lnd.xprv/lnwire/lnwire_test.go
Valentine Wallace b49637fbe9
lnwire: add HtlcMaximumMsat field to ChannelUpdate
In this commit, we add a field to the ChannelUpdate
denoting the maximum HTLC we support sending over
this channel, a field which was recently added to the
spec.

This field serves multiple purposes. In the short
term, it enables nodes to signal the largest HTLC
they're willing to carry, allows light clients who
don't verify channel existence to have some guidance
when routing HTLCs, and finally may allow nodes to
preserve a portion of bandwidth at all times.

In the long term, this field can be used by
implementations of AMP to guide payment splitting,
as it becomes apparent to a node the largest possible
HTLC one can route over a particular channel.

This PR was made possible by the merge of ,
which enables older nodes to properly retain and
verify signatures on updates that include new fields
(like this new max HTLC field) that they haven't yet
been updated to recognize.

In addition, the new ChannelUpdate fields are added to
the lnwire fuzzing tests.

Co-authored-by: Johan T. Halseth <johanth@gmail.com>
2019-01-22 08:42:26 +01:00

1020 lines
24 KiB
Go

package lnwire
import (
"bytes"
"encoding/binary"
"encoding/hex"
"image/color"
"math"
"math/big"
"math/rand"
"net"
"reflect"
"testing"
"testing/quick"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/tor"
)
var (
revHash = [32]byte{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855")
shaHash1, _ = chainhash.NewHash(shaHash1Bytes)
outpoint1 = wire.NewOutPoint(shaHash1, 0)
testSig = &btcec.Signature{
R: new(big.Int),
S: new(big.Int),
}
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
)
const letterBytes = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
func randAlias(r *rand.Rand) NodeAlias {
var a NodeAlias
for i := range a {
a[i] = letterBytes[r.Intn(len(letterBytes))]
}
return a
}
func randPubKey() (*btcec.PublicKey, error) {
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, err
}
return priv.PubKey(), nil
}
func randRawKey() ([33]byte, error) {
var n [33]byte
priv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return n, err
}
copy(n[:], priv.PubKey().SerializeCompressed())
return n, nil
}
func randRawFeatureVector(r *rand.Rand) *RawFeatureVector {
featureVec := NewRawFeatureVector()
for i := 0; i < 10000; i++ {
if r.Int31n(2) == 0 {
featureVec.Set(FeatureBit(i))
}
}
return featureVec
}
func randTCP4Addr(r *rand.Rand) (*net.TCPAddr, error) {
var ip [4]byte
if _, err := r.Read(ip[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
addrIP := net.IP(ip[:])
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &net.TCPAddr{IP: addrIP, Port: addrPort}, nil
}
func randTCP6Addr(r *rand.Rand) (*net.TCPAddr, error) {
var ip [16]byte
if _, err := r.Read(ip[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
addrIP := net.IP(ip[:])
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &net.TCPAddr{IP: addrIP, Port: addrPort}, nil
}
func randV2OnionAddr(r *rand.Rand) (*tor.OnionAddr, error) {
var serviceID [tor.V2DecodedLen]byte
if _, err := r.Read(serviceID[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
onionService := tor.Base32Encoding.EncodeToString(serviceID[:])
onionService += tor.OnionSuffix
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &tor.OnionAddr{OnionService: onionService, Port: addrPort}, nil
}
func randV3OnionAddr(r *rand.Rand) (*tor.OnionAddr, error) {
var serviceID [tor.V3DecodedLen]byte
if _, err := r.Read(serviceID[:]); err != nil {
return nil, err
}
var port [2]byte
if _, err := r.Read(port[:]); err != nil {
return nil, err
}
onionService := tor.Base32Encoding.EncodeToString(serviceID[:])
onionService += tor.OnionSuffix
addrPort := int(binary.BigEndian.Uint16(port[:]))
return &tor.OnionAddr{OnionService: onionService, Port: addrPort}, nil
}
func randAddrs(r *rand.Rand) ([]net.Addr, error) {
tcp4Addr, err := randTCP4Addr(r)
if err != nil {
return nil, err
}
tcp6Addr, err := randTCP6Addr(r)
if err != nil {
return nil, err
}
v2OnionAddr, err := randV2OnionAddr(r)
if err != nil {
return nil, err
}
v3OnionAddr, err := randV3OnionAddr(r)
if err != nil {
return nil, err
}
return []net.Addr{tcp4Addr, tcp6Addr, v2OnionAddr, v3OnionAddr}, nil
}
// TestChanUpdateChanFlags ensures that converting the ChanUpdateChanFlags and
// ChanUpdateMsgFlags bitfields to a string behaves as expected.
func TestChanUpdateChanFlags(t *testing.T) {
t.Parallel()
testCases := []struct {
flags uint8
expected string
}{
{
flags: 0,
expected: "00000000",
},
{
flags: 1,
expected: "00000001",
},
{
flags: 3,
expected: "00000011",
},
{
flags: 255,
expected: "11111111",
},
}
for _, test := range testCases {
chanFlag := ChanUpdateChanFlags(test.flags)
toStr := chanFlag.String()
if toStr != test.expected {
t.Fatalf("expected %v, got %v",
test.expected, toStr)
}
msgFlag := ChanUpdateMsgFlags(test.flags)
toStr = msgFlag.String()
if toStr != test.expected {
t.Fatalf("expected %v, got %v",
test.expected, toStr)
}
}
}
func TestMaxOutPointIndex(t *testing.T) {
t.Parallel()
op := wire.OutPoint{
Index: math.MaxUint32,
}
var b bytes.Buffer
if err := WriteElement(&b, op); err == nil {
t.Fatalf("write of outPoint should fail, index exceeds 16-bits")
}
}
func TestEmptyMessageUnknownType(t *testing.T) {
t.Parallel()
fakeType := MessageType(math.MaxUint16)
if _, err := makeEmptyMessage(fakeType); err == nil {
t.Fatalf("should not be able to make an empty message of an " +
"unknown type")
}
}
// TestLightningWireProtocol uses the testing/quick package to create a series
// of fuzz tests to attempt to break a primary scenario which is implemented as
// property based testing scenario.
func TestLightningWireProtocol(t *testing.T) {
t.Parallel()
// mainScenario is the primary test that will programmatically be
// executed for all registered wire messages. The quick-checker within
// testing/quick will attempt to find an input to this function, s.t
// the function returns false, if so then we've found an input that
// violates our model of the system.
mainScenario := func(msg Message) bool {
// Give a new message, we'll serialize the message into a new
// bytes buffer.
var b bytes.Buffer
if _, err := WriteMessage(&b, msg, 0); err != nil {
t.Fatalf("unable to write msg: %v", err)
return false
}
// Next, we'll ensure that the serialized payload (subtracting
// the 2 bytes for the message type) is _below_ the specified
// max payload size for this message.
payloadLen := uint32(b.Len()) - 2
if payloadLen > msg.MaxPayloadLength(0) {
t.Fatalf("msg payload constraint violated: %v > %v",
payloadLen, msg.MaxPayloadLength(0))
return false
}
// Finally, we'll deserialize the message from the written
// buffer, and finally assert that the messages are equal.
newMsg, err := ReadMessage(&b, 0)
if err != nil {
t.Fatalf("unable to read msg: %v", err)
return false
}
if !reflect.DeepEqual(msg, newMsg) {
t.Fatalf("messages don't match after re-encoding: %v "+
"vs %v", spew.Sdump(msg), spew.Sdump(newMsg))
return false
}
return true
}
// customTypeGen is a map of functions that are able to randomly
// generate a given type. These functions are needed for types which
// are too complex for the testing/quick package to automatically
// generate.
customTypeGen := map[MessageType]func([]reflect.Value, *rand.Rand){
MsgInit: func(v []reflect.Value, r *rand.Rand) {
req := NewInitMessage(
randRawFeatureVector(r),
randRawFeatureVector(r),
)
v[0] = reflect.ValueOf(*req)
},
MsgOpenChannel: func(v []reflect.Value, r *rand.Rand) {
req := OpenChannel{
FundingAmount: btcutil.Amount(r.Int63()),
PushAmount: MilliSatoshi(r.Int63()),
DustLimit: btcutil.Amount(r.Int63()),
MaxValueInFlight: MilliSatoshi(r.Int63()),
ChannelReserve: btcutil.Amount(r.Int63()),
HtlcMinimum: MilliSatoshi(r.Int31()),
FeePerKiloWeight: uint32(r.Int63()),
CsvDelay: uint16(r.Int31()),
MaxAcceptedHTLCs: uint16(r.Int31()),
ChannelFlags: FundingFlag(uint8(r.Int31())),
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
var err error
req.FundingKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.RevocationPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.PaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.DelayedPaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.HtlcPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.FirstCommitmentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgAcceptChannel: func(v []reflect.Value, r *rand.Rand) {
req := AcceptChannel{
DustLimit: btcutil.Amount(r.Int63()),
MaxValueInFlight: MilliSatoshi(r.Int63()),
ChannelReserve: btcutil.Amount(r.Int63()),
MinAcceptDepth: uint32(r.Int31()),
HtlcMinimum: MilliSatoshi(r.Int31()),
CsvDelay: uint16(r.Int31()),
MaxAcceptedHTLCs: uint16(r.Int31()),
}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
var err error
req.FundingKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.RevocationPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.PaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.DelayedPaymentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.HtlcPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.FirstCommitmentPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingCreated: func(v []reflect.Value, r *rand.Rand) {
req := FundingCreated{}
if _, err := r.Read(req.PendingChannelID[:]); err != nil {
t.Fatalf("unable to generate pending chan id: %v", err)
return
}
if _, err := r.Read(req.FundingPoint.Hash[:]); err != nil {
t.Fatalf("unable to generate hash: %v", err)
return
}
req.FundingPoint.Index = uint32(r.Int31()) % math.MaxUint16
var err error
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingSigned: func(v []reflect.Value, r *rand.Rand) {
var c [32]byte
_, err := r.Read(c[:])
if err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
req := FundingSigned{
ChanID: ChannelID(c),
}
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgFundingLocked: func(v []reflect.Value, r *rand.Rand) {
var c [32]byte
if _, err := r.Read(c[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
pubKey, err := randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req := NewFundingLocked(ChannelID(c), pubKey)
v[0] = reflect.ValueOf(*req)
},
MsgClosingSigned: func(v []reflect.Value, r *rand.Rand) {
req := ClosingSigned{
FeeSatoshis: btcutil.Amount(r.Int63()),
}
var err error
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChannelID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
v[0] = reflect.ValueOf(req)
},
MsgCommitSig: func(v []reflect.Value, r *rand.Rand) {
req := NewCommitSig()
if _, err := r.Read(req.ChanID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
var err error
req.CommitSig, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
// Only create the slice if there will be any signatures
// in it to prevent false positive test failures due to
// an empty slice versus a nil slice.
numSigs := uint16(r.Int31n(1020))
if numSigs > 0 {
req.HtlcSigs = make([]Sig, numSigs)
}
for i := 0; i < int(numSigs); i++ {
req.HtlcSigs[i], err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
}
v[0] = reflect.ValueOf(*req)
},
MsgRevokeAndAck: func(v []reflect.Value, r *rand.Rand) {
req := NewRevokeAndAck()
if _, err := r.Read(req.ChanID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
if _, err := r.Read(req.Revocation[:]); err != nil {
t.Fatalf("unable to generate bytes: %v", err)
return
}
var err error
req.NextRevocationKey, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
v[0] = reflect.ValueOf(*req)
},
MsgChannelAnnouncement: func(v []reflect.Value, r *rand.Rand) {
var err error
req := ChannelAnnouncement{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
Features: randRawFeatureVector(r),
}
req.NodeSig1, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeSig2, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSig1, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSig2, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeID1, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.NodeID2, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.BitcoinKey1, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.BitcoinKey2, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
numExtraBytes := r.Int31n(1000)
if numExtraBytes > 0 {
req.ExtraOpaqueData = make([]byte, numExtraBytes)
_, err := r.Read(req.ExtraOpaqueData[:])
if err != nil {
t.Fatalf("unable to generate opaque "+
"bytes: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgNodeAnnouncement: func(v []reflect.Value, r *rand.Rand) {
var err error
req := NodeAnnouncement{
Features: randRawFeatureVector(r),
Timestamp: uint32(r.Int31()),
Alias: randAlias(r),
RGBColor: color.RGBA{
R: uint8(r.Int31()),
G: uint8(r.Int31()),
B: uint8(r.Int31()),
},
}
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.NodeID, err = randRawKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
req.Addresses, err = randAddrs(r)
if err != nil {
t.Fatalf("unable to generate addresses: %v", err)
}
numExtraBytes := r.Int31n(1000)
if numExtraBytes > 0 {
req.ExtraOpaqueData = make([]byte, numExtraBytes)
_, err := r.Read(req.ExtraOpaqueData[:])
if err != nil {
t.Fatalf("unable to generate opaque "+
"bytes: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgChannelUpdate: func(v []reflect.Value, r *rand.Rand) {
var err error
msgFlags := ChanUpdateMsgFlags(r.Int31())
maxHtlc := MilliSatoshi(r.Int63())
// We make the max_htlc field zero if it is not flagged
// as being part of the ChannelUpdate, to pass
// serialization tests, as it will be ignored if the bit
// is not set.
if msgFlags&ChanUpdateOptionMaxHtlc == 0 {
maxHtlc = 0
}
req := ChannelUpdate{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
Timestamp: uint32(r.Int31()),
MessageFlags: msgFlags,
ChannelFlags: ChanUpdateChanFlags(r.Int31()),
TimeLockDelta: uint16(r.Int31()),
HtlcMinimumMsat: MilliSatoshi(r.Int63()),
HtlcMaximumMsat: maxHtlc,
BaseFee: uint32(r.Int31()),
FeeRate: uint32(r.Int31()),
}
req.Signature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to generate chain hash: %v", err)
return
}
numExtraBytes := r.Int31n(1000)
if numExtraBytes > 0 {
req.ExtraOpaqueData = make([]byte, numExtraBytes)
_, err := r.Read(req.ExtraOpaqueData[:])
if err != nil {
t.Fatalf("unable to generate opaque "+
"bytes: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgAnnounceSignatures: func(v []reflect.Value, r *rand.Rand) {
var err error
req := AnnounceSignatures{
ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())),
}
req.NodeSignature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
req.BitcoinSignature, err = NewSigFromSignature(testSig)
if err != nil {
t.Fatalf("unable to parse sig: %v", err)
return
}
if _, err := r.Read(req.ChannelID[:]); err != nil {
t.Fatalf("unable to generate chan id: %v", err)
return
}
numExtraBytes := r.Int31n(1000)
if numExtraBytes > 0 {
req.ExtraOpaqueData = make([]byte, numExtraBytes)
_, err := r.Read(req.ExtraOpaqueData[:])
if err != nil {
t.Fatalf("unable to generate opaque "+
"bytes: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgChannelReestablish: func(v []reflect.Value, r *rand.Rand) {
req := ChannelReestablish{
NextLocalCommitHeight: uint64(r.Int63()),
RemoteCommitTailHeight: uint64(r.Int63()),
}
// With a 50/50 probability, we'll include the
// additional fields so we can test our ability to
// properly parse, and write out the optional fields.
if r.Int()%2 == 0 {
_, err := r.Read(req.LastRemoteCommitSecret[:])
if err != nil {
t.Fatalf("unable to read commit secret: %v", err)
return
}
req.LocalUnrevokedCommitPoint, err = randPubKey()
if err != nil {
t.Fatalf("unable to generate key: %v", err)
return
}
}
v[0] = reflect.ValueOf(req)
},
MsgQueryShortChanIDs: func(v []reflect.Value, r *rand.Rand) {
req := QueryShortChanIDs{}
// With a 50/50 change, we'll either use zlib encoding,
// or regular encoding.
if r.Int31()%2 == 0 {
req.EncodingType = EncodingSortedZlib
} else {
req.EncodingType = EncodingSortedPlain
}
if _, err := rand.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to read chain hash: %v", err)
return
}
numChanIDs := rand.Int31n(5000)
for i := int32(0); i < numChanIDs; i++ {
req.ShortChanIDs = append(req.ShortChanIDs,
NewShortChanIDFromInt(uint64(r.Int63())))
}
v[0] = reflect.ValueOf(req)
},
MsgReplyChannelRange: func(v []reflect.Value, r *rand.Rand) {
req := ReplyChannelRange{
QueryChannelRange: QueryChannelRange{
FirstBlockHeight: uint32(r.Int31()),
NumBlocks: uint32(r.Int31()),
},
}
if _, err := rand.Read(req.ChainHash[:]); err != nil {
t.Fatalf("unable to read chain hash: %v", err)
return
}
req.Complete = uint8(r.Int31n(2))
// With a 50/50 change, we'll either use zlib encoding,
// or regular encoding.
if r.Int31()%2 == 0 {
req.EncodingType = EncodingSortedZlib
} else {
req.EncodingType = EncodingSortedPlain
}
numChanIDs := rand.Int31n(5000)
for i := int32(0); i < numChanIDs; i++ {
req.ShortChanIDs = append(req.ShortChanIDs,
NewShortChanIDFromInt(uint64(r.Int63())))
}
v[0] = reflect.ValueOf(req)
},
}
// With the above types defined, we'll now generate a slice of
// scenarios to feed into quick.Check. The function scans in input
// space of the target function under test, so we'll need to create a
// series of wrapper functions to force it to iterate over the target
// types, but re-use the mainScenario defined above.
tests := []struct {
msgType MessageType
scenario interface{}
}{
{
msgType: MsgInit,
scenario: func(m Init) bool {
return mainScenario(&m)
},
},
{
msgType: MsgError,
scenario: func(m Error) bool {
return mainScenario(&m)
},
},
{
msgType: MsgPing,
scenario: func(m Ping) bool {
return mainScenario(&m)
},
},
{
msgType: MsgPong,
scenario: func(m Pong) bool {
return mainScenario(&m)
},
},
{
msgType: MsgOpenChannel,
scenario: func(m OpenChannel) bool {
return mainScenario(&m)
},
},
{
msgType: MsgAcceptChannel,
scenario: func(m AcceptChannel) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingCreated,
scenario: func(m FundingCreated) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingSigned,
scenario: func(m FundingSigned) bool {
return mainScenario(&m)
},
},
{
msgType: MsgFundingLocked,
scenario: func(m FundingLocked) bool {
return mainScenario(&m)
},
},
{
msgType: MsgShutdown,
scenario: func(m Shutdown) bool {
return mainScenario(&m)
},
},
{
msgType: MsgClosingSigned,
scenario: func(m ClosingSigned) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateAddHTLC,
scenario: func(m UpdateAddHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFulfillHTLC,
scenario: func(m UpdateFulfillHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFailHTLC,
scenario: func(m UpdateFailHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgCommitSig,
scenario: func(m CommitSig) bool {
return mainScenario(&m)
},
},
{
msgType: MsgRevokeAndAck,
scenario: func(m RevokeAndAck) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFee,
scenario: func(m UpdateFee) bool {
return mainScenario(&m)
},
},
{
msgType: MsgUpdateFailMalformedHTLC,
scenario: func(m UpdateFailMalformedHTLC) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelReestablish,
scenario: func(m ChannelReestablish) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelAnnouncement,
scenario: func(m ChannelAnnouncement) bool {
return mainScenario(&m)
},
},
{
msgType: MsgNodeAnnouncement,
scenario: func(m NodeAnnouncement) bool {
return mainScenario(&m)
},
},
{
msgType: MsgChannelUpdate,
scenario: func(m ChannelUpdate) bool {
return mainScenario(&m)
},
},
{
msgType: MsgAnnounceSignatures,
scenario: func(m AnnounceSignatures) bool {
return mainScenario(&m)
},
},
{
msgType: MsgGossipTimestampRange,
scenario: func(m GossipTimestampRange) bool {
return mainScenario(&m)
},
},
{
msgType: MsgQueryShortChanIDs,
scenario: func(m QueryShortChanIDs) bool {
return mainScenario(&m)
},
},
{
msgType: MsgReplyShortChanIDsEnd,
scenario: func(m ReplyShortChanIDsEnd) bool {
return mainScenario(&m)
},
},
{
msgType: MsgQueryChannelRange,
scenario: func(m QueryChannelRange) bool {
return mainScenario(&m)
},
},
{
msgType: MsgReplyChannelRange,
scenario: func(m ReplyChannelRange) bool {
return mainScenario(&m)
},
},
}
for _, test := range tests {
var config *quick.Config
// If the type defined is within the custom type gen map above,
// then we'll modify the default config to use this Value
// function that knows how to generate the proper types.
if valueGen, ok := customTypeGen[test.msgType]; ok {
config = &quick.Config{
Values: valueGen,
}
}
t.Logf("Running fuzz tests for msgType=%v", test.msgType)
if err := quick.Check(test.scenario, config); err != nil {
t.Fatalf("fuzz checks for msg=%v failed: %v",
test.msgType, err)
}
}
}
func init() {
rand.Seed(time.Now().Unix())
}