lnd.xprv/lnwallet/interface_test.go
Wilmer Paulino 936fcc1f16
multi: update to latest BitcoindClient interface
In this commit, we introduce a nice optimization with regards to lnd's
interaction with a bitcoind backend. Within lnd, we currently have three
different subsystems responsible for watching the chain: chainntnfs,
lnwallet, and routing/chainview. Each of these subsystems has an active
RPC and ZMQ connection to the underlying bitcoind node. This would incur
a toll on the underlying bitcoind node and would cause us to miss ZMQ
events, which are crucial to lnd. We remedy this issue by sharing the
same connection to a bitcoind node between the different clients within
lnd.
2018-08-08 20:26:30 -07:00

2290 lines
69 KiB
Go

package lnwallet_test
import (
"bytes"
"encoding/hex"
"fmt"
"io/ioutil"
"math/rand"
"net"
"os"
"os/exec"
"path/filepath"
"reflect"
"runtime"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/btcjson"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
"github.com/btcsuite/btcd/rpcclient"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/chain"
"github.com/btcsuite/btcwallet/walletdb"
_ "github.com/btcsuite/btcwallet/walletdb/bdb"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
"github.com/lightninglabs/neutrino"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/btcwallet"
"github.com/lightningnetwork/lnd/lnwire"
)
var (
privPass = []byte("private-test")
// For simplicity a single priv key controls all of our test outputs.
testWalletPrivKey = []byte{
0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf,
0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9,
0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f,
0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90,
}
bobsPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
// Use a hard-coded HD seed.
testHdSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
aliceHDSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x18, 0xa3, 0xef, 0xb9,
0x64, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
bobHDSeed = chainhash.Hash{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x98, 0xa3, 0xef, 0xb9,
0x69, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
netParams = &chaincfg.RegressionNetParams
chainHash = netParams.GenesisHash
_, alicePub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:])
_, bobPub = btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
// The number of confirmations required to consider any created channel
// open.
numReqConfs uint16 = 1
csvDelay uint16 = 4
bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000")
aliceAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.3:9000")
)
// assertProperBalance asserts than the total value of the unspent outputs
// within the wallet are *exactly* amount. If unable to retrieve the current
// balance, or the assertion fails, the test will halt with a fatal error.
func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet,
numConfirms int32, amount float64) {
balance, err := lw.ConfirmedBalance(numConfirms)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if balance.ToBTC() != amount {
t.Fatalf("wallet credits not properly loaded, should have 40BTC, "+
"instead have %v", balance)
}
}
func assertChannelOpen(t *testing.T, miner *rpctest.Harness, numConfs uint32,
c <-chan *lnwallet.LightningChannel) *lnwallet.LightningChannel {
// Mine a single block. After this block is mined, the channel should
// be considered fully open.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
select {
case lnc := <-c:
return lnc
case <-time.After(time.Second * 5):
t.Fatalf("channel never opened")
return nil
}
}
func assertReservationDeleted(res *lnwallet.ChannelReservation, t *testing.T) {
if err := res.Cancel(); err == nil {
t.Fatalf("reservation wasn't deleted from wallet")
}
}
// calcStaticFee calculates appropriate fees for commitment transactions. This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
// TODO(bvu): Refactor when dynamic fee estimation is added.
func calcStaticFee(numHTLCs int) btcutil.Amount {
const (
commitWeight = btcutil.Amount(724)
htlcWeight = 172
feePerKw = btcutil.Amount(250/4) * 1000
)
return feePerKw * (commitWeight +
btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}
func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet,
numOutputs int, btcPerOutput float64) error {
// For initial neutrino connection, wait a second.
// TODO(aakselrod): Eliminate the need for this.
switch w.BackEnd() {
case "neutrino":
time.Sleep(time.Second)
}
// Using the mining node, spend from a coinbase output numOutputs to
// give us btcPerOutput with each output.
satoshiPerOutput, err := btcutil.NewAmount(btcPerOutput)
if err != nil {
return fmt.Errorf("unable to create amt: %v", err)
}
expectedBalance, err := w.ConfirmedBalance(1)
if err != nil {
return err
}
expectedBalance += btcutil.Amount(int64(satoshiPerOutput) * int64(numOutputs))
addrs := make([]btcutil.Address, 0, numOutputs)
for i := 0; i < numOutputs; i++ {
// Grab a fresh address from the wallet to house this output.
walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
return err
}
script, err := txscript.PayToAddrScript(walletAddr)
if err != nil {
return err
}
addrs = append(addrs, walletAddr)
output := &wire.TxOut{
Value: int64(satoshiPerOutput),
PkScript: script,
}
if _, err := miner.SendOutputs([]*wire.TxOut{output}, 10); err != nil {
return err
}
}
// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
// how many confs we wait before opening a channel.
// Generate 10 blocks with the mining node, this should mine all
// numOutputs transactions created above. We generate 10 blocks here
// in order to give all the outputs a "sufficient" number of confirmations.
if _, err := miner.Node.Generate(10); err != nil {
return err
}
// Wait until the wallet has finished syncing up to the main chain.
ticker := time.NewTicker(100 * time.Millisecond)
timeout := time.After(30 * time.Second)
for range ticker.C {
balance, err := w.ConfirmedBalance(1)
if err != nil {
return err
}
if balance == expectedBalance {
break
}
select {
case <-timeout:
synced, _, err := w.IsSynced()
if err != nil {
return err
}
return fmt.Errorf("timed out after 30 seconds "+
"waiting for balance %v, current balance %v, "+
"synced: %t", expectedBalance, balance, synced)
default:
}
}
ticker.Stop()
return nil
}
// createTestWallet creates a test LightningWallet will a total of 20BTC
// available for funding channels.
func createTestWallet(tempTestDir string, miningNode *rpctest.Harness,
netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier,
wc lnwallet.WalletController, keyRing keychain.SecretKeyRing,
signer lnwallet.Signer, bio lnwallet.BlockChainIO) (*lnwallet.LightningWallet, error) {
dbDir := filepath.Join(tempTestDir, "cdb")
cdb, err := channeldb.Open(dbDir)
if err != nil {
return nil, err
}
cfg := lnwallet.Config{
Database: cdb,
Notifier: notifier,
SecretKeyRing: keyRing,
WalletController: wc,
Signer: signer,
ChainIO: bio,
FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 10},
DefaultConstraints: channeldb.ChannelConstraints{
DustLimit: 500,
MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100,
ChanReserve: 100,
MinHTLC: 400,
MaxAcceptedHtlcs: 900,
},
NetParams: *netParams,
}
wallet, err := lnwallet.NewLightningWallet(cfg)
if err != nil {
return nil, err
}
if err := wallet.Startup(); err != nil {
return nil, err
}
// Load our test wallet with 20 outputs each holding 4BTC.
if err := loadTestCredits(miningNode, wallet, 20, 4); err != nil {
return nil, err
}
return wallet, nil
}
func testDualFundingReservationWorkflow(miner *rpctest.Harness,
alice, bob *lnwallet.LightningWallet, t *testing.T) {
fundingAmount, err := btcutil.NewAmount(5)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
// In this scenario, we'll test a dual funder reservation, with each
// side putting in 10 BTC.
// Alice initiates a channel funded with 5 BTC for each side, so 10 BTC
// total. She also generates 2 BTC in change.
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
aliceChanReservation, err := alice.InitChannelReservation(
fundingAmount*2, fundingAmount, 0, feePerKw, feeRate,
bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
aliceChanReservation.SetNumConfsRequired(numReqConfs)
err = aliceChanReservation.CommitConstraints(
csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmount), 1, fundingAmount/100,
lnwallet.DefaultDustLimit(),
)
if err != nil {
t.Fatalf("unable to verify constraints: %v", err)
}
// The channel reservation should now be populated with a multi-sig key
// from our HD chain, a change output with 3 BTC, and 2 outputs
// selected of 4 BTC each. Additionally, the rest of the items needed
// to fulfill a funding contribution should also have been filled in.
aliceContribution := aliceChanReservation.OurContribution()
if len(aliceContribution.Inputs) != 2 {
t.Fatalf("outputs for funding tx not properly selected, have %v "+
"outputs should have 2", len(aliceContribution.Inputs))
}
assertContributionInitPopulated(t, aliceContribution)
// Bob does the same, generating his own contribution. He then also
// receives' Alice's contribution, and consumes that so we can continue
// the funding process.
bobChanReservation, err := bob.InitChannelReservation(fundingAmount*2,
fundingAmount, 0, feePerKw, feeRate, alicePub, aliceAddr,
chainHash, lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("bob unable to init channel reservation: %v", err)
}
err = bobChanReservation.CommitConstraints(
csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmount), 1, fundingAmount/100,
lnwallet.DefaultDustLimit(),
)
if err != nil {
t.Fatalf("unable to verify constraints: %v", err)
}
bobChanReservation.SetNumConfsRequired(numReqConfs)
assertContributionInitPopulated(t, bobChanReservation.OurContribution())
err = bobChanReservation.ProcessContribution(aliceContribution)
if err != nil {
t.Fatalf("bob unable to process alice's contribution: %v", err)
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
bobContribution := bobChanReservation.OurContribution()
// Bob then sends over his contribution, which will be consumed by
// Alice. After this phase, Alice should have all the necessary
// material required to craft the funding transaction and commitment
// transactions.
err = aliceChanReservation.ProcessContribution(bobContribution)
if err != nil {
t.Fatalf("alice unable to process bob's contribution: %v", err)
}
assertContributionInitPopulated(t, aliceChanReservation.TheirContribution())
// At this point, all Alice's signatures should be fully populated.
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
if aliceFundingSigs == nil {
t.Fatalf("alice's funding signatures not populated")
}
if aliceCommitSig == nil {
t.Fatalf("alice's commit signatures not populated")
}
// Additionally, Bob's signatures should also be fully populated.
bobFundingSigs, bobCommitSig := bobChanReservation.OurSignatures()
if bobFundingSigs == nil {
t.Fatalf("bob's funding signatures not populated")
}
if bobCommitSig == nil {
t.Fatalf("bob's commit signatures not populated")
}
// To conclude, we'll consume first Alice's signatures with Bob, and
// then the other way around.
_, err = aliceChanReservation.CompleteReservation(
bobFundingSigs, bobCommitSig,
)
if err != nil {
for _, in := range aliceChanReservation.FinalFundingTx().TxIn {
fmt.Println(in.PreviousOutPoint.String())
}
t.Fatalf("unable to consume alice's sigs: %v", err)
}
_, err = bobChanReservation.CompleteReservation(
aliceFundingSigs, aliceCommitSig,
)
if err != nil {
t.Fatalf("unable to consume bob's sigs: %v", err)
}
// At this point, the funding tx should have been populated.
fundingTx := aliceChanReservation.FinalFundingTx()
if fundingTx == nil {
t.Fatalf("funding transaction never created!")
}
// The resulting active channel state should have been persisted to the
// DB.
fundingSha := fundingTx.TxHash()
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved")
}
if aliceChannels[0].ChanType != channeldb.DualFunder {
t.Fatalf("channel not detected as dual funder")
}
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved")
}
if bobChannels[0].ChanType != channeldb.DualFunder {
t.Fatalf("channel not detected as dual funder")
}
// Mine a single block, the funding transaction should be included
// within this block.
err = waitForMempoolTx(miner, &fundingSha)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
blockHashes, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := miner.Node.GetBlock(blockHashes[0])
if err != nil {
t.Fatalf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
t.Fatalf("funding transaction wasn't mined: %v", err)
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != fundingSha {
t.Fatalf("incorrect transaction was mined")
}
assertReservationDeleted(aliceChanReservation, t)
assertReservationDeleted(bobChanReservation, t)
// Wait for wallets to catch up to prevent issues in subsequent tests.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("unable to sync alice: %v", err)
}
err = waitForWalletSync(miner, bob)
if err != nil {
t.Fatalf("unable to sync bob: %v", err)
}
}
func testFundingTransactionLockedOutputs(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// Create a single channel asking for 16 BTC total.
fundingAmount, err := btcutil.NewAmount(8)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
_, err = alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel,
)
if err != nil {
t.Fatalf("unable to initialize funding reservation 1: %v", err)
}
// Now attempt to reserve funds for another channel, this time
// requesting 900 BTC. We only have around 64BTC worth of outpoints
// that aren't locked, so this should fail.
amt, err := btcutil.NewAmount(900)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
failedReservation, err := alice.InitChannelReservation(amt, amt, 0,
feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err == nil {
t.Fatalf("not error returned, should fail on coin selection")
}
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
t.Fatalf("error not coinselect error: %v", err)
}
if failedReservation != nil {
t.Fatalf("reservation should be nil")
}
}
func testFundingCancellationNotEnoughFunds(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
// Create a reservation for 44 BTC.
fundingAmount, err := btcutil.NewAmount(44)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
chanReservation, err := alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
// Attempt to create another channel with 44 BTC, this should fail.
_, err = alice.InitChannelReservation(fundingAmount,
fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel,
)
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
t.Fatalf("coin selection succeeded should have insufficient funds: %v",
err)
}
// Now cancel that old reservation.
if err := chanReservation.Cancel(); err != nil {
t.Fatalf("unable to cancel reservation: %v", err)
}
// Those outpoints should no longer be locked.
lockedOutPoints := alice.LockedOutpoints()
if len(lockedOutPoints) != 0 {
t.Fatalf("outpoints still locked")
}
// Reservation ID should no longer be tracked.
numReservations := alice.ActiveReservations()
if len(alice.ActiveReservations()) != 0 {
t.Fatalf("should have 0 reservations, instead have %v",
numReservations)
}
// TODO(roasbeef): create method like Balance that ignores locked
// outpoints, will let us fail early/fast instead of querying and
// attempting coin selection.
// Request to fund a new channel should now succeed.
_, err = alice.InitChannelReservation(fundingAmount, fundingAmount,
0, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to initialize funding reservation: %v", err)
}
}
func testCancelNonExistentReservation(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
// Create our own reservation, give it some ID.
res, err := lnwallet.NewChannelReservation(
10000, 10000, feeRate.FeePerKWeight(), alice,
22, 10, &testHdSeed, lnwire.FFAnnounceChannel,
)
if err != nil {
t.Fatalf("unable to create res: %v", err)
}
// Attempt to cancel this reservation. This should fail, we know
// nothing of it.
if err := res.Cancel(); err == nil {
t.Fatalf("cancelled non-existent reservation")
}
}
func testReservationInitiatorBalanceBelowDustCancel(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// We'll attempt to create a new reservation with an extremely high fee
// rate. This should push our balance into the negative and result in a
// failure to create the reservation.
fundingAmount, err := btcutil.NewAmount(4)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
feePerVSize := lnwallet.SatPerVByte(btcutil.SatoshiPerBitcoin * 4 / 100)
feePerKw := feePerVSize.FeePerKWeight()
_, err = alice.InitChannelReservation(
fundingAmount, fundingAmount, 0, feePerKw, feePerVSize, bobPub,
bobAddr, chainHash, lnwire.FFAnnounceChannel,
)
switch {
case err == nil:
t.Fatalf("initialization should have failed due to " +
"insufficient local amount")
case !strings.Contains(err.Error(), "Funder balance too small"):
t.Fatalf("incorrect error: %v", err)
}
}
func assertContributionInitPopulated(t *testing.T, c *lnwallet.ChannelContribution) {
_, _, line, _ := runtime.Caller(1)
if c.FirstCommitmentPoint == nil {
t.Fatalf("line #%v: commitment point not fond", line)
}
if c.CsvDelay == 0 {
t.Fatalf("line #%v: csv delay not set", line)
}
if c.MultiSigKey.PubKey == nil {
t.Fatalf("line #%v: multi-sig key not set", line)
}
if c.RevocationBasePoint.PubKey == nil {
t.Fatalf("line #%v: revocation key not set", line)
}
if c.PaymentBasePoint.PubKey == nil {
t.Fatalf("line #%v: payment key not set", line)
}
if c.DelayBasePoint.PubKey == nil {
t.Fatalf("line #%v: delay key not set", line)
}
if c.DustLimit == 0 {
t.Fatalf("line #%v: dust limit not set", line)
}
if c.MaxPendingAmount == 0 {
t.Fatalf("line #%v: max pending amt not set", line)
}
if c.ChanReserve == 0 {
t.Fatalf("line #%v: chan reserve not set", line)
}
if c.MinHTLC == 0 {
t.Fatalf("line #%v: min htlc not set", line)
}
if c.MaxAcceptedHtlcs == 0 {
t.Fatalf("line #%v: max accepted htlc's not set", line)
}
}
func testSingleFunderReservationWorkflow(miner *rpctest.Harness,
alice, bob *lnwallet.LightningWallet, t *testing.T) {
// For this scenario, Alice will be the channel initiator while bob
// will act as the responder to the workflow.
// First, Alice will Initialize a reservation for a channel with 4 BTC
// funded solely by us. We'll also initially push 1 BTC of the channel
// towards Bob's side.
fundingAmt, err := btcutil.NewAmount(4)
if err != nil {
t.Fatalf("unable to create amt: %v", err)
}
pushAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1)
if err != nil {
t.Fatalf("unable to query fee estimator: %v", err)
}
feePerKw := feeRate.FeePerKWeight()
aliceChanReservation, err := alice.InitChannelReservation(fundingAmt,
fundingAmt, pushAmt, feePerKw, feeRate, bobPub, bobAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to init channel reservation: %v", err)
}
aliceChanReservation.SetNumConfsRequired(numReqConfs)
err = aliceChanReservation.CommitConstraints(
csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmt), 1, fundingAmt/100,
lnwallet.DefaultDustLimit(),
)
if err != nil {
t.Fatalf("unable to verify constraints: %v", err)
}
// Verify all contribution fields have been set properly.
aliceContribution := aliceChanReservation.OurContribution()
if len(aliceContribution.Inputs) < 1 {
t.Fatalf("outputs for funding tx not properly selected, have %v "+
"outputs should at least 1", len(aliceContribution.Inputs))
}
if len(aliceContribution.ChangeOutputs) != 1 {
t.Fatalf("coin selection failed, should have one change outputs, "+
"instead have: %v", len(aliceContribution.ChangeOutputs))
}
assertContributionInitPopulated(t, aliceContribution)
// Next, Bob receives the initial request, generates a corresponding
// reservation initiation, then consume Alice's contribution.
bobChanReservation, err := bob.InitChannelReservation(fundingAmt, 0,
pushAmt, feePerKw, feeRate, alicePub, aliceAddr, chainHash,
lnwire.FFAnnounceChannel)
if err != nil {
t.Fatalf("unable to create bob reservation: %v", err)
}
err = bobChanReservation.CommitConstraints(
csvDelay, lnwallet.MaxHTLCNumber/2,
lnwire.NewMSatFromSatoshis(fundingAmt), 1, fundingAmt/100,
lnwallet.DefaultDustLimit(),
)
if err != nil {
t.Fatalf("unable to verify constraints: %v", err)
}
bobChanReservation.SetNumConfsRequired(numReqConfs)
// We'll ensure that Bob's contribution also gets generated properly.
bobContribution := bobChanReservation.OurContribution()
assertContributionInitPopulated(t, bobContribution)
// With his contribution generated, he can now process Alice's
// contribution.
err = bobChanReservation.ProcessSingleContribution(aliceContribution)
if err != nil {
t.Fatalf("bob unable to process alice's contribution: %v", err)
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
// Bob will next send over his contribution to Alice, we simulate this
// by having Alice immediately process his contribution.
err = aliceChanReservation.ProcessContribution(bobContribution)
if err != nil {
t.Fatalf("alice unable to process bob's contribution")
}
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
// At this point, Alice should have generated all the signatures
// required for the funding transaction, as well as Alice's commitment
// signature to bob.
aliceRemoteContribution := aliceChanReservation.TheirContribution()
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
if aliceFundingSigs == nil {
t.Fatalf("funding sigs not found")
}
if aliceCommitSig == nil {
t.Fatalf("commitment sig not found")
}
// Additionally, the funding tx and the funding outpoint should have
// been populated.
if aliceChanReservation.FinalFundingTx() == nil {
t.Fatalf("funding transaction never created!")
}
if aliceChanReservation.FundingOutpoint() == nil {
t.Fatalf("funding outpoint never created!")
}
// Their funds should also be filled in.
if len(aliceRemoteContribution.Inputs) != 0 {
t.Fatalf("bob shouldn't have any inputs, instead has %v",
len(aliceRemoteContribution.Inputs))
}
if len(aliceRemoteContribution.ChangeOutputs) != 0 {
t.Fatalf("bob shouldn't have any change outputs, instead "+
"has %v",
aliceRemoteContribution.ChangeOutputs[0].Value)
}
// Next, Alice will send over her signature for Bob's commitment
// transaction, as well as the funding outpoint.
fundingPoint := aliceChanReservation.FundingOutpoint()
_, err = bobChanReservation.CompleteReservationSingle(
fundingPoint, aliceCommitSig,
)
if err != nil {
t.Fatalf("bob unable to consume single reservation: %v", err)
}
// Finally, we'll conclude the reservation process by sending over
// Bob's commitment signature, which is the final thing Alice needs to
// be able to safely broadcast the funding transaction.
_, bobCommitSig := bobChanReservation.OurSignatures()
if bobCommitSig == nil {
t.Fatalf("bob failed to generate commitment signature: %v", err)
}
_, err = aliceChanReservation.CompleteReservation(
nil, bobCommitSig,
)
if err != nil {
t.Fatalf("alice unable to complete reservation: %v", err)
}
// The resulting active channel state should have been persisted to the
// DB for both Alice and Bob.
fundingTx := aliceChanReservation.FinalFundingTx()
fundingSha := fundingTx.TxHash()
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if len(aliceChannels) != 1 {
t.Fatalf("alice didn't save channel state: %v", err)
}
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved: %v vs %v",
hex.EncodeToString(aliceChannels[0].FundingOutpoint.Hash[:]),
hex.EncodeToString(fundingSha[:]))
}
if !aliceChannels[0].IsInitiator {
t.Fatalf("alice not detected as channel initiator")
}
if aliceChannels[0].ChanType != channeldb.SingleFunder {
t.Fatalf("channel type is incorrect, expected %v instead got %v",
channeldb.SingleFunder, aliceChannels[0].ChanType)
}
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to retrieve channel from DB: %v", err)
}
if len(bobChannels) != 1 {
t.Fatalf("bob didn't save channel state: %v", err)
}
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
t.Fatalf("channel state not properly saved: %v vs %v",
hex.EncodeToString(bobChannels[0].FundingOutpoint.Hash[:]),
hex.EncodeToString(fundingSha[:]))
}
if bobChannels[0].IsInitiator {
t.Fatalf("bob not detected as channel responder")
}
if bobChannels[0].ChanType != channeldb.SingleFunder {
t.Fatalf("channel type is incorrect, expected %v instead got %v",
channeldb.SingleFunder, bobChannels[0].ChanType)
}
// Mine a single block, the funding transaction should be included
// within this block.
err = waitForMempoolTx(miner, &fundingSha)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
blockHashes, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate block: %v", err)
}
block, err := miner.Node.GetBlock(blockHashes[0])
if err != nil {
t.Fatalf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
t.Fatalf("funding transaction wasn't mined: %d",
len(block.Transactions))
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != fundingSha {
t.Fatalf("incorrect transaction was mined")
}
assertReservationDeleted(aliceChanReservation, t)
assertReservationDeleted(bobChanReservation, t)
}
func testListTransactionDetails(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// Create 5 new outputs spendable by the wallet.
const numTxns = 5
const outputAmt = btcutil.SatoshiPerBitcoin
txids := make(map[chainhash.Hash]struct{})
for i := 0; i < numTxns; i++ {
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{
Value: outputAmt,
PkScript: script,
}
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
txids[*txid] = struct{}{}
}
// Generate 10 blocks to mine all the transactions created above.
const numBlocksMined = 10
blocks, err := miner.Node.Generate(numBlocksMined)
if err != nil {
t.Fatalf("unable to mine blocks: %v", err)
}
// Next, fetch all the current transaction details.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
}
txDetails, err := alice.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
// This is a mapping from:
// blockHash -> transactionHash -> transactionOutputs
blockTxOuts := make(map[chainhash.Hash]map[chainhash.Hash][]*wire.TxOut)
// Each of the transactions created above should be found with the
// proper details populated.
for _, txDetail := range txDetails {
if _, ok := txids[txDetail.Hash]; !ok {
continue
}
if txDetail.NumConfirmations != numBlocksMined {
t.Fatalf("num confs incorrect, got %v expected %v",
txDetail.NumConfirmations, numBlocksMined)
}
if txDetail.Value != outputAmt {
t.Fatalf("tx value incorrect, got %v expected %v",
txDetail.Value, outputAmt)
}
if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) {
t.Fatalf("block hash mismatch, got %v expected %v",
txDetail.BlockHash, blocks[0])
}
// This fetches the transactions in a block so that we can compare the
// txouts stored in the mined transaction against the ones in the transaction
// details
if _, ok := blockTxOuts[*txDetail.BlockHash]; !ok {
fetchedBlock, err := alice.Cfg.ChainIO.GetBlock(txDetail.BlockHash)
if err != nil {
t.Fatalf("err fetching block: %s", err)
}
transactions :=
make(map[chainhash.Hash][]*wire.TxOut, len(fetchedBlock.Transactions))
for _, tx := range fetchedBlock.Transactions {
transactions[tx.TxHash()] = tx.TxOut
}
blockTxOuts[fetchedBlock.BlockHash()] = transactions
}
if txOuts, ok := blockTxOuts[*txDetail.BlockHash][txDetail.Hash]; !ok {
t.Fatalf("tx (%v) not found in block (%v)",
txDetail.Hash, txDetail.BlockHash)
} else {
var destinationAddresses []btcutil.Address
for _, txOut := range txOuts {
_, addrs, _, err :=
txscript.ExtractPkScriptAddrs(txOut.PkScript, &alice.Cfg.NetParams)
if err != nil {
t.Fatalf("err extract script addresses: %s", err)
}
destinationAddresses = append(destinationAddresses, addrs...)
}
if !reflect.DeepEqual(txDetail.DestAddresses, destinationAddresses) {
t.Fatalf("destination addresses mismatch, got %v expected %v",
txDetail.DestAddresses, destinationAddresses)
}
}
delete(txids, txDetail.Hash)
}
if len(txids) != 0 {
t.Fatalf("all transactions not found in details!")
}
// Next create a transaction paying to an output which isn't under the
// wallet's control.
b := txscript.NewScriptBuilder()
b.AddOp(txscript.OP_0)
outputScript, err := b.Script()
if err != nil {
t.Fatalf("unable to make output script: %v", err)
}
burnOutput := wire.NewTxOut(outputAmt, outputScript)
burnTXID, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 10)
if err != nil {
t.Fatalf("unable to create burn tx: %v", err)
}
err = waitForMempoolTx(miner, burnTXID)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
burnBlock, err := miner.Node.Generate(1)
if err != nil {
t.Fatalf("unable to mine block: %v", err)
}
// Fetch the transaction details again, the new transaction should be
// shown as debiting from the wallet's balance.
err = waitForWalletSync(miner, alice)
if err != nil {
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
}
txDetails, err = alice.ListTransactionDetails()
if err != nil {
t.Fatalf("unable to fetch tx details: %v", err)
}
var burnTxFound bool
for _, txDetail := range txDetails {
if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
continue
}
burnTxFound = true
if txDetail.NumConfirmations != 1 {
t.Fatalf("num confs incorrect, got %v expected %v",
txDetail.NumConfirmations, 1)
}
// We assert that the value is greater than the amount we
// attempted to send, as the wallet should have paid some amount
// of network fees.
if txDetail.Value >= -outputAmt {
fmt.Println(spew.Sdump(txDetail))
t.Fatalf("tx value incorrect, got %v expected %v",
int64(txDetail.Value), -int64(outputAmt))
}
if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) {
t.Fatalf("block hash mismatch, got %v expected %v",
txDetail.BlockHash, burnBlock[0])
}
}
if !burnTxFound {
t.Fatal("tx burning btc not found")
}
}
func testTransactionSubscriptions(miner *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// First, check to see if this wallet meets the TransactionNotifier
// interface, if not then we'll skip this test for this particular
// implementation of the WalletController.
txClient, err := alice.SubscribeTransactions()
if err != nil {
t.Skipf("unable to generate tx subscription: %v", err)
}
defer txClient.Cancel()
const (
outputAmt = btcutil.SatoshiPerBitcoin
numTxns = 3
)
unconfirmedNtfns := make(chan struct{})
switch alice.BackEnd() {
case "neutrino":
// Neutrino doesn't listen for unconfirmed transactions.
default:
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.UnconfirmedTransactions()
if txDetail.NumConfirmations != 0 {
t.Fatalf("incorrect number of confs, "+
"expected %v got %v", 0,
txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, "+
"expected %v got %v", outputAmt,
txDetail.Value)
}
if txDetail.BlockHash != nil {
t.Fatalf("block hash should be nil, "+
"is instead %v",
txDetail.BlockHash)
}
}
close(unconfirmedNtfns)
}()
}
// Next, fetch a fresh address from the wallet, create 3 new outputs
// with the pkScript.
for i := 0; i < numTxns; i++ {
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
if err != nil {
t.Fatalf("unable to create new address: %v", err)
}
script, err := txscript.PayToAddrScript(addr)
if err != nil {
t.Fatalf("unable to create output script: %v", err)
}
output := &wire.TxOut{
Value: outputAmt,
PkScript: script,
}
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send coinbase: %v", err)
}
err = waitForMempoolTx(miner, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
}
switch alice.BackEnd() {
case "neutrino":
// Neutrino doesn't listen for on unconfirmed transactions.
default:
// We should receive a notification for all three transactions
// generated above.
select {
case <-time.After(time.Second * 10):
t.Fatalf("transactions not received after 10 seconds")
case <-unconfirmedNtfns: // Fall through on successs
}
}
confirmedNtfns := make(chan struct{})
go func() {
for i := 0; i < numTxns; i++ {
txDetail := <-txClient.ConfirmedTransactions()
if txDetail.NumConfirmations != 1 {
t.Fatalf("incorrect number of confs for %s, expected %v got %v",
txDetail.Hash, 1, txDetail.NumConfirmations)
}
if txDetail.Value != outputAmt {
t.Fatalf("incorrect output amt, expected %v got %v in txid %s",
outputAmt, txDetail.Value, txDetail.Hash)
}
}
close(confirmedNtfns)
}()
// Next mine a single block, all the transactions generated above
// should be included.
if _, err := miner.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We should receive a notification for all three transactions
// since they should be mined in the next block.
select {
case <-time.After(time.Second * 5):
t.Fatalf("transactions not received after 5 seconds")
case <-confirmedNtfns: // Fall through on success
}
}
// testPublishTransaction checks that PublishTransaction returns the
// expected error types in case the transaction being published
// conflicts with the current mempool or chain.
func testPublishTransaction(r *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// mineAndAssert mines a block and ensures the passed TX
// is part of that block.
mineAndAssert := func(tx *wire.MsgTx) error {
blockHashes, err := r.Node.Generate(1)
if err != nil {
return fmt.Errorf("unable to generate block: %v", err)
}
block, err := r.Node.GetBlock(blockHashes[0])
if err != nil {
return fmt.Errorf("unable to find block: %v", err)
}
if len(block.Transactions) != 2 {
return fmt.Errorf("expected 2 txs in block, got %d",
len(block.Transactions))
}
blockTx := block.Transactions[1]
if blockTx.TxHash() != tx.TxHash() {
return fmt.Errorf("incorrect transaction was mined")
}
// Sleep for a second before returning, to make sure the
// block has propagated.
time.Sleep(1 * time.Second)
return nil
}
// Generate a pubkey, and pay-to-addr script.
pubKey, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
pubkeyHash := btcutil.Hash160(pubKey.PubKey.SerializeCompressed())
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
keyScript, err := txscript.PayToAddrScript(keyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// txFromOutput takes a tx, and creates a new tx that spends
// the output from this tx, to an address derived from payToPubKey.
// NB: assumes that the output from tx is paid to pubKey.
txFromOutput := func(tx *wire.MsgTx, payToPubKey *btcec.PublicKey,
txFee btcutil.Amount) *wire.MsgTx {
// Create a script to pay to.
payToPubkeyHash := btcutil.Hash160(payToPubKey.SerializeCompressed())
payToKeyAddr, err := btcutil.NewAddressWitnessPubKeyHash(payToPubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
payToScript, err := txscript.PayToAddrScript(payToKeyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// We assume the output was paid to the keyScript made earlier.
var outputIndex uint32
if len(tx.TxOut) == 1 || bytes.Equal(tx.TxOut[0].PkScript, keyScript) {
outputIndex = 0
} else {
outputIndex = 1
}
outputValue := tx.TxOut[outputIndex].Value
// With the index located, we can create a transaction spending
// the referenced output.
tx1 := wire.NewMsgTx(2)
tx1.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: tx.TxHash(),
Index: outputIndex,
},
// We don't support RBF, so set sequence to max.
Sequence: wire.MaxTxInSequenceNum,
})
tx1.AddTxOut(&wire.TxOut{
Value: outputValue - int64(txFee),
PkScript: payToScript,
})
// Now we can populate the sign descriptor which we'll use to
// generate the signature.
signDesc := &lnwallet.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
PubKey: pubKey.PubKey,
},
WitnessScript: keyScript,
Output: tx.TxOut[outputIndex],
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(tx1),
InputIndex: 0, // Has only one input.
}
// With the descriptor created, we use it to generate a
// signature, then manually create a valid witness stack we'll
// use for signing.
spendSig, err := alice.Cfg.Signer.SignOutputRaw(tx1, signDesc)
if err != nil {
t.Fatalf("unable to generate signature: %v", err)
}
witness := make([][]byte, 2)
witness[0] = append(spendSig, byte(txscript.SigHashAll))
witness[1] = pubKey.PubKey.SerializeCompressed()
tx1.TxIn[0].Witness = witness
// Finally, attempt to validate the completed transaction. This
// should succeed if the wallet was able to properly generate
// the proper private key.
vm, err := txscript.NewEngine(keyScript,
tx1, 0, txscript.StandardVerifyFlags, nil,
nil, outputValue)
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("spend is invalid: %v", err)
}
return tx1
}
// newTx sends coins from Alice's wallet, mines this transaction,
// and creates a new, unconfirmed tx that spends this output to
// pubKey.
newTx := func() *wire.MsgTx {
// With the script fully assembled, instruct the wallet to fund
// the output with a newly created transaction.
newOutput := &wire.TxOut{
Value: btcutil.SatoshiPerBitcoin,
PkScript: keyScript,
}
txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10)
if err != nil {
t.Fatalf("unable to create output: %v", err)
}
// Query for the transaction generated above so we can located
// the index of our output.
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
tx, err := r.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
if err := mineAndAssert(tx.MsgTx()); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
txFee := btcutil.Amount(0.1 * btcutil.SatoshiPerBitcoin)
tx1 := txFromOutput(tx.MsgTx(), pubKey.PubKey, txFee)
return tx1
}
// We will first check that publishing a transaction already
// in the mempool does NOT return an error. Create the tx.
tx1 := newTx()
// Publish the transaction.
if err := alice.PublishTransaction(tx1); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid1 := tx1.TxHash()
err = waitForMempoolTx(r, &txid1)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Publish the exact same transaction again. This should
// not return an error, even though the transaction is
// already in the mempool.
if err := alice.PublishTransaction(tx1); err != nil {
t.Fatalf("unable to publish: %v", err)
}
// Mine the transaction.
if _, err := r.Node.Generate(1); err != nil {
t.Fatalf("unable to generate block: %v", err)
}
// We'll now test that we don't get an error if we try
// to publish a transaction that is already mined.
//
// Create a new transaction. We must do this to properly
// test the reject messages from our peers. They might
// only send us a reject message for a given tx once,
// so we create a new to make sure it is not just
// immediately rejected.
tx2 := newTx()
// Publish this tx.
if err := alice.PublishTransaction(tx2); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid2 := tx2.TxHash()
err = waitForMempoolTx(r, &txid2)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Mine the transaction.
if err := mineAndAssert(tx2); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Publish the transaction again. It is already mined,
// and we don't expect this to return an error.
if err := alice.PublishTransaction(tx2); err != nil {
t.Fatalf("unable to publish: %v", err)
}
// Now we'll try to double spend an output with a different
// transaction. Create a new tx and publish it. This is
// the output we'll try to double spend.
tx3 := newTx()
if err := alice.PublishTransaction(tx3); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid3 := tx3.TxHash()
err = waitForMempoolTx(r, &txid3)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Mine the transaction.
if err := mineAndAssert(tx3); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Now we create a transaction that spends the output
// from the tx just mined. This should be accepted
// into the mempool.
txFee := btcutil.Amount(0.05 * btcutil.SatoshiPerBitcoin)
tx4 := txFromOutput(tx3, pubKey.PubKey, txFee)
if err := alice.PublishTransaction(tx4); err != nil {
t.Fatalf("unable to publish: %v", err)
}
txid4 := tx4.TxHash()
err = waitForMempoolTx(r, &txid4)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
// Create a new key we'll pay to, to ensure we create
// a unique transaction.
pubKey2, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
// Create a new transaction that spends the output from
// tx3, and that pays to a different address. We expect
// this to be rejected because it is a double spend.
tx5 := txFromOutput(tx3, pubKey2.PubKey, txFee)
if err := alice.PublishTransaction(tx5); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
// Create another transaction that spends the same output,
// but has a higher fee. We expect also this tx to be
// rejected, since the sequence number of tx3 is set to Max,
// indicating it is not replacable.
pubKey3, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
tx6 := txFromOutput(tx3, pubKey3.PubKey, 3*txFee)
// Expect rejection.
if err := alice.PublishTransaction(tx6); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
// At last we try to spend an output already spent by a
// confirmed transaction.
// TODO(halseth): we currently skip this test for neutrino,
// as the backing btcd node will consider the tx being an
// orphan, and will accept it. Should look into if this is
// the behavior also for bitcoind, and update test
// accordingly.
if alice.BackEnd() != "neutrino" {
// Mine the tx spending tx3.
if err := mineAndAssert(tx4); err != nil {
t.Fatalf("unable to mine tx: %v", err)
}
// Create another tx spending tx3.
pubKey4, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
tx7 := txFromOutput(tx3, pubKey4.PubKey, txFee)
// Expect rejection.
if err := alice.PublishTransaction(tx7); err != lnwallet.ErrDoubleSpend {
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
}
}
// TODO(halseth): test replaceable transactions when btcd
// gets RBF support.
}
func testSignOutputUsingTweaks(r *rpctest.Harness,
alice, _ *lnwallet.LightningWallet, t *testing.T) {
// We'd like to test the ability of the wallet's Signer implementation
// to be able to sign with a private key derived from tweaking the
// specific public key. This scenario exercises the case when the
// wallet needs to sign for a sweep of a revoked output, or just claim
// any output that pays to a tweaked key.
// First, generate a new public key under the control of the wallet,
// then generate a revocation key using it.
pubKey, err := alice.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
t.Fatalf("unable to obtain public key: %v", err)
}
// As we'd like to test both single tweak, and double tweak spends,
// we'll generate a commitment pre-image, then derive a revocation key
// and single tweak from that.
commitPreimage := bytes.Repeat([]byte{2}, 32)
commitSecret, commitPoint := btcec.PrivKeyFromBytes(btcec.S256(),
commitPreimage)
revocationKey := lnwallet.DeriveRevocationPubkey(pubKey.PubKey, commitPoint)
commitTweak := lnwallet.SingleTweakBytes(commitPoint, pubKey.PubKey)
tweakedPub := lnwallet.TweakPubKey(pubKey.PubKey, commitPoint)
// As we'd like to test both single and double tweaks, we'll repeat
// the same set up twice. The first will use a regular single tweak,
// and the second will use a double tweak.
baseKey := pubKey
for i := 0; i < 2; i++ {
var tweakedKey *btcec.PublicKey
if i == 0 {
tweakedKey = tweakedPub
} else {
tweakedKey = revocationKey
}
// Using the given key for the current iteration, we'll
// generate a regular p2wkh from that.
pubkeyHash := btcutil.Hash160(tweakedKey.SerializeCompressed())
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash,
&chaincfg.RegressionNetParams)
if err != nil {
t.Fatalf("unable to create addr: %v", err)
}
keyScript, err := txscript.PayToAddrScript(keyAddr)
if err != nil {
t.Fatalf("unable to generate script: %v", err)
}
// With the script fully assembled, instruct the wallet to fund
// the output with a newly created transaction.
newOutput := &wire.TxOut{
Value: btcutil.SatoshiPerBitcoin,
PkScript: keyScript,
}
txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10)
if err != nil {
t.Fatalf("unable to create output: %v", err)
}
// Query for the transaction generated above so we can located
// the index of our output.
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
tx, err := r.Node.GetRawTransaction(txid)
if err != nil {
t.Fatalf("unable to query for tx: %v", err)
}
var outputIndex uint32
if bytes.Equal(tx.MsgTx().TxOut[0].PkScript, keyScript) {
outputIndex = 0
} else {
outputIndex = 1
}
// With the index located, we can create a transaction spending
// the referenced output.
sweepTx := wire.NewMsgTx(2)
sweepTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: tx.MsgTx().TxHash(),
Index: outputIndex,
},
})
sweepTx.AddTxOut(&wire.TxOut{
Value: 1000,
PkScript: keyScript,
})
// Now we can populate the sign descriptor which we'll use to
// generate the signature. Within the descriptor we set the
// private tweak value as the key in the script is derived
// based on this tweak value and the key we originally
// generated above.
signDesc := &lnwallet.SignDescriptor{
KeyDesc: keychain.KeyDescriptor{
PubKey: baseKey.PubKey,
},
WitnessScript: keyScript,
Output: newOutput,
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(sweepTx),
InputIndex: 0,
}
// If this is the first, loop, we'll use the generated single
// tweak, otherwise, we'll use the double tweak.
if i == 0 {
signDesc.SingleTweak = commitTweak
} else {
signDesc.DoubleTweak = commitSecret
}
// With the descriptor created, we use it to generate a
// signature, then manually create a valid witness stack we'll
// use for signing.
spendSig, err := alice.Cfg.Signer.SignOutputRaw(sweepTx, signDesc)
if err != nil {
t.Fatalf("unable to generate signature: %v", err)
}
witness := make([][]byte, 2)
witness[0] = append(spendSig, byte(txscript.SigHashAll))
witness[1] = tweakedKey.SerializeCompressed()
sweepTx.TxIn[0].Witness = witness
// Finally, attempt to validate the completed transaction. This
// should succeed if the wallet was able to properly generate
// the proper private key.
vm, err := txscript.NewEngine(keyScript,
sweepTx, 0, txscript.StandardVerifyFlags, nil,
nil, int64(btcutil.SatoshiPerBitcoin))
if err != nil {
t.Fatalf("unable to create engine: %v", err)
}
if err := vm.Execute(); err != nil {
t.Fatalf("spend #%v is invalid: %v", i, err)
}
}
}
func testReorgWalletBalance(r *rpctest.Harness, w *lnwallet.LightningWallet,
_ *lnwallet.LightningWallet, t *testing.T) {
// We first mine a few blocks to ensure any transactions still in the
// mempool confirm, and then get the original balance, before a
// reorganization that doesn't invalidate any existing transactions or
// create any new non-coinbase transactions. We'll then check if it's
// the same after the empty reorg.
_, err := r.Node.Generate(5)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
// Send some money from the miner to the wallet
err = loadTestCredits(r, w, 20, 4)
if err != nil {
t.Fatalf("unable to send money to lnwallet: %v", err)
}
// Send some money from the wallet back to the miner.
// Grab a fresh address from the miner to house this output.
minerAddr, err := r.NewAddress()
if err != nil {
t.Fatalf("unable to generate address for miner: %v", err)
}
script, err := txscript.PayToAddrScript(minerAddr)
if err != nil {
t.Fatalf("unable to create pay to addr script: %v", err)
}
output := &wire.TxOut{
Value: 1e8,
PkScript: script,
}
txid, err := w.SendOutputs([]*wire.TxOut{output}, 10)
if err != nil {
t.Fatalf("unable to send outputs: %v", err)
}
err = waitForMempoolTx(r, txid)
if err != nil {
t.Fatalf("tx not relayed to miner: %v", err)
}
_, err = r.Node.Generate(50)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
// Get the original balance.
origBalance, err := w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
// Now we cause a reorganization as follows.
// Step 1: create a new miner and start it.
r2, err := rpctest.New(r.ActiveNet, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
err = r2.SetUp(false, 0)
if err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
defer r2.TearDown()
newBalance, err := w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if origBalance != newBalance {
t.Fatalf("wallet balance incorrect, should have %v, "+
"instead have %v", origBalance, newBalance)
}
// Step 2: connect the miner to the passed miner and wait for
// synchronization.
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
if err != nil {
t.Fatalf("unable to connect mining nodes together: %v", err)
}
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks)
if err != nil {
t.Fatalf("unable to synchronize mining nodes: %v", err)
}
// Step 3: Do a set of reorgs by disconnecting the two miners, mining
// one block on the passed miner and two on the created miner,
// connecting them, and waiting for them to sync.
for i := 0; i < 5; i++ {
// Wait for disconnection
timeout := time.After(30 * time.Second)
stillConnected := true
var peers []btcjson.GetPeerInfoResult
for stillConnected {
// Allow for timeout
time.Sleep(100 * time.Millisecond)
select {
case <-timeout:
t.Fatalf("timeout waiting for miner disconnect")
default:
}
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANRemove)
if err != nil {
t.Fatalf("unable to disconnect mining nodes: %v",
err)
}
peers, err = r2.Node.GetPeerInfo()
if err != nil {
t.Fatalf("unable to get peer info: %v", err)
}
stillConnected = false
for _, peer := range peers {
if peer.Addr == r.P2PAddress() {
stillConnected = true
break
}
}
}
_, err = r.Node.Generate(2)
if err != nil {
t.Fatalf("unable to generate blocks on passed node: %v",
err)
}
_, err = r2.Node.Generate(3)
if err != nil {
t.Fatalf("unable to generate blocks on created node: %v",
err)
}
// Step 5: Reconnect the miners and wait for them to synchronize.
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
if err != nil {
switch err := err.(type) {
case *btcjson.RPCError:
if err.Code != -8 {
t.Fatalf("unable to connect mining "+
"nodes together: %v", err)
}
default:
t.Fatalf("unable to connect mining nodes "+
"together: %v", err)
}
}
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r},
rpctest.Blocks)
if err != nil {
t.Fatalf("unable to synchronize mining nodes: %v", err)
}
// Give wallet time to catch up.
err = waitForWalletSync(r, w)
if err != nil {
t.Fatalf("unable to sync wallet: %v", err)
}
}
// Now we check that the wallet balance stays the same.
newBalance, err = w.ConfirmedBalance(1)
if err != nil {
t.Fatalf("unable to query for balance: %v", err)
}
if origBalance != newBalance {
t.Fatalf("wallet balance incorrect, should have %v, "+
"instead have %v", origBalance, newBalance)
}
}
type walletTestCase struct {
name string
test func(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet,
test *testing.T)
}
var walletTests = []walletTestCase{
{
name: "insane fee reject",
test: testReservationInitiatorBalanceBelowDustCancel,
},
{
name: "single funding workflow",
test: testSingleFunderReservationWorkflow,
},
{
name: "dual funder workflow",
test: testDualFundingReservationWorkflow,
},
{
name: "output locking",
test: testFundingTransactionLockedOutputs,
},
{
name: "reservation insufficient funds",
test: testFundingCancellationNotEnoughFunds,
},
{
name: "transaction subscriptions",
test: testTransactionSubscriptions,
},
{
name: "transaction details",
test: testListTransactionDetails,
},
{
name: "publish transaction",
test: testPublishTransaction,
},
{
name: "signed with tweaked pubkeys",
test: testSignOutputUsingTweaks,
},
{
name: "test cancel non-existent reservation",
test: testCancelNonExistentReservation,
},
{
name: "reorg wallet balance",
test: testReorgWalletBalance,
},
}
func clearWalletStates(a, b *lnwallet.LightningWallet) error {
a.ResetReservations()
b.ResetReservations()
if err := a.Cfg.Database.Wipe(); err != nil {
return err
}
return b.Cfg.Database.Wipe()
}
func waitForMempoolTx(r *rpctest.Harness, txid *chainhash.Hash) error {
var found bool
var tx *btcutil.Tx
var err error
timeout := time.After(30 * time.Second)
for !found {
// Do a short wait
select {
case <-timeout:
return fmt.Errorf("timeout after 10s")
default:
}
time.Sleep(100 * time.Millisecond)
// Check for the harness' knowledge of the txid
tx, err = r.Node.GetRawTransaction(txid)
if err != nil {
switch e := err.(type) {
case *btcjson.RPCError:
if e.Code == btcjson.ErrRPCNoTxInfo {
continue
}
default:
}
return err
}
if tx != nil && tx.MsgTx().TxHash() == *txid {
found = true
}
}
return nil
}
func waitForWalletSync(r *rpctest.Harness, w *lnwallet.LightningWallet) error {
var (
synced bool
err error
bestHash, knownHash *chainhash.Hash
bestHeight, knownHeight int32
)
timeout := time.After(10 * time.Second)
for !synced {
// Do a short wait
select {
case <-timeout:
return fmt.Errorf("timeout after 30s")
case <-time.Tick(100 * time.Millisecond):
}
// Check whether the chain source of the wallet is caught up to
// the harness it's supposed to be catching up to.
bestHash, bestHeight, err = r.Node.GetBestBlock()
if err != nil {
return err
}
knownHash, knownHeight, err = w.Cfg.ChainIO.GetBestBlock()
if err != nil {
return err
}
if knownHeight != bestHeight {
continue
}
if *knownHash != *bestHash {
return fmt.Errorf("hash at height %d doesn't match: "+
"expected %s, got %s", bestHeight, bestHash,
knownHash)
}
// Check for synchronization.
synced, _, err = w.IsSynced()
if err != nil {
return err
}
}
return nil
}
// TestInterfaces tests all registered interfaces with a unified set of tests
// which exercise each of the required methods found within the WalletController
// interface.
//
// NOTE: In the future, when additional implementations of the WalletController
// interface have been implemented, in order to ensure the new concrete
// implementation is automatically tested, two steps must be undertaken. First,
// one needs add a "non-captured" (_) import from the new sub-package. This
// import should trigger an init() method within the package which registers
// the interface. Second, an additional case in the switch within the main loop
// below needs to be added which properly initializes the interface.
//
// TODO(roasbeef): purge bobNode in favor of dual lnwallet's
func TestLightningWallet(t *testing.T) {
t.Parallel()
// Initialize the harness around a btcd node which will serve as our
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set
// up this node with a chain length of 125, so we have plenty of BTC
// to play around with.
miningNode, err := rpctest.New(netParams, nil, nil)
if err != nil {
t.Fatalf("unable to create mining node: %v", err)
}
defer miningNode.TearDown()
if err := miningNode.SetUp(true, 25); err != nil {
t.Fatalf("unable to set up mining node: %v", err)
}
// Next mine enough blocks in order for segwit and the CSV package
// soft-fork to activate on RegNet.
numBlocks := netParams.MinerConfirmationWindow * 2
if _, err := miningNode.Node.Generate(numBlocks); err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
rpcConfig := miningNode.RPCConfig()
chainNotifier, err := btcdnotify.New(&rpcConfig)
if err != nil {
t.Fatalf("unable to create notifier: %v", err)
}
if err := chainNotifier.Start(); err != nil {
t.Fatalf("unable to start notifier: %v", err)
}
for _, walletDriver := range lnwallet.RegisteredWallets() {
for _, backEnd := range walletDriver.BackEnds() {
runTests(t, walletDriver, backEnd, miningNode,
rpcConfig, chainNotifier)
}
}
}
// runTests runs all of the tests for a single interface implementation and
// chain back-end combination. This makes it easier to use `defer` as well as
// factoring out the test logic from the loop which cycles through the
// interface implementations.
func runTests(t *testing.T, walletDriver *lnwallet.WalletDriver,
backEnd string, miningNode *rpctest.Harness,
rpcConfig rpcclient.ConnConfig,
chainNotifier *btcdnotify.BtcdNotifier) {
var (
bio lnwallet.BlockChainIO
aliceSigner lnwallet.Signer
bobSigner lnwallet.Signer
aliceKeyRing keychain.SecretKeyRing
bobKeyRing keychain.SecretKeyRing
aliceWalletController lnwallet.WalletController
bobWalletController lnwallet.WalletController
feeEstimator lnwallet.FeeEstimator
)
tempTestDirAlice, err := ioutil.TempDir("", "lnwallet")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
defer os.RemoveAll(tempTestDirAlice)
tempTestDirBob, err := ioutil.TempDir("", "lnwallet")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
defer os.RemoveAll(tempTestDirBob)
walletType := walletDriver.WalletType
switch walletType {
case "btcwallet":
var aliceClient, bobClient chain.Interface
switch backEnd {
case "btcd":
feeEstimator, err = lnwallet.NewBtcdFeeEstimator(
rpcConfig, 250)
if err != nil {
t.Fatalf("unable to create btcd fee estimator: %v",
err)
}
aliceClient, err = chain.NewRPCClient(netParams,
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
rpcConfig.Certificates, false, 20)
if err != nil {
t.Fatalf("unable to make chain rpc: %v", err)
}
bobClient, err = chain.NewRPCClient(netParams,
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
rpcConfig.Certificates, false, 20)
if err != nil {
t.Fatalf("unable to make chain rpc: %v", err)
}
case "neutrino":
feeEstimator = lnwallet.StaticFeeEstimator{FeeRate: 250}
// Set some package-level variable to speed up
// operation for tests.
neutrino.BanDuration = time.Millisecond * 100
neutrino.QueryTimeout = time.Millisecond * 500
neutrino.QueryNumRetries = 1
// Start Alice - open a database, start a neutrino
// instance, and initialize a btcwallet driver for it.
aliceDB, err := walletdb.Create("bdb",
tempTestDirAlice+"/neutrino.db")
if err != nil {
t.Fatalf("unable to create DB: %v", err)
}
defer aliceDB.Close()
aliceChain, err := neutrino.NewChainService(
neutrino.Config{
DataDir: tempTestDirAlice,
Database: aliceDB,
ChainParams: *netParams,
ConnectPeers: []string{
miningNode.P2PAddress(),
},
},
)
if err != nil {
t.Fatalf("unable to make neutrino: %v", err)
}
aliceChain.Start()
defer aliceChain.Stop()
aliceClient = chain.NewNeutrinoClient(
netParams, aliceChain,
)
// Start Bob - open a database, start a neutrino
// instance, and initialize a btcwallet driver for it.
bobDB, err := walletdb.Create("bdb",
tempTestDirBob+"/neutrino.db")
if err != nil {
t.Fatalf("unable to create DB: %v", err)
}
defer bobDB.Close()
bobChain, err := neutrino.NewChainService(
neutrino.Config{
DataDir: tempTestDirBob,
Database: bobDB,
ChainParams: *netParams,
ConnectPeers: []string{
miningNode.P2PAddress(),
},
},
)
if err != nil {
t.Fatalf("unable to make neutrino: %v", err)
}
bobChain.Start()
defer bobChain.Stop()
bobClient = chain.NewNeutrinoClient(
netParams, bobChain,
)
case "bitcoind":
feeEstimator, err = lnwallet.NewBitcoindFeeEstimator(
rpcConfig, 250)
if err != nil {
t.Fatalf("unable to create bitcoind fee estimator: %v",
err)
}
// Start a bitcoind instance.
tempBitcoindDir, err := ioutil.TempDir("", "bitcoind")
if err != nil {
t.Fatalf("unable to create temp directory: %v", err)
}
zmqBlockHost := "ipc:///" + tempBitcoindDir + "/blocks.socket"
zmqTxHost := "ipc:///" + tempBitcoindDir + "/tx.socket"
defer os.RemoveAll(tempBitcoindDir)
rpcPort := rand.Int()%(65536-1024) + 1024
bitcoind := exec.Command(
"bitcoind",
"-datadir="+tempBitcoindDir,
"-regtest",
"-connect="+miningNode.P2PAddress(),
"-txindex",
"-rpcauth=weks:469e9bb14ab2360f8e226efed5ca6f"+
"d$507c670e800a95284294edb5773b05544b"+
"220110063096c221be9933c82d38e1",
fmt.Sprintf("-rpcport=%d", rpcPort),
"-disablewallet",
"-zmqpubrawblock="+zmqBlockHost,
"-zmqpubrawtx="+zmqTxHost,
)
err = bitcoind.Start()
if err != nil {
t.Fatalf("couldn't start bitcoind: %v", err)
}
defer bitcoind.Wait()
defer bitcoind.Process.Kill()
// Wait for the bitcoind instance to start up.
time.Sleep(time.Second)
host := fmt.Sprintf("127.0.0.1:%d", rpcPort)
chainConn, err := chain.NewBitcoindConn(
netParams, host, "weks", "weks", zmqBlockHost,
zmqTxHost, 100*time.Millisecond,
)
if err != nil {
t.Fatalf("unable to establish connection to "+
"bitcoind: %v", err)
}
if err := chainConn.Start(); err != nil {
t.Fatalf("unable to establish connection to "+
"bitcoind: %v", err)
}
defer chainConn.Stop()
// Create a btcwallet bitcoind client for both Alice and
// Bob.
aliceClient = chainConn.NewBitcoindClient(time.Unix(0, 0))
bobClient = chainConn.NewBitcoindClient(time.Unix(0, 0))
default:
t.Fatalf("unknown chain driver: %v", backEnd)
}
aliceWalletConfig := &btcwallet.Config{
PrivatePass: []byte("alice-pass"),
HdSeed: aliceHDSeed[:],
DataDir: tempTestDirAlice,
NetParams: netParams,
ChainSource: aliceClient,
FeeEstimator: feeEstimator,
CoinType: keychain.CoinTypeTestnet,
}
aliceWalletController, err = walletDriver.New(aliceWalletConfig)
if err != nil {
t.Fatalf("unable to create btcwallet: %v", err)
}
aliceSigner = aliceWalletController.(*btcwallet.BtcWallet)
aliceKeyRing = keychain.NewBtcWalletKeyRing(
aliceWalletController.(*btcwallet.BtcWallet).InternalWallet(),
keychain.CoinTypeTestnet,
)
bobWalletConfig := &btcwallet.Config{
PrivatePass: []byte("bob-pass"),
HdSeed: bobHDSeed[:],
DataDir: tempTestDirBob,
NetParams: netParams,
ChainSource: bobClient,
FeeEstimator: feeEstimator,
CoinType: keychain.CoinTypeTestnet,
}
bobWalletController, err = walletDriver.New(bobWalletConfig)
if err != nil {
t.Fatalf("unable to create btcwallet: %v", err)
}
bobSigner = bobWalletController.(*btcwallet.BtcWallet)
bobKeyRing = keychain.NewBtcWalletKeyRing(
bobWalletController.(*btcwallet.BtcWallet).InternalWallet(),
keychain.CoinTypeTestnet,
)
bio = bobWalletController.(*btcwallet.BtcWallet)
default:
t.Fatalf("unknown wallet driver: %v", walletType)
}
// Funding via 20 outputs with 4BTC each.
alice, err := createTestWallet(
tempTestDirAlice, miningNode, netParams,
chainNotifier, aliceWalletController, aliceKeyRing,
aliceSigner, bio,
)
if err != nil {
t.Fatalf("unable to create test ln wallet: %v", err)
}
defer alice.Shutdown()
bob, err := createTestWallet(
tempTestDirBob, miningNode, netParams,
chainNotifier, bobWalletController, bobKeyRing,
bobSigner, bio,
)
if err != nil {
t.Fatalf("unable to create test ln wallet: %v", err)
}
defer bob.Shutdown()
// Both wallets should now have 80BTC available for
// spending.
assertProperBalance(t, alice, 1, 80)
assertProperBalance(t, bob, 1, 80)
// Execute every test, clearing possibly mutated
// wallet state after each step.
for _, walletTest := range walletTests {
testName := fmt.Sprintf("%v/%v:%v", walletType, backEnd,
walletTest.name)
success := t.Run(testName, func(t *testing.T) {
walletTest.test(miningNode, alice, bob, t)
})
if !success {
break
}
// TODO(roasbeef): possible reset mining
// node's chainstate to initial level, cleanly
// wipe buckets
if err := clearWalletStates(alice, bob); err !=
nil && err != bolt.ErrBucketNotFound {
t.Fatalf("unable to wipe wallet state: %v", err)
}
}
}