
|
|
if d.isRecentlyRejectedMsg(announcement.msg) {
|
|
announcement.err <- fmt.Errorf("recently rejected")
|
|
continue
|
|
}
|
|
|
|
// We'll set up any dependent, and wait until a free
|
|
// slot for this job opens up, this allow us to not
|
|
// have thousands of goroutines active.
|
|
validationBarrier.InitJobDependencies(announcement.msg)
|
|
|
|
d.wg.Add(1)
|
|
go func() {
|
|
defer d.wg.Done()
|
|
defer validationBarrier.CompleteJob()
|
|
|
|
// If this message has an existing dependency,
|
|
// then we'll wait until that has been fully
|
|
// validated before we proceed.
|
|
err := validationBarrier.WaitForDependants(
|
|
announcement.msg,
|
|
)
|
|
if err != nil {
|
|
if err != routing.ErrVBarrierShuttingDown {
|
|
log.Warnf("unexpected error "+
|
|
"during validation "+
|
|
"barrier shutdown: %v",
|
|
err)
|
|
}
|
|
return
|
|
}
|
|
|
|
// Process the network announcement to determine if
|
|
// this is either a new announcement from our PoV
|
|
// or an edges to a prior vertex/edge we previously
|
|
// proceeded.
|
|
emittedAnnouncements := d.processNetworkAnnouncement(
|
|
announcement,
|
|
)
|
|
|
|
// If this message had any dependencies, then
|
|
// we can now signal them to continue.
|
|
validationBarrier.SignalDependants(announcement.msg)
|
|
|
|
// If the announcement was accepted, then add the
|
|
// emitted announcements to our announce batch to
|
|
// be broadcast once the trickle timer ticks gain.
|
|
if emittedAnnouncements != nil {
|
|
// TODO(roasbeef): exclude peer that sent
|
|
announcements.AddMsgs(
|
|
emittedAnnouncements...,
|
|
)
|
|
}
|
|
|
|
}()
|
|
|
|
// A new block has arrived, so we can re-process the previously
|
|
// premature announcements.
|
|
case newBlock, ok := <-d.newBlocks:
|
|
// If the channel has been closed, then this indicates
|
|
// the daemon is shutting down, so we exit ourselves.
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// Once a new block arrives, we updates our running
|
|
// track of the height of the chain tip.
|
|
blockHeight := uint32(newBlock.Height)
|
|
atomic.StoreUint32(&d.bestHeight, blockHeight)
|
|
|
|
// Next we check if we have any premature announcements
|
|
// for this height, if so, then we process them once
|
|
// more as normal announcements.
|
|
d.Lock()
|
|
numPremature := len(d.prematureAnnouncements[uint32(newBlock.Height)])
|
|
d.Unlock()
|
|
if numPremature != 0 {
|
|
log.Infof("Re-processing %v premature "+
|
|
"announcements for height %v",
|
|
numPremature, blockHeight)
|
|
}
|
|
|
|
d.Lock()
|
|
for _, ann := range d.prematureAnnouncements[uint32(newBlock.Height)] {
|
|
emittedAnnouncements := d.processNetworkAnnouncement(ann)
|
|
if emittedAnnouncements != nil {
|
|
announcements.AddMsgs(
|
|
emittedAnnouncements...,
|
|
)
|
|
}
|
|
}
|
|
delete(d.prematureAnnouncements, blockHeight)
|
|
d.Unlock()
|
|
|
|
// The trickle timer has ticked, which indicates we should
|
|
// flush to the network the pending batch of new announcements
|
|
// we've received since the last trickle tick.
|
|
case <-trickleTimer.C:
|
|
// Emit the current batch of announcements from
|
|
// deDupedAnnouncements.
|
|
announcementBatch := announcements.Emit()
|
|
|
|
// If the current announcements batch is nil, then we
|
|
// have no further work here.
|
|
if len(announcementBatch) == 0 {
|
|
continue
|
|
}
|
|
|
|
// For the set of peers that have an active gossip
|
|
// syncers, we'll collect their pubkeys so we can avoid
|
|
// sending them the full message blast below.
|
|
d.syncerMtx.RLock()
|
|
syncerPeers := map[routing.Vertex]struct{}{}
|
|
for peerPub := range d.peerSyncers {
|
|
syncerPeers[peerPub] = struct{}{}
|
|
}
|
|
d.syncerMtx.RUnlock()
|
|
|
|
log.Infof("Broadcasting batch of %v new announcements",
|
|
len(announcementBatch))
|
|
|
|
// We'll first attempt to filter out this new message
|
|
// for all peers that have active gossip syncers
|
|
// active.
|
|
d.syncerMtx.RLock()
|
|
for _, syncer := range d.peerSyncers {
|
|
syncer.FilterGossipMsgs(announcementBatch...)
|
|
}
|
|
d.syncerMtx.RUnlock()
|
|
|
|
// Next, If we have new things to announce then
|
|
// broadcast them to all our immediately connected
|
|
// peers.
|
|
for _, msgChunk := range announcementBatch {
|
|
// With the syncers taken care of, we'll merge
|
|
// the sender map with the set of syncers, so
|
|
// we don't send out duplicate messages.
|
|
msgChunk.mergeSyncerMap(syncerPeers)
|
|
|
|
err := d.cfg.Broadcast(
|
|
msgChunk.senders, msgChunk.msg,
|
|
)
|
|
if err != nil {
|
|
log.Errorf("unable to send batch "+
|
|
"announcements: %v", err)
|
|
continue
|
|
}
|
|
}
|
|
|
|
// The retransmission timer has ticked which indicates that we
|
|
// should check if we need to prune or re-broadcast any of our
|
|
// personal channels. This addresses the case of "zombie" channels and
|
|
// channel advertisements that have been dropped, or not properly
|
|
// propagated through the network.
|
|
case <-retransmitTimer.C:
|
|
if err := d.retransmitStaleChannels(); err != nil {
|
|
log.Errorf("unable to rebroadcast stale "+
|
|
"channels: %v", err)
|
|
}
|
|
|
|
// The gossiper has been signalled to exit, to we exit our
|
|
// main loop so the wait group can be decremented.
|
|
case <-d.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(roasbeef): d/c peers that send uupdates not on our chain
|
|
|
|
// InitPeerSyncState is called by outside sub-systems when a connection is
|
|
// established to a new peer that understands how to perform channel range
|
|
// queries. We'll allocate a new gossip syncer for it, and start any goroutines
|
|
// needed to handle new queries. The recvUpdates bool indicates if we should
|
|
// continue to receive real-time updates from the remote peer once we've synced
|
|
// channel state.
|
|
func (d *AuthenticatedGossiper) InitSyncState(peer *btcec.PublicKey, recvUpdates bool) {
|
|
d.syncerMtx.Lock()
|
|
defer d.syncerMtx.Unlock()
|
|
|
|
// If we already have a syncer, then we'll exit early as we don't want
|
|
// to override it.
|
|
nodeID := routing.NewVertex(peer)
|
|
if _, ok := d.peerSyncers[nodeID]; ok {
|
|
return
|
|
}
|
|
|
|
log.Infof("Creating new gossipSyncer for peer=%x",
|
|
peer.SerializeCompressed())
|
|
|
|
syncer := newGossiperSyncer(gossipSyncerCfg{
|
|
chainHash: d.cfg.ChainHash,
|
|
syncChanUpdates: recvUpdates,
|
|
channelSeries: d.cfg.ChanSeries,
|
|
encodingType: lnwire.EncodingSortedPlain,
|
|
sendToPeer: func(msgs ...lnwire.Message) error {
|
|
return d.cfg.SendToPeer(peer, msgs...)
|
|
},
|
|
})
|
|
copy(syncer.peerPub[:], peer.SerializeCompressed())
|
|
d.peerSyncers[nodeID] = syncer
|
|
|
|
syncer.Start()
|
|
}
|
|
|
|
// PruneSyncState is called by outside sub-systems once a peer that we were
|
|
// previously connected to has been disconnected. In this case we can stop the
|
|
// existing gossipSyncer assigned to the peer and free up resources.
|
|
func (d *AuthenticatedGossiper) PruneSyncState(peer *btcec.PublicKey) {
|
|
d.syncerMtx.Lock()
|
|
defer d.syncerMtx.Unlock()
|
|
|
|
log.Infof("Removing gossipSyncer for peer=%x",
|
|
peer.SerializeCompressed())
|
|
|
|
vertex := routing.NewVertex(peer)
|
|
|
|
syncer, ok := d.peerSyncers[routing.NewVertex(peer)]
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
syncer.Stop()
|
|
|
|
delete(d.peerSyncers, vertex)
|
|
|
|
return
|
|
}
|
|
|
|
// isRecentlyRejectedMsg returns true if we recently rejected a message, and
|
|
// false otherwise, This avoids expensive reprocessing of the message.
|
|
func (d *AuthenticatedGossiper) isRecentlyRejectedMsg(msg lnwire.Message) bool {
|
|
d.rejectMtx.RLock()
|
|
defer d.rejectMtx.RUnlock()
|
|
|
|
switch m := msg.(type) {
|
|
case *lnwire.ChannelUpdate:
|
|
_, ok := d.recentRejects[m.ShortChannelID.ToUint64()]
|
|
return ok
|
|
|
|
case *lnwire.ChannelAnnouncement:
|
|
_, ok := d.recentRejects[m.ShortChannelID.ToUint64()]
|
|
return ok
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// retransmitStaleChannels examines all outgoing channels that the source node
|
|
// is known to maintain to check to see if any of them are "stale". A channel
|
|
// is stale iff, the last timestamp of its rebroadcast is older then
|
|
// broadcastInterval.
|
|
func (d *AuthenticatedGossiper) retransmitStaleChannels() error {
|
|
// Iterate over all of our channels and check if any of them fall
|
|
// within the prune interval or re-broadcast interval.
|
|
type updateTuple struct {
|
|
info *channeldb.ChannelEdgeInfo
|
|
edge *channeldb.ChannelEdgePolicy
|
|
}
|
|
var edgesToUpdate []updateTuple
|
|
err := d.cfg.Router.ForAllOutgoingChannels(func(
|
|
info *channeldb.ChannelEdgeInfo,
|
|
edge *channeldb.ChannelEdgePolicy) error {
|
|
|
|
// If there's no auth proof attached to this edge, it means
|
|
// that it is a private channel not meant to be announced to
|
|
// the greater network, so avoid sending channel updates for
|
|
// this channel to not leak its
|
|
// existence.
|
|
if info.AuthProof == nil {
|
|
log.Debugf("Skipping retransmission of channel "+
|
|
"without AuthProof: %v", info.ChannelID)
|
|
return nil
|
|
}
|
|
|
|
const broadcastInterval = time.Hour * 24
|
|
|
|
timeElapsed := time.Since(edge.LastUpdate)
|
|
|
|
// If it's been a full day since we've re-broadcasted the
|
|
// channel, add the channel to the set of edges we need to
|
|
// update.
|
|
if timeElapsed >= broadcastInterval {
|
|
edgesToUpdate = append(edgesToUpdate, updateTuple{
|
|
info: info,
|
|
edge: edge,
|
|
})
|
|
}
|
|
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return fmt.Errorf("error while retrieving outgoing "+
|
|
"channels: %v", err)
|
|
}
|
|
|
|
var signedUpdates []lnwire.Message
|
|
for _, chanToUpdate := range edgesToUpdate {
|
|
// Re-sign and update the channel on disk and retrieve our
|
|
// ChannelUpdate to broadcast.
|
|
chanAnn, chanUpdate, err := d.updateChannel(
|
|
chanToUpdate.info, chanToUpdate.edge,
|
|
)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to update channel: %v", err)
|
|
}
|
|
|
|
// If we have a valid announcement to transmit, then we'll send
|
|
// that along with the update.
|
|
if chanAnn != nil {
|
|
signedUpdates = append(signedUpdates, chanAnn)
|
|
}
|
|
|
|
signedUpdates = append(signedUpdates, chanUpdate)
|
|
}
|
|
|
|
// If we don't have any channels to re-broadcast, then we'll exit
|
|
// early.
|
|
if len(signedUpdates) == 0 {
|
|
return nil
|
|
}
|
|
|
|
log.Infof("Retransmitting %v outgoing channels", len(edgesToUpdate))
|
|
|
|
// With all the wire announcements properly crafted, we'll broadcast
|
|
// our known outgoing channels to all our immediate peers.
|
|
if err := d.cfg.Broadcast(nil, signedUpdates...); err != nil {
|
|
return fmt.Errorf("unable to re-broadcast channels: %v", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// processChanPolicyUpdate generates a new set of channel updates with the new
|
|
// channel policy applied for each specified channel identified by its channel
|
|
// point. In the case that no channel points are specified, then the update
|
|
// will be applied to all channels. Finally, the backing ChannelGraphSource is
|
|
// updated with the latest information reflecting the applied updates.
|
|
//
|
|
// TODO(roasbeef): generalize into generic for any channel update
|
|
func (d *AuthenticatedGossiper) processChanPolicyUpdate(
|
|
policyUpdate *chanPolicyUpdateRequest) ([]networkMsg, error) {
|
|
// First, we'll construct a set of all the channels that need to be
|
|
// updated.
|
|
chansToUpdate := make(map[wire.OutPoint]struct{})
|
|
for _, chanPoint := range policyUpdate.targetChans {
|
|
chansToUpdate[chanPoint] = struct{}{}
|
|
}
|
|
|
|
haveChanFilter := len(chansToUpdate) != 0
|
|
if haveChanFilter {
|
|
log.Infof("Updating routing policies for chan_points=%v",
|
|
spew.Sdump(chansToUpdate))
|
|
} else {
|
|
log.Infof("Updating routing policies for all chans")
|
|
}
|
|
|
|
type edgeWithInfo struct {
|
|
info *channeldb.ChannelEdgeInfo
|
|
edge *channeldb.ChannelEdgePolicy
|
|
}
|
|
var edgesToUpdate []edgeWithInfo
|
|
|
|
// Next, we'll loop over all the outgoing channels the router knows of.
|
|
// If we have a filter then we'll only collected those channels,
|
|
// otherwise we'll collect them all.
|
|
err := d.cfg.Router.ForAllOutgoingChannels(func(
|
|
info *channeldb.ChannelEdgeInfo,
|
|
edge *channeldb.ChannelEdgePolicy) error {
|
|
|
|
// If we have a channel filter, and this channel isn't a part
|
|
// of it, then we'll skip it.
|
|
if _, ok := chansToUpdate[info.ChannelPoint]; !ok && haveChanFilter {
|
|
return nil
|
|
}
|
|
|
|
// Now that we know we should update this channel, we'll update
|
|
// its set of policies.
|
|
edge.FeeBaseMSat = policyUpdate.newSchema.BaseFee
|
|
edge.FeeProportionalMillionths = lnwire.MilliSatoshi(
|
|
policyUpdate.newSchema.FeeRate,
|
|
)
|
|
edge.TimeLockDelta = uint16(policyUpdate.newSchema.TimeLockDelta)
|
|
|
|
edgesToUpdate = append(edgesToUpdate, edgeWithInfo{
|
|
info: info,
|
|
edge: edge,
|
|
})
|
|
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// With the set of edges we need to update retrieved, we'll now re-sign
|
|
// them, and insert them into the database.
|
|
var chanUpdates []networkMsg
|
|
for _, edgeInfo := range edgesToUpdate {
|
|
// Now that we've collected all the channels we need to update,
|
|
// we'll Re-sign and update the backing ChannelGraphSource, and
|
|
// retrieve our ChannelUpdate to broadcast.
|
|
_, chanUpdate, err := d.updateChannel(
|
|
edgeInfo.info, edgeInfo.edge,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// We set ourselves as the source of this message to indicate
|
|
// that we shouldn't skip any peers when sending this message.
|
|
chanUpdates = append(chanUpdates, networkMsg{
|
|
peer: d.selfKey,
|
|
msg: chanUpdate,
|
|
})
|
|
}
|
|
|
|
return chanUpdates, nil
|
|
}
|
|
|
|
// processRejectedEdge examines a rejected edge to see if we can extract any
|
|
// new announcements from it. An edge will get rejected if we already added
|
|
// the same edge without AuthProof to the graph. If the received announcement
|
|
// contains a proof, we can add this proof to our edge. We can end up in this
|
|
// situation in the case where we create a channel, but for some reason fail
|
|
// to receive the remote peer's proof, while the remote peer is able to fully
|
|
// assemble the proof and craft the ChannelAnnouncement.
|
|
func (d *AuthenticatedGossiper) processRejectedEdge(chanAnnMsg *lnwire.ChannelAnnouncement,
|
|
proof *channeldb.ChannelAuthProof) ([]networkMsg, error) {
|
|
|
|
// First, we'll fetch the state of the channel as we know if from the
|
|
// database.
|
|
chanInfo, e1, e2, err := d.cfg.Router.GetChannelByID(
|
|
chanAnnMsg.ShortChannelID,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// The edge is in the graph, and has a proof attached, then we'll just
|
|
// reject it as normal.
|
|
if chanInfo.AuthProof != nil {
|
|
return nil, nil
|
|
}
|
|
|
|
// Otherwise, this means that the edge is within the graph, but it
|
|
// doesn't yet have a proper proof attached. If we did not receive
|
|
// the proof such that we now can add it, there's nothing more we
|
|
// can do.
|
|
if proof == nil {
|
|
return nil, nil
|
|
}
|
|
|
|
// We'll then create then validate the new fully assembled
|
|
// announcement.
|
|
chanAnn, e1Ann, e2Ann, err := CreateChanAnnouncement(
|
|
proof, chanInfo, e1, e2,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
err = ValidateChannelAnn(chanAnn)
|
|
if err != nil {
|
|
err := errors.Errorf("assembled channel announcement proof "+
|
|
"for shortChanID=%v isn't valid: %v",
|
|
chanAnnMsg.ShortChannelID, err)
|
|
log.Error(err)
|
|
return nil, err
|
|
}
|
|
|
|
// If everything checks out, then we'll add the fully assembled proof
|
|
// to the database.
|
|
err = d.cfg.Router.AddProof(chanAnnMsg.ShortChannelID, proof)
|
|
if err != nil {
|
|
err := errors.Errorf("unable add proof to shortChanID=%v: %v",
|
|
chanAnnMsg.ShortChannelID, err)
|
|
log.Error(err)
|
|
return nil, err
|
|
}
|
|
|
|
// As we now have a complete channel announcement for this channel,
|
|
// we'll construct the announcement so they can be broadcast out to all
|
|
// our peers.
|
|
announcements := make([]networkMsg, 0, 3)
|
|
announcements = append(announcements, networkMsg{
|
|
msg: chanAnn,
|
|
peer: d.selfKey,
|
|
})
|
|
if e1Ann != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: e1Ann,
|
|
peer: d.selfKey,
|
|
})
|
|
}
|
|
if e2Ann != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: e2Ann,
|
|
peer: d.selfKey,
|
|
})
|
|
|
|
}
|
|
|
|
return announcements, nil
|
|
}
|
|
|
|
// processNetworkAnnouncement processes a new network relate authenticated
|
|
// channel or node announcement or announcements proofs. If the announcement
|
|
// didn't affect the internal state due to either being out of date, invalid,
|
|
// or redundant, then nil is returned. Otherwise, the set of announcements will
|
|
// be returned which should be broadcasted to the rest of the network.
|
|
func (d *AuthenticatedGossiper) processNetworkAnnouncement(nMsg *networkMsg) []networkMsg {
|
|
isPremature := func(chanID lnwire.ShortChannelID, delta uint32) bool {
|
|
// TODO(roasbeef) make height delta 6
|
|
// * or configurable
|
|
bestHeight := atomic.LoadUint32(&d.bestHeight)
|
|
return chanID.BlockHeight+delta > bestHeight
|
|
}
|
|
|
|
var announcements []networkMsg
|
|
|
|
switch msg := nMsg.msg.(type) {
|
|
|
|
// A new node announcement has arrived which either presents new
|
|
// information about a node in one of the channels we know about, or a
|
|
// updating previously advertised information.
|
|
case *lnwire.NodeAnnouncement:
|
|
timestamp := time.Unix(int64(msg.Timestamp), 0)
|
|
|
|
if nMsg.isRemote {
|
|
// We'll quickly ask the router if it already has a
|
|
// newer update for this node so we can skip validating
|
|
// signatures if not required.
|
|
if d.cfg.Router.IsStaleNode(msg.NodeID, timestamp) {
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
if err := ValidateNodeAnn(msg); err != nil {
|
|
err := errors.Errorf("unable to validate "+
|
|
"node announcement: %v", err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
}
|
|
|
|
features := lnwire.NewFeatureVector(msg.Features, lnwire.GlobalFeatures)
|
|
node := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
LastUpdate: timestamp,
|
|
Addresses: msg.Addresses,
|
|
PubKeyBytes: msg.NodeID,
|
|
Alias: msg.Alias.String(),
|
|
AuthSigBytes: msg.Signature.ToSignatureBytes(),
|
|
Features: features,
|
|
Color: msg.RGBColor,
|
|
}
|
|
|
|
if err := d.cfg.Router.AddNode(node); err != nil {
|
|
if routing.IsError(err, routing.ErrOutdated,
|
|
routing.ErrIgnored) {
|
|
|
|
log.Debug(err)
|
|
} else {
|
|
log.Error(err)
|
|
}
|
|
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// Node announcement was successfully proceeded and know it
|
|
// might be broadcast to other connected nodes.
|
|
announcements = append(announcements, networkMsg{
|
|
msg: msg,
|
|
peer: nMsg.peer,
|
|
})
|
|
|
|
nMsg.err <- nil
|
|
// TODO(roasbeef): get rid of the above
|
|
return announcements
|
|
|
|
// A new channel announcement has arrived, this indicates the
|
|
// *creation* of a new channel within the network. This only advertises
|
|
// the existence of a channel and not yet the routing policies in
|
|
// either direction of the channel.
|
|
case *lnwire.ChannelAnnouncement:
|
|
// We'll ignore any channel announcements that target any chain
|
|
// other than the set of chains we know of.
|
|
if !bytes.Equal(msg.ChainHash[:], d.cfg.ChainHash[:]) {
|
|
log.Errorf("Ignoring ChannelAnnouncement from "+
|
|
"chain=%v, gossiper on chain=%v", msg.ChainHash,
|
|
d.cfg.ChainHash)
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// If the advertised inclusionary block is beyond our knowledge
|
|
// of the chain tip, then we'll put the announcement in limbo
|
|
// to be fully verified once we advance forward in the chain.
|
|
if nMsg.isRemote && isPremature(msg.ShortChannelID, 0) {
|
|
blockHeight := msg.ShortChannelID.BlockHeight
|
|
log.Infof("Announcement for chan_id=(%v), is premature: "+
|
|
"advertises height %v, only height %v is known",
|
|
msg.ShortChannelID.ToUint64(),
|
|
msg.ShortChannelID.BlockHeight,
|
|
atomic.LoadUint32(&d.bestHeight))
|
|
|
|
d.Lock()
|
|
d.prematureAnnouncements[blockHeight] = append(
|
|
d.prematureAnnouncements[blockHeight],
|
|
nMsg,
|
|
)
|
|
d.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// At this point, we'll now ask the router if this is a stale
|
|
// update. If so we can skip all the processing below.
|
|
if d.cfg.Router.IsKnownEdge(msg.ShortChannelID) {
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
// If this is a remote channel announcement, then we'll validate
|
|
// all the signatures within the proof as it should be well
|
|
// formed.
|
|
var proof *channeldb.ChannelAuthProof
|
|
if nMsg.isRemote {
|
|
if err := ValidateChannelAnn(msg); err != nil {
|
|
err := errors.Errorf("unable to validate "+
|
|
"announcement: %v", err)
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// If the proof checks out, then we'll save the proof
|
|
// itself to the database so we can fetch it later when
|
|
// gossiping with other nodes.
|
|
proof = &channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: msg.NodeSig1.ToSignatureBytes(),
|
|
NodeSig2Bytes: msg.NodeSig2.ToSignatureBytes(),
|
|
BitcoinSig1Bytes: msg.BitcoinSig1.ToSignatureBytes(),
|
|
BitcoinSig2Bytes: msg.BitcoinSig2.ToSignatureBytes(),
|
|
}
|
|
}
|
|
|
|
// With the proof validate (if necessary), we can now store it
|
|
// within the database for our path finding and syncing needs.
|
|
var featureBuf bytes.Buffer
|
|
if err := msg.Features.Encode(&featureBuf); err != nil {
|
|
log.Errorf("unable to encode features: %v", err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
edge := &channeldb.ChannelEdgeInfo{
|
|
ChannelID: msg.ShortChannelID.ToUint64(),
|
|
ChainHash: msg.ChainHash,
|
|
NodeKey1Bytes: msg.NodeID1,
|
|
NodeKey2Bytes: msg.NodeID2,
|
|
BitcoinKey1Bytes: msg.BitcoinKey1,
|
|
BitcoinKey2Bytes: msg.BitcoinKey2,
|
|
AuthProof: proof,
|
|
Features: featureBuf.Bytes(),
|
|
}
|
|
|
|
// We will add the edge to the channel router. If the nodes
|
|
// present in this channel are not present in the database, a
|
|
// partial node will be added to represent each node while we
|
|
// wait for a node announcement.
|
|
//
|
|
// Before we add the edge to the database, we obtain
|
|
// the mutex for this channel ID. We do this to ensure
|
|
// no other goroutine has read the database and is now
|
|
// making decisions based on this DB state, before it
|
|
// writes to the DB.
|
|
d.channelMtx.Lock(msg.ShortChannelID.ToUint64())
|
|
defer d.channelMtx.Unlock(msg.ShortChannelID.ToUint64())
|
|
if err := d.cfg.Router.AddEdge(edge); err != nil {
|
|
// If the edge was rejected due to already being known,
|
|
// then it may be that case that this new message has a
|
|
// fresh channel proof, so we'll check.
|
|
if routing.IsError(err, routing.ErrOutdated,
|
|
routing.ErrIgnored) {
|
|
|
|
// Attempt to process the rejected message to
|
|
// see if we get any new announcements.
|
|
anns, rErr := d.processRejectedEdge(msg, proof)
|
|
if rErr != nil {
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
nMsg.err <- rErr
|
|
return nil
|
|
}
|
|
|
|
// If while processing this rejected edge, we
|
|
// realized there's a set of announcements we
|
|
// could extract, then we'll return those
|
|
// directly.
|
|
if len(anns) != 0 {
|
|
nMsg.err <- nil
|
|
return anns
|
|
}
|
|
|
|
// Otherwise, this is just a regular rejected
|
|
// edge.
|
|
log.Debugf("Router rejected channel "+
|
|
"edge: %v", err)
|
|
} else {
|
|
log.Tracef("Router rejected channel "+
|
|
"edge: %v", err)
|
|
}
|
|
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// If we earlier received any ChannelUpdates for this channel,
|
|
// we can now process them, as the channel is added to the
|
|
// graph.
|
|
shortChanID := msg.ShortChannelID.ToUint64()
|
|
var channelUpdates []*networkMsg
|
|
|
|
d.pChanUpdMtx.Lock()
|
|
for _, cu := range d.prematureChannelUpdates[shortChanID] {
|
|
channelUpdates = append(channelUpdates, cu)
|
|
}
|
|
|
|
// Now delete the premature ChannelUpdates, since we added them
|
|
// all to the queue of network messages.
|
|
delete(d.prematureChannelUpdates, shortChanID)
|
|
d.pChanUpdMtx.Unlock()
|
|
|
|
// Launch a new goroutine to handle each ChannelUpdate, this to
|
|
// ensure we don't block here, as we can handle only one
|
|
// announcement at a time.
|
|
for _, cu := range channelUpdates {
|
|
go func(nMsg *networkMsg) {
|
|
switch msg := nMsg.msg.(type) {
|
|
|
|
case *lnwire.ChannelUpdate:
|
|
// We can safely wait for the error to
|
|
// be returned, as in case of shutdown,
|
|
// the gossiper will return an error.
|
|
var err error
|
|
if nMsg.isRemote {
|
|
err = <-d.ProcessRemoteAnnouncement(
|
|
msg, nMsg.peer)
|
|
} else {
|
|
err = <-d.ProcessLocalAnnouncement(
|
|
msg, nMsg.peer)
|
|
}
|
|
if err != nil {
|
|
log.Errorf("Failed reprocessing"+
|
|
" ChannelUpdate for "+
|
|
"shortChanID=%v: %v",
|
|
msg.ShortChannelID.ToUint64(),
|
|
err)
|
|
return
|
|
}
|
|
|
|
// We don't expect any other message type than
|
|
// ChannelUpdate to be in this map.
|
|
default:
|
|
log.Errorf("Unsupported message type "+
|
|
"found among ChannelUpdates: %T", msg)
|
|
}
|
|
}(cu)
|
|
}
|
|
|
|
// Channel announcement was successfully proceeded and know it
|
|
// might be broadcast to other connected nodes if it was
|
|
// announcement with proof (remote).
|
|
if proof != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: msg,
|
|
peer: nMsg.peer,
|
|
})
|
|
}
|
|
|
|
nMsg.err <- nil
|
|
return announcements
|
|
|
|
// A new authenticated channel edge update has arrived. This indicates
|
|
// that the directional information for an already known channel has
|
|
// been updated.
|
|
case *lnwire.ChannelUpdate:
|
|
// We'll ignore any channel announcements that target any chain
|
|
// other than the set of chains we know of.
|
|
if !bytes.Equal(msg.ChainHash[:], d.cfg.ChainHash[:]) {
|
|
log.Errorf("Ignoring ChannelUpdate from "+
|
|
"chain=%v, gossiper on chain=%v", msg.ChainHash,
|
|
d.cfg.ChainHash)
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
return nil
|
|
}
|
|
|
|
blockHeight := msg.ShortChannelID.BlockHeight
|
|
shortChanID := msg.ShortChannelID.ToUint64()
|
|
|
|
// If the advertised inclusionary block is beyond our knowledge
|
|
// of the chain tip, then we'll put the announcement in limbo
|
|
// to be fully verified once we advance forward in the chain.
|
|
if nMsg.isRemote && isPremature(msg.ShortChannelID, 0) {
|
|
log.Infof("Update announcement for "+
|
|
"short_chan_id(%v), is premature: advertises "+
|
|
"height %v, only height %v is known",
|
|
shortChanID, blockHeight,
|
|
atomic.LoadUint32(&d.bestHeight))
|
|
|
|
d.Lock()
|
|
d.prematureAnnouncements[blockHeight] = append(
|
|
d.prematureAnnouncements[blockHeight],
|
|
nMsg,
|
|
)
|
|
d.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Before we perform any of the expensive checks below, we'll
|
|
// make sure that the router doesn't already have a fresher
|
|
// announcement for this edge.
|
|
timestamp := time.Unix(int64(msg.Timestamp), 0)
|
|
if d.cfg.Router.IsStaleEdgePolicy(
|
|
msg.ShortChannelID, timestamp, msg.Flags,
|
|
) {
|
|
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
// Get the node pub key as far as we don't have it in channel
|
|
// update announcement message. We'll need this to properly
|
|
// verify message signature.
|
|
//
|
|
// We make sure to obtain the mutex for this channel ID
|
|
// before we access the database. This ensures the state
|
|
// we read from the database has not changed between this
|
|
// point and when we call UpdateEdge() later.
|
|
d.channelMtx.Lock(msg.ShortChannelID.ToUint64())
|
|
defer d.channelMtx.Unlock(msg.ShortChannelID.ToUint64())
|
|
chanInfo, _, _, err := d.cfg.Router.GetChannelByID(msg.ShortChannelID)
|
|
if err != nil {
|
|
switch err {
|
|
case channeldb.ErrGraphNotFound:
|
|
fallthrough
|
|
case channeldb.ErrGraphNoEdgesFound:
|
|
fallthrough
|
|
case channeldb.ErrEdgeNotFound:
|
|
// If the edge corresponding to this
|
|
// ChannelUpdate was not found in the graph,
|
|
// this might be a channel in the process of
|
|
// being opened, and we haven't processed our
|
|
// own ChannelAnnouncement yet, hence it is not
|
|
// found in the graph. This usually gets
|
|
// resolved after the channel proofs are
|
|
// exchanged and the channel is broadcasted to
|
|
// the rest of the network, but in case this
|
|
// is a private channel this won't ever happen.
|
|
// Because of this, we temporarily add it to a
|
|
// map, and reprocess it after our own
|
|
// ChannelAnnouncement has been processed.
|
|
d.pChanUpdMtx.Lock()
|
|
d.prematureChannelUpdates[shortChanID] = append(
|
|
d.prematureChannelUpdates[shortChanID],
|
|
nMsg)
|
|
d.pChanUpdMtx.Unlock()
|
|
log.Debugf("Got ChannelUpdate for edge not "+
|
|
"found in graph(shortChanID=%v), "+
|
|
"saving for reprocessing later",
|
|
shortChanID)
|
|
nMsg.err <- nil
|
|
return nil
|
|
default:
|
|
err := errors.Errorf("unable to validate "+
|
|
"channel update short_chan_id=%v: %v",
|
|
shortChanID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// The least-significant bit in the flag on the channel update
|
|
// announcement tells us "which" side of the channels directed
|
|
// edge is being updated.
|
|
var pubKey *btcec.PublicKey
|
|
switch {
|
|
case msg.Flags&lnwire.ChanUpdateDirection == 0:
|
|
pubKey, _ = chanInfo.NodeKey1()
|
|
case msg.Flags&lnwire.ChanUpdateDirection == 1:
|
|
pubKey, _ = chanInfo.NodeKey2()
|
|
}
|
|
|
|
// Validate the channel announcement with the expected public
|
|
// key, In the case of an invalid channel , we'll return an
|
|
// error to the caller and exit early.
|
|
if err := ValidateChannelUpdateAnn(pubKey, msg); err != nil {
|
|
rErr := errors.Errorf("unable to validate channel "+
|
|
"update announcement for short_chan_id=%v: %v",
|
|
spew.Sdump(msg.ShortChannelID), err)
|
|
|
|
log.Error(rErr)
|
|
nMsg.err <- rErr
|
|
return nil
|
|
}
|
|
|
|
update := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: msg.Signature.ToSignatureBytes(),
|
|
ChannelID: shortChanID,
|
|
LastUpdate: timestamp,
|
|
Flags: msg.Flags,
|
|
TimeLockDelta: msg.TimeLockDelta,
|
|
MinHTLC: msg.HtlcMinimumMsat,
|
|
FeeBaseMSat: lnwire.MilliSatoshi(msg.BaseFee),
|
|
FeeProportionalMillionths: lnwire.MilliSatoshi(msg.FeeRate),
|
|
}
|
|
|
|
if err := d.cfg.Router.UpdateEdge(update); err != nil {
|
|
if routing.IsError(err, routing.ErrOutdated, routing.ErrIgnored) {
|
|
log.Debug(err)
|
|
} else {
|
|
d.rejectMtx.Lock()
|
|
d.recentRejects[msg.ShortChannelID.ToUint64()] = struct{}{}
|
|
d.rejectMtx.Unlock()
|
|
log.Error(err)
|
|
}
|
|
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// If this is a local ChannelUpdate without an AuthProof, it
|
|
// means it is an update to a channel that is not (yet)
|
|
// supposed to be announced to the greater network. However,
|
|
// our channel counter party will need to be given the update,
|
|
// so we'll try sending the update directly to the remote peer.
|
|
if !nMsg.isRemote && chanInfo.AuthProof == nil {
|
|
// Get our peer's public key.
|
|
var remotePeer *btcec.PublicKey
|
|
switch {
|
|
case msg.Flags&lnwire.ChanUpdateDirection == 0:
|
|
remotePeer, _ = chanInfo.NodeKey2()
|
|
case msg.Flags&lnwire.ChanUpdateDirection == 1:
|
|
remotePeer, _ = chanInfo.NodeKey1()
|
|
}
|
|
|
|
// Send ChannelUpdate directly to remotePeer.
|
|
// TODO(halseth): make reliable send?
|
|
if err = d.cfg.SendToPeer(remotePeer, msg); err != nil {
|
|
log.Errorf("unable to send channel update "+
|
|
"message to peer %x: %v",
|
|
remotePeer.SerializeCompressed(), err)
|
|
}
|
|
}
|
|
|
|
// Channel update announcement was successfully processed and
|
|
// now it can be broadcast to the rest of the network. However,
|
|
// we'll only broadcast the channel update announcement if it
|
|
// has an attached authentication proof.
|
|
if chanInfo.AuthProof != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: msg,
|
|
peer: nMsg.peer,
|
|
})
|
|
}
|
|
|
|
nMsg.err <- nil
|
|
return announcements
|
|
|
|
// A new signature announcement has been received. This indicates
|
|
// willingness of nodes involved in the funding of a channel to
|
|
// announce this new channel to the rest of the world.
|
|
case *lnwire.AnnounceSignatures:
|
|
needBlockHeight := msg.ShortChannelID.BlockHeight + d.cfg.ProofMatureDelta
|
|
shortChanID := msg.ShortChannelID.ToUint64()
|
|
|
|
prefix := "local"
|
|
if nMsg.isRemote {
|
|
prefix = "remote"
|
|
}
|
|
|
|
log.Infof("Received new %v channel announcement: %v", prefix,
|
|
spew.Sdump(msg))
|
|
|
|
// By the specification, channel announcement proofs should be
|
|
// sent after some number of confirmations after channel was
|
|
// registered in bitcoin blockchain. Therefore, we check if the
|
|
// proof is premature. If so we'll halt processing until the
|
|
// expected announcement height. This allows us to be tolerant
|
|
// to other clients if this constraint was changed.
|
|
if isPremature(msg.ShortChannelID, d.cfg.ProofMatureDelta) {
|
|
d.Lock()
|
|
d.prematureAnnouncements[needBlockHeight] = append(
|
|
d.prematureAnnouncements[needBlockHeight],
|
|
nMsg,
|
|
)
|
|
d.Unlock()
|
|
log.Infof("Premature proof announcement, "+
|
|
"current block height lower than needed: %v <"+
|
|
" %v, add announcement to reprocessing batch",
|
|
atomic.LoadUint32(&d.bestHeight), needBlockHeight)
|
|
return nil
|
|
}
|
|
|
|
// Ensure that we know of a channel with the target channel ID
|
|
// before proceeding further.
|
|
//
|
|
// We must acquire the mutex for this channel ID before getting
|
|
// the channel from the database, to ensure what we read does
|
|
// not change before we call AddProof() later.
|
|
d.channelMtx.Lock(msg.ShortChannelID.ToUint64())
|
|
defer d.channelMtx.Unlock(msg.ShortChannelID.ToUint64())
|
|
chanInfo, e1, e2, err := d.cfg.Router.GetChannelByID(
|
|
msg.ShortChannelID)
|
|
if err != nil {
|
|
// TODO(andrew.shvv) this is dangerous because remote
|
|
// node might rewrite the waiting proof.
|
|
proof := channeldb.NewWaitingProof(nMsg.isRemote, msg)
|
|
if err := d.waitingProofs.Add(proof); err != nil {
|
|
err := errors.Errorf("unable to store "+
|
|
"the proof for short_chan_id=%v: %v",
|
|
shortChanID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
log.Infof("Orphan %v proof announcement with "+
|
|
"short_chan_id=%v, adding"+
|
|
"to waiting batch", prefix, shortChanID)
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
isFirstNode := bytes.Equal(nMsg.peer.SerializeCompressed(),
|
|
chanInfo.NodeKey1Bytes[:])
|
|
isSecondNode := bytes.Equal(nMsg.peer.SerializeCompressed(),
|
|
chanInfo.NodeKey2Bytes[:])
|
|
|
|
// Ensure that channel that was retrieved belongs to the peer
|
|
// which sent the proof announcement.
|
|
if !(isFirstNode || isSecondNode) {
|
|
err := errors.Errorf("channel that was received not "+
|
|
"belongs to the peer which sent the proof, "+
|
|
"short_chan_id=%v", shortChanID)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// If proof was sent by a local sub-system, then we'll
|
|
// send the announcement signature to the remote node
|
|
// so they can also reconstruct the full channel
|
|
// announcement.
|
|
if !nMsg.isRemote {
|
|
var remotePeer *btcec.PublicKey
|
|
if isFirstNode {
|
|
remotePeer, _ = chanInfo.NodeKey2()
|
|
} else {
|
|
remotePeer, _ = chanInfo.NodeKey1()
|
|
}
|
|
// Since the remote peer might not be online
|
|
// we'll call a method that will attempt to
|
|
// deliver the proof when it comes online.
|
|
if err := d.sendAnnSigReliably(msg, remotePeer); err != nil {
|
|
err := errors.Errorf("unable to send reliably "+
|
|
"to remote for short_chan_id=%v: %v",
|
|
shortChanID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Check if we already have the full proof for this channel.
|
|
if chanInfo.AuthProof != nil {
|
|
// If we already have the fully assembled proof, then
|
|
// the peer sending us their proof has probably not
|
|
// received our local proof yet. So be kind and send
|
|
// them the full proof.
|
|
if nMsg.isRemote {
|
|
peerID := nMsg.peer.SerializeCompressed()
|
|
log.Debugf("Got AnnounceSignatures for " +
|
|
"channel with full proof.")
|
|
|
|
d.wg.Add(1)
|
|
go func() {
|
|
defer d.wg.Done()
|
|
log.Debugf("Received half proof for "+
|
|
"channel %v with existing "+
|
|
"full proof. Sending full "+
|
|
"proof to peer=%x",
|
|
msg.ChannelID,
|
|
peerID)
|
|
|
|
chanAnn, _, _, err := CreateChanAnnouncement(
|
|
chanInfo.AuthProof, chanInfo, e1, e2,
|
|
)
|
|
if err != nil {
|
|
log.Errorf("unable to gen ann: %v", err)
|
|
return
|
|
}
|
|
err = d.cfg.SendToPeer(nMsg.peer, chanAnn)
|
|
if err != nil {
|
|
log.Errorf("Failed sending "+
|
|
"full proof to "+
|
|
"peer=%x: %v",
|
|
peerID, err)
|
|
return
|
|
}
|
|
log.Debugf("Full proof sent to peer=%x"+
|
|
" for chanID=%v", peerID, msg.ChannelID)
|
|
}()
|
|
}
|
|
|
|
log.Debugf("Already have proof for channel "+
|
|
"with chanID=%v", msg.ChannelID)
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
// Check that we received the opposite proof. If so, then we're
|
|
// now able to construct the full proof, and create the channel
|
|
// announcement. If we didn't receive the opposite half of the
|
|
// proof than we should store it this one, and wait for
|
|
// opposite to be received.
|
|
proof := channeldb.NewWaitingProof(nMsg.isRemote, msg)
|
|
oppositeProof, err := d.waitingProofs.Get(proof.OppositeKey())
|
|
if err != nil && err != channeldb.ErrWaitingProofNotFound {
|
|
err := errors.Errorf("unable to get "+
|
|
"the opposite proof for short_chan_id=%v: %v",
|
|
shortChanID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
if err == channeldb.ErrWaitingProofNotFound {
|
|
if err := d.waitingProofs.Add(proof); err != nil {
|
|
err := errors.Errorf("unable to store "+
|
|
"the proof for short_chan_id=%v: %v",
|
|
shortChanID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
log.Infof("1/2 of channel ann proof received for "+
|
|
"short_chan_id=%v, waiting for other half",
|
|
shortChanID)
|
|
|
|
nMsg.err <- nil
|
|
return nil
|
|
}
|
|
|
|
// We now have both halves of the channel announcement proof,
|
|
// then we'll reconstruct the initial announcement so we can
|
|
// validate it shortly below.
|
|
var dbProof channeldb.ChannelAuthProof
|
|
if isFirstNode {
|
|
dbProof.NodeSig1Bytes = msg.NodeSignature.ToSignatureBytes()
|
|
dbProof.NodeSig2Bytes = oppositeProof.NodeSignature.ToSignatureBytes()
|
|
dbProof.BitcoinSig1Bytes = msg.BitcoinSignature.ToSignatureBytes()
|
|
dbProof.BitcoinSig2Bytes = oppositeProof.BitcoinSignature.ToSignatureBytes()
|
|
} else {
|
|
dbProof.NodeSig1Bytes = oppositeProof.NodeSignature.ToSignatureBytes()
|
|
dbProof.NodeSig2Bytes = msg.NodeSignature.ToSignatureBytes()
|
|
dbProof.BitcoinSig1Bytes = oppositeProof.BitcoinSignature.ToSignatureBytes()
|
|
dbProof.BitcoinSig2Bytes = msg.BitcoinSignature.ToSignatureBytes()
|
|
}
|
|
chanAnn, e1Ann, e2Ann, err := CreateChanAnnouncement(&dbProof, chanInfo, e1, e2)
|
|
if err != nil {
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// With all the necessary components assembled validate the
|
|
// full channel announcement proof.
|
|
if err := ValidateChannelAnn(chanAnn); err != nil {
|
|
err := errors.Errorf("channel announcement proof "+
|
|
"for short_chan_id=%v isn't valid: %v",
|
|
shortChanID, err)
|
|
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// If the channel was returned by the router it means that
|
|
// existence of funding point and inclusion of nodes bitcoin
|
|
// keys in it already checked by the router. In this stage we
|
|
// should check that node keys are attest to the bitcoin keys
|
|
// by validating the signatures of announcement. If proof is
|
|
// valid then we'll populate the channel edge with it, so we
|
|
// can announce it on peer connect.
|
|
err = d.cfg.Router.AddProof(msg.ShortChannelID, &dbProof)
|
|
if err != nil {
|
|
err := errors.Errorf("unable add proof to the "+
|
|
"channel chanID=%v: %v", msg.ChannelID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
if err := d.waitingProofs.Remove(proof.OppositeKey()); err != nil {
|
|
err := errors.Errorf("unable remove opposite proof "+
|
|
"for the channel with chanID=%v: %v", msg.ChannelID, err)
|
|
log.Error(err)
|
|
nMsg.err <- err
|
|
return nil
|
|
}
|
|
|
|
// Proof was successfully created and now can announce the
|
|
// channel to the remain network.
|
|
log.Infof("Fully valid channel proof for short_chan_id=%v "+
|
|
"constructed, adding to next ann batch",
|
|
shortChanID)
|
|
|
|
// Assemble the necessary announcements to add to the next
|
|
// broadcasting batch.
|
|
announcements = append(announcements, networkMsg{
|
|
msg: chanAnn,
|
|
peer: nMsg.peer,
|
|
})
|
|
if e1Ann != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: e1Ann,
|
|
peer: nMsg.peer,
|
|
})
|
|
}
|
|
if e2Ann != nil {
|
|
announcements = append(announcements, networkMsg{
|
|
msg: e2Ann,
|
|
peer: nMsg.peer,
|
|
})
|
|
}
|
|
|
|
nMsg.err <- nil
|
|
return announcements
|
|
|
|
default:
|
|
nMsg.err <- errors.New("wrong type of the announcement")
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// sendAnnSigReliably will try to send the provided local AnnounceSignatures
|
|
// to the remote peer, waiting for it to come online if necessary. This
|
|
// method returns after adding the message to persistent storage, such
|
|
// that the caller knows that the message will be delivered at one point.
|
|
func (d *AuthenticatedGossiper) sendAnnSigReliably(
|
|
msg *lnwire.AnnounceSignatures, remotePeer *btcec.PublicKey) error {
|
|
|
|
// We first add this message to the database, such that in case
|
|
// we do not succeed in sending it to the peer, we'll fetch it
|
|
// from the DB next time we start, and retry. We use the peer ID
|
|
// + shortChannelID as key, as there possibly is more than one
|
|
// channel opening in progress to the same peer.
|
|
var key [41]byte
|
|
copy(key[:33], remotePeer.SerializeCompressed())
|
|
binary.BigEndian.PutUint64(key[33:], msg.ShortChannelID.ToUint64())
|
|
|
|
err := d.cfg.DB.Update(func(tx *bolt.Tx) error {
|
|
bucket, err := tx.CreateBucketIfNotExists(messageStoreKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Encode the AnnounceSignatures message.
|
|
var b bytes.Buffer
|
|
if err := msg.Encode(&b, 0); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Add the encoded message to the database using the peer
|
|
// + shortChanID as key.
|
|
return bucket.Put(key[:], b.Bytes())
|
|
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// We have succeeded adding the message to the database. We now launch
|
|
// a goroutine that will keep on trying sending the message to the
|
|
// remote peer until it succeeds, or the gossiper shuts down. In case
|
|
// of success, the message will be removed from the database.
|
|
d.wg.Add(1)
|
|
go func() {
|
|
defer d.wg.Done()
|
|
for {
|
|
log.Debugf("Sending AnnounceSignatures for channel "+
|
|
"%v to remote peer %x", msg.ChannelID,
|
|
remotePeer.SerializeCompressed())
|
|
err := d.cfg.SendToPeer(remotePeer, msg)
|
|
if err == nil {
|
|
// Sending succeeded, we can
|
|
// continue the flow.
|
|
break
|
|
}
|
|
|
|
log.Errorf("unable to send AnnounceSignatures message "+
|
|
"to peer(%x): %v. Will retry when online.",
|
|
remotePeer.SerializeCompressed(), err)
|
|
|
|
connected := make(chan struct{})
|
|
d.cfg.NotifyWhenOnline(remotePeer, connected)
|
|
|
|
select {
|
|
case <-connected:
|
|
log.Infof("peer %x reconnected. Retry sending" +
|
|
" AnnounceSignatures.")
|
|
// Retry sending.
|
|
case <-d.quit:
|
|
log.Infof("Gossiper shutting down, did not send" +
|
|
" AnnounceSignatures.")
|
|
return
|
|
}
|
|
}
|
|
|
|
log.Infof("Sent channel announcement proof to remote peer: %x",
|
|
remotePeer.SerializeCompressed())
|
|
}()
|
|
|
|
// This method returns after the message has been added to the database,
|
|
// such that the caller don't have to wait until the message is actually
|
|
// delivered, but can be assured that it will be delivered eventually
|
|
// when this method returns.
|
|
return nil
|
|
}
|
|
|
|
// updateChannel creates a new fully signed update for the channel, and updates
|
|
// the underlying graph with the new state.
|
|
func (d *AuthenticatedGossiper) updateChannel(info *channeldb.ChannelEdgeInfo,
|
|
edge *channeldb.ChannelEdgePolicy) (*lnwire.ChannelAnnouncement, *lnwire.ChannelUpdate, error) {
|
|
|
|
var err error
|
|
|
|
// Make sure timestamp is always increased, such that our update gets
|
|
// propagated.
|
|
timestamp := time.Now().Unix()
|
|
if timestamp <= edge.LastUpdate.Unix() {
|
|
timestamp = edge.LastUpdate.Unix() + 1
|
|
}
|
|
edge.LastUpdate = time.Unix(timestamp, 0)
|
|
chanUpdate := &lnwire.ChannelUpdate{
|
|
ChainHash: info.ChainHash,
|
|
ShortChannelID: lnwire.NewShortChanIDFromInt(edge.ChannelID),
|
|
Timestamp: uint32(timestamp),
|
|
Flags: edge.Flags,
|
|
TimeLockDelta: edge.TimeLockDelta,
|
|
HtlcMinimumMsat: edge.MinHTLC,
|
|
BaseFee: uint32(edge.FeeBaseMSat),
|
|
FeeRate: uint32(edge.FeeProportionalMillionths),
|
|
}
|
|
chanUpdate.Signature, err = lnwire.NewSigFromRawSignature(edge.SigBytes)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// With the update applied, we'll generate a new signature over a
|
|
// digest of the channel announcement itself.
|
|
sig, err := SignAnnouncement(d.cfg.AnnSigner, d.selfKey, chanUpdate)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Next, we'll set the new signature in place, and update the reference
|
|
// in the backing slice.
|
|
edge.SigBytes = sig.Serialize()
|
|
chanUpdate.Signature, err = lnwire.NewSigFromSignature(sig)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// To ensure that our signature is valid, we'll verify it ourself
|
|
// before committing it to the slice returned.
|
|
err = ValidateChannelUpdateAnn(d.selfKey, chanUpdate)
|
|
if err != nil {
|
|
return nil, nil, fmt.Errorf("generated invalid channel "+
|
|
"update sig: %v", err)
|
|
}
|
|
|
|
// Finally, we'll write the new edge policy to disk.
|
|
if err := d.cfg.Router.UpdateEdge(edge); err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// We'll also create the original channel announcement so the two can
|
|
// be broadcast along side each other (if necessary), but only if we
|
|
// have a full channel announcement for this channel.
|
|
var chanAnn *lnwire.ChannelAnnouncement
|
|
if info.AuthProof != nil {
|
|
chanID := lnwire.NewShortChanIDFromInt(info.ChannelID)
|
|
chanAnn = &lnwire.ChannelAnnouncement{
|
|
ShortChannelID: chanID,
|
|
NodeID1: info.NodeKey1Bytes,
|
|
NodeID2: info.NodeKey2Bytes,
|
|
ChainHash: info.ChainHash,
|
|
BitcoinKey1: info.BitcoinKey1Bytes,
|
|
Features: lnwire.NewRawFeatureVector(),
|
|
BitcoinKey2: info.BitcoinKey2Bytes,
|
|
}
|
|
chanAnn.NodeSig1, err = lnwire.NewSigFromRawSignature(
|
|
info.AuthProof.NodeSig1Bytes,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
chanAnn.NodeSig2, err = lnwire.NewSigFromRawSignature(
|
|
info.AuthProof.NodeSig2Bytes,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
chanAnn.BitcoinSig1, err = lnwire.NewSigFromRawSignature(
|
|
info.AuthProof.BitcoinSig1Bytes,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
chanAnn.BitcoinSig2, err = lnwire.NewSigFromRawSignature(
|
|
info.AuthProof.BitcoinSig2Bytes,
|
|
)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
}
|
|
|
|
return chanAnn, chanUpdate, err
|
|
}
|