lnd.xprv/rpcserver.go

4952 lines
150 KiB
Go

package lnd
import (
"bytes"
"crypto/sha256"
"crypto/tls"
"encoding/hex"
"errors"
"fmt"
"io"
"math"
"net/http"
"sort"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/btcsuite/btcwallet/wallet/txauthor"
"github.com/coreos/bbolt"
"github.com/davecgh/go-spew/spew"
proxy "github.com/grpc-ecosystem/grpc-gateway/runtime"
"github.com/lightningnetwork/lnd/autopilot"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/chanbackup"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channelnotifier"
"github.com/lightningnetwork/lnd/discovery"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/invoices"
"github.com/lightningnetwork/lnd/lncfg"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/macaroons"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/signal"
"github.com/lightningnetwork/lnd/sweep"
"github.com/lightningnetwork/lnd/zpay32"
"github.com/tv42/zbase32"
"golang.org/x/net/context"
"google.golang.org/grpc"
"gopkg.in/macaroon-bakery.v2/bakery"
)
const (
// maxBtcPaymentMSat is the maximum allowed Bitcoin payment currently
// permitted as defined in BOLT-0002.
maxBtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32)
// maxLtcPaymentMSat is the maximum allowed Litecoin payment currently
// permitted.
maxLtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32) *
btcToLtcConversionRate
)
var (
zeroHash [32]byte
// maxPaymentMSat is the maximum allowed payment currently permitted as
// defined in BOLT-002. This value depends on which chain is active.
// It is set to the value under the Bitcoin chain as default.
maxPaymentMSat = maxBtcPaymentMSat
defaultAccount uint32 = waddrmgr.DefaultAccountNum
// readPermissions is a slice of all entities that allow read
// permissions for authorization purposes, all lowercase.
readPermissions = []bakery.Op{
{
Entity: "onchain",
Action: "read",
},
{
Entity: "offchain",
Action: "read",
},
{
Entity: "address",
Action: "read",
},
{
Entity: "message",
Action: "read",
},
{
Entity: "peers",
Action: "read",
},
{
Entity: "info",
Action: "read",
},
{
Entity: "invoices",
Action: "read",
},
}
// writePermissions is a slice of all entities that allow write
// permissions for authorization purposes, all lowercase.
writePermissions = []bakery.Op{
{
Entity: "onchain",
Action: "write",
},
{
Entity: "offchain",
Action: "write",
},
{
Entity: "address",
Action: "write",
},
{
Entity: "message",
Action: "write",
},
{
Entity: "peers",
Action: "write",
},
{
Entity: "info",
Action: "write",
},
{
Entity: "invoices",
Action: "write",
},
{
Entity: "signer",
Action: "generate",
},
}
// invoicePermissions is a slice of all the entities that allows a user
// to only access calls that are related to invoices, so: streaming
// RPCs, generating, and listening invoices.
invoicePermissions = []bakery.Op{
{
Entity: "invoices",
Action: "read",
},
{
Entity: "invoices",
Action: "write",
},
{
Entity: "address",
Action: "read",
},
{
Entity: "address",
Action: "write",
},
}
// permissions maps RPC calls to the permissions they require.
permissions = map[string][]bakery.Op{
"/lnrpc.Lightning/SendCoins": {{
Entity: "onchain",
Action: "write",
}},
"/lnrpc.Lightning/ListUnspent": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/SendMany": {{
Entity: "onchain",
Action: "write",
}},
"/lnrpc.Lightning/NewAddress": {{
Entity: "address",
Action: "write",
}},
"/lnrpc.Lightning/SignMessage": {{
Entity: "message",
Action: "write",
}},
"/lnrpc.Lightning/VerifyMessage": {{
Entity: "message",
Action: "read",
}},
"/lnrpc.Lightning/ConnectPeer": {{
Entity: "peers",
Action: "write",
}},
"/lnrpc.Lightning/DisconnectPeer": {{
Entity: "peers",
Action: "write",
}},
"/lnrpc.Lightning/OpenChannel": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/OpenChannelSync": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/CloseChannel": {{
Entity: "onchain",
Action: "write",
}, {
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/AbandonChannel": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/GetInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/ListPeers": {{
Entity: "peers",
Action: "read",
}},
"/lnrpc.Lightning/WalletBalance": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/EstimateFee": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/ChannelBalance": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/PendingChannels": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/ListChannels": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeChannelEvents": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/ClosedChannels": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/SendPayment": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendPaymentSync": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendToRoute": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/SendToRouteSync": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/AddInvoice": {{
Entity: "invoices",
Action: "write",
}},
"/lnrpc.Lightning/LookupInvoice": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/ListInvoices": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeInvoices": {{
Entity: "invoices",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeTransactions": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/GetTransactions": {{
Entity: "onchain",
Action: "read",
}},
"/lnrpc.Lightning/DescribeGraph": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetChanInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetNodeInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/QueryRoutes": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/GetNetworkInfo": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/StopDaemon": {{
Entity: "info",
Action: "write",
}},
"/lnrpc.Lightning/SubscribeChannelGraph": {{
Entity: "info",
Action: "read",
}},
"/lnrpc.Lightning/ListPayments": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/DeleteAllPayments": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/DebugLevel": {{
Entity: "info",
Action: "write",
}},
"/lnrpc.Lightning/DecodePayReq": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/FeeReport": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/UpdateChannelPolicy": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/ForwardingHistory": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/RestoreChannelBackups": {{
Entity: "offchain",
Action: "write",
}},
"/lnrpc.Lightning/ExportChannelBackup": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/VerifyChanBackup": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/ExportAllChannelBackups": {{
Entity: "offchain",
Action: "read",
}},
"/lnrpc.Lightning/SubscribeChannelBackups": {{
Entity: "offchain",
Action: "read",
}},
}
)
// rpcServer is a gRPC, RPC front end to the lnd daemon.
// TODO(roasbeef): pagination support for the list-style calls
type rpcServer struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
server *server
wg sync.WaitGroup
// subServers are a set of sub-RPC servers that use the same gRPC and
// listening sockets as the main RPC server, but which maintain their
// own independent service. This allows us to expose a set of
// micro-service like abstractions to the outside world for users to
// consume.
subServers []lnrpc.SubServer
// grpcServer is the main gRPC server that this RPC server, and all the
// sub-servers will use to register themselves and accept client
// requests from.
grpcServer *grpc.Server
// listenerCleanUp are a set of closures functions that will allow this
// main RPC server to clean up all the listening socket created for the
// server.
listenerCleanUp []func()
// restDialOpts are a set of gRPC dial options that the REST server
// proxy will use to connect to the main gRPC server.
restDialOpts []grpc.DialOption
// restProxyDest is the address to forward REST requests to.
restProxyDest string
// tlsCfg is the TLS config that allows the REST server proxy to
// connect to the main gRPC server to proxy all incoming requests.
tlsCfg *tls.Config
// routerBackend contains the backend implementation of the router
// rpc sub server.
routerBackend *routerrpc.RouterBackend
quit chan struct{}
}
// A compile time check to ensure that rpcServer fully implements the
// LightningServer gRPC service.
var _ lnrpc.LightningServer = (*rpcServer)(nil)
// newRPCServer creates and returns a new instance of the rpcServer. The
// rpcServer will handle creating all listening sockets needed by it, and any
// of the sub-servers that it maintains. The set of serverOpts should be the
// base level options passed to the grPC server. This typically includes things
// like requiring TLS, etc.
func newRPCServer(s *server, macService *macaroons.Service,
subServerCgs *subRPCServerConfigs, serverOpts []grpc.ServerOption,
restDialOpts []grpc.DialOption, restProxyDest string,
atpl *autopilot.Manager, invoiceRegistry *invoices.InvoiceRegistry,
tlsCfg *tls.Config) (*rpcServer, error) {
// Set up router rpc backend.
channelGraph := s.chanDB.ChannelGraph()
selfNode, err := channelGraph.SourceNode()
if err != nil {
return nil, err
}
graph := s.chanDB.ChannelGraph()
routerBackend := &routerrpc.RouterBackend{
MaxPaymentMSat: maxPaymentMSat,
SelfNode: selfNode.PubKeyBytes,
FetchChannelCapacity: func(chanID uint64) (btcutil.Amount,
error) {
info, _, _, err := graph.FetchChannelEdgesByID(chanID)
if err != nil {
return 0, err
}
return info.Capacity, nil
},
FetchChannelEndpoints: func(chanID uint64) (route.Vertex,
route.Vertex, error) {
info, _, _, err := graph.FetchChannelEdgesByID(
chanID,
)
if err != nil {
return route.Vertex{}, route.Vertex{},
fmt.Errorf("unable to fetch channel "+
"edges by channel ID %d: %v",
chanID, err)
}
return info.NodeKey1Bytes, info.NodeKey2Bytes, nil
},
FindRoute: s.chanRouter.FindRoute,
}
var (
subServers []lnrpc.SubServer
subServerPerms []lnrpc.MacaroonPerms
)
// Before we create any of the sub-servers, we need to ensure that all
// the dependencies they need are properly populated within each sub
// server configuration struct.
err = subServerCgs.PopulateDependencies(
s.cc, networkDir, macService, atpl, invoiceRegistry,
s.htlcSwitch, activeNetParams.Params, s.chanRouter,
routerBackend, s.nodeSigner, s.chanDB,
)
if err != nil {
return nil, err
}
// Now that the sub-servers have all their dependencies in place, we
// can create each sub-server!
registeredSubServers := lnrpc.RegisteredSubServers()
for _, subServer := range registeredSubServers {
subServerInstance, macPerms, err := subServer.New(subServerCgs)
if err != nil {
return nil, err
}
// We'll collect the sub-server, and also the set of
// permissions it needs for macaroons so we can apply the
// interceptors below.
subServers = append(subServers, subServerInstance)
subServerPerms = append(subServerPerms, macPerms)
}
// Next, we need to merge the set of sub server macaroon permissions
// with the main RPC server permissions so we can unite them under a
// single set of interceptors.
for _, subServerPerm := range subServerPerms {
for method, ops := range subServerPerm {
// For each new method:ops combo, we also ensure that
// non of the sub-servers try to override each other.
if _, ok := permissions[method]; ok {
return nil, fmt.Errorf("detected duplicate "+
"macaroon constraints for path: %v",
method)
}
permissions[method] = ops
}
}
// If macaroons aren't disabled (a non-nil service), then we'll set up
// our set of interceptors which will allow us handle the macaroon
// authentication in a single location .
if macService != nil {
unaryInterceptor := grpc.UnaryInterceptor(
macService.UnaryServerInterceptor(permissions),
)
streamInterceptor := grpc.StreamInterceptor(
macService.StreamServerInterceptor(permissions),
)
serverOpts = append(serverOpts,
unaryInterceptor, streamInterceptor,
)
}
// Finally, with all the pre-set up complete, we can create the main
// gRPC server, and register the main lnrpc server along side.
grpcServer := grpc.NewServer(serverOpts...)
rootRPCServer := &rpcServer{
restDialOpts: restDialOpts,
restProxyDest: restProxyDest,
subServers: subServers,
tlsCfg: tlsCfg,
grpcServer: grpcServer,
server: s,
routerBackend: routerBackend,
quit: make(chan struct{}, 1),
}
lnrpc.RegisterLightningServer(grpcServer, rootRPCServer)
// Now the main RPC server has been registered, we'll iterate through
// all the sub-RPC servers and register them to ensure that requests
// are properly routed towards them.
for _, subServer := range subServers {
err := subServer.RegisterWithRootServer(grpcServer)
if err != nil {
return nil, fmt.Errorf("unable to register "+
"sub-server %v with root: %v",
subServer.Name(), err)
}
}
return rootRPCServer, nil
}
// Start launches any helper goroutines required for the rpcServer to function.
func (r *rpcServer) Start() error {
if atomic.AddInt32(&r.started, 1) != 1 {
return nil
}
// First, we'll start all the sub-servers to ensure that they're ready
// to take new requests in.
//
// TODO(roasbeef): some may require that the entire daemon be started
// at that point
for _, subServer := range r.subServers {
rpcsLog.Debugf("Starting sub RPC server: %v", subServer.Name())
if err := subServer.Start(); err != nil {
return err
}
}
// With all the sub-servers started, we'll spin up the listeners for
// the main RPC server itself.
for _, listener := range cfg.RPCListeners {
lis, err := lncfg.ListenOnAddress(listener)
if err != nil {
ltndLog.Errorf(
"RPC server unable to listen on %s", listener,
)
return err
}
r.listenerCleanUp = append(r.listenerCleanUp, func() {
lis.Close()
})
go func() {
rpcsLog.Infof("RPC server listening on %s", lis.Addr())
r.grpcServer.Serve(lis)
}()
}
// Finally, start the REST proxy for our gRPC server above. We'll ensure
// we direct LND to connect to its loopback address rather than a
// wildcard to prevent certificate issues when accessing the proxy
// externally.
//
// TODO(roasbeef): eventually also allow the sub-servers to themselves
// have a REST proxy.
mux := proxy.NewServeMux()
err := lnrpc.RegisterLightningHandlerFromEndpoint(
context.Background(), mux, r.restProxyDest,
r.restDialOpts,
)
if err != nil {
return err
}
for _, restEndpoint := range cfg.RESTListeners {
lis, err := lncfg.TLSListenOnAddress(restEndpoint, r.tlsCfg)
if err != nil {
ltndLog.Errorf(
"gRPC proxy unable to listen on %s",
restEndpoint,
)
return err
}
r.listenerCleanUp = append(r.listenerCleanUp, func() {
lis.Close()
})
go func() {
rpcsLog.Infof("gRPC proxy started at %s", lis.Addr())
http.Serve(lis, mux)
}()
}
return nil
}
// Stop signals any active goroutines for a graceful closure.
func (r *rpcServer) Stop() error {
if atomic.AddInt32(&r.shutdown, 1) != 1 {
return nil
}
rpcsLog.Infof("Stopping RPC Server")
close(r.quit)
// After we've signalled all of our active goroutines to exit, we'll
// then do the same to signal a graceful shutdown of all the sub
// servers.
for _, subServer := range r.subServers {
rpcsLog.Infof("Stopping %v Sub-RPC Server",
subServer.Name())
if err := subServer.Stop(); err != nil {
rpcsLog.Errorf("unable to stop sub-server %v: %v",
subServer.Name(), err)
continue
}
}
// Finally, we can clean up all the listening sockets to ensure that we
// give the file descriptors back to the OS.
for _, cleanUp := range r.listenerCleanUp {
cleanUp()
}
return nil
}
// addrPairsToOutputs converts a map describing a set of outputs to be created,
// the outputs themselves. The passed map pairs up an address, to a desired
// output value amount. Each address is converted to its corresponding pkScript
// to be used within the constructed output(s).
func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) {
outputs := make([]*wire.TxOut, 0, len(addrPairs))
for addr, amt := range addrPairs {
addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params)
if err != nil {
return nil, err
}
pkscript, err := txscript.PayToAddrScript(addr)
if err != nil {
return nil, err
}
outputs = append(outputs, wire.NewTxOut(amt, pkscript))
}
return outputs, nil
}
// sendCoinsOnChain makes an on-chain transaction in or to send coins to one or
// more addresses specified in the passed payment map. The payment map maps an
// address to a specified output value to be sent to that address.
func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64,
feeRate lnwallet.SatPerKWeight) (*chainhash.Hash, error) {
outputs, err := addrPairsToOutputs(paymentMap)
if err != nil {
return nil, err
}
tx, err := r.server.cc.wallet.SendOutputs(outputs, feeRate)
if err != nil {
return nil, err
}
txHash := tx.TxHash()
return &txHash, nil
}
// ListUnspent returns useful information about each unspent output owned by
// the wallet, as reported by the underlying `ListUnspentWitness`; the
// information returned is: outpoint, amount in satoshis, address, address
// type, scriptPubKey in hex and number of confirmations. The result is
// filtered to contain outputs whose number of confirmations is between a
// minimum and maximum number of confirmations specified by the user, with 0
// meaning unconfirmed.
func (r *rpcServer) ListUnspent(ctx context.Context,
in *lnrpc.ListUnspentRequest) (*lnrpc.ListUnspentResponse, error) {
minConfs := in.MinConfs
maxConfs := in.MaxConfs
switch {
// Ensure that the user didn't attempt to specify a negative number of
// confirmations, as that isn't possible.
case minConfs < 0:
return nil, fmt.Errorf("min confirmations must be >= 0")
// We'll also ensure that the min number of confs is strictly less than
// or equal to the max number of confs for sanity.
case minConfs > maxConfs:
return nil, fmt.Errorf("max confirmations must be >= min " +
"confirmations")
}
// With our arguments validated, we'll query the internal wallet for
// the set of UTXOs that match our query.
utxos, err := r.server.cc.wallet.ListUnspentWitness(minConfs, maxConfs)
if err != nil {
return nil, err
}
resp := &lnrpc.ListUnspentResponse{
Utxos: make([]*lnrpc.Utxo, 0, len(utxos)),
}
for _, utxo := range utxos {
// Translate lnwallet address type to the proper gRPC proto
// address type.
var addrType lnrpc.AddressType
switch utxo.AddressType {
case lnwallet.WitnessPubKey:
addrType = lnrpc.AddressType_WITNESS_PUBKEY_HASH
case lnwallet.NestedWitnessPubKey:
addrType = lnrpc.AddressType_NESTED_PUBKEY_HASH
case lnwallet.UnknownAddressType:
rpcsLog.Warnf("[listunspent] utxo with address of "+
"unknown type ignored: %v",
utxo.OutPoint.String())
continue
default:
return nil, fmt.Errorf("invalid utxo address type")
}
// Now that we know we have a proper mapping to an address,
// we'll convert the regular outpoint to an lnrpc variant.
outpoint := &lnrpc.OutPoint{
TxidBytes: utxo.OutPoint.Hash[:],
TxidStr: utxo.OutPoint.Hash.String(),
OutputIndex: utxo.OutPoint.Index,
}
utxoResp := lnrpc.Utxo{
Type: addrType,
AmountSat: int64(utxo.Value),
PkScript: hex.EncodeToString(utxo.PkScript),
Outpoint: outpoint,
Confirmations: utxo.Confirmations,
}
// Finally, we'll attempt to extract the raw address from the
// script so we can display a human friendly address to the end
// user.
_, outAddresses, _, err := txscript.ExtractPkScriptAddrs(
utxo.PkScript, activeNetParams.Params,
)
if err != nil {
return nil, err
}
// If we can't properly locate a single address, then this was
// an error in our mapping, and we'll return an error back to
// the user.
if len(outAddresses) != 1 {
return nil, fmt.Errorf("an output was unexpectedly " +
"multisig")
}
utxoResp.Address = outAddresses[0].String()
resp.Utxos = append(resp.Utxos, &utxoResp)
}
maxStr := ""
if maxConfs != math.MaxInt32 {
maxStr = " max=" + fmt.Sprintf("%d", maxConfs)
}
rpcsLog.Debugf("[listunspent] min=%v%v, generated utxos: %v", minConfs,
maxStr, utxos)
return resp, nil
}
// EstimateFee handles a request for estimating the fee for sending a
// transaction spending to multiple specified outputs in parallel.
func (r *rpcServer) EstimateFee(ctx context.Context,
in *lnrpc.EstimateFeeRequest) (*lnrpc.EstimateFeeResponse, error) {
// Create the list of outputs we are spending to.
outputs, err := addrPairsToOutputs(in.AddrToAmount)
if err != nil {
return nil, err
}
// Query the fee estimator for the fee rate for the given confirmation
// target.
target := in.TargetConf
feePerKw, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(target),
},
)
if err != nil {
return nil, err
}
// We will ask the wallet to create a tx using this fee rate. We set
// dryRun=true to avoid inflating the change addresses in the db.
var tx *txauthor.AuthoredTx
wallet := r.server.cc.wallet
err = wallet.WithCoinSelectLock(func() error {
tx, err = wallet.CreateSimpleTx(outputs, feePerKw, true)
return err
})
if err != nil {
return nil, err
}
// Use the created tx to calculate the total fee.
totalOutput := int64(0)
for _, out := range tx.Tx.TxOut {
totalOutput += out.Value
}
totalFee := int64(tx.TotalInput) - totalOutput
resp := &lnrpc.EstimateFeeResponse{
FeeSat: totalFee,
FeerateSatPerByte: int64(feePerKw.FeePerKVByte() / 1000),
}
rpcsLog.Debugf("[estimatefee] fee estimate for conf target %d: %v",
target, resp)
return resp, nil
}
// SendCoins executes a request to send coins to a particular address. Unlike
// SendMany, this RPC call only allows creating a single output at a time.
func (r *rpcServer) SendCoins(ctx context.Context,
in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) {
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for this transaction.
satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight()
feePerKw, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
},
)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendcoins] addr=%v, amt=%v, sat/kw=%v, sweep_all=%v",
in.Addr, btcutil.Amount(in.Amount), int64(feePerKw),
in.SendAll)
// Decode the address receiving the coins, we need to check whether the
// address is valid for this network.
targetAddr, err := btcutil.DecodeAddress(in.Addr, activeNetParams.Params)
if err != nil {
return nil, err
}
// Make the check on the decoded address according to the active network.
if !targetAddr.IsForNet(activeNetParams.Params) {
return nil, fmt.Errorf("address: %v is not valid for this "+
"network: %v", targetAddr.String(),
activeNetParams.Params.Name)
}
// If the destination address parses to a valid pubkey, we assume the user
// accidentally tried to send funds to a bare pubkey address. This check is
// here to prevent unintended transfers.
decodedAddr, _ := hex.DecodeString(in.Addr)
_, err = btcec.ParsePubKey(decodedAddr, btcec.S256())
if err == nil {
return nil, fmt.Errorf("cannot send coins to pubkeys")
}
var txid *chainhash.Hash
wallet := r.server.cc.wallet
// If the send all flag is active, then we'll attempt to sweep all the
// coins in the wallet in a single transaction (if possible),
// otherwise, we'll respect the amount, and attempt a regular 2-output
// send.
if in.SendAll {
// At this point, the amount shouldn't be set since we've been
// instructed to sweep all the coins from the wallet.
if in.Amount != 0 {
return nil, fmt.Errorf("amount set while SendAll is " +
"active")
}
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
// With the sweeper instance created, we can now generate a
// transaction that will sweep ALL outputs from the wallet in a
// single transaction. This will be generated in a concurrent
// safe manner, so no need to worry about locking.
sweepTxPkg, err := sweep.CraftSweepAllTx(
feePerKw, uint32(bestHeight), targetAddr, wallet,
wallet.WalletController, wallet.WalletController,
r.server.cc.feeEstimator, r.server.cc.signer,
)
if err != nil {
return nil, err
}
rpcsLog.Debugf("Sweeping all coins from wallet to addr=%v, "+
"with tx=%v", in.Addr, spew.Sdump(sweepTxPkg.SweepTx))
// As our sweep transaction was created, successfully, we'll
// now attempt to publish it, cancelling the sweep pkg to
// return all outputs if it fails.
err = wallet.PublishTransaction(sweepTxPkg.SweepTx)
if err != nil {
sweepTxPkg.CancelSweepAttempt()
return nil, fmt.Errorf("unable to broadcast sweep "+
"transaction: %v", err)
}
sweepTXID := sweepTxPkg.SweepTx.TxHash()
txid = &sweepTXID
} else {
// We'll now construct out payment map, and use the wallet's
// coin selection synchronization method to ensure that no coin
// selection (funding, sweep alls, other sends) can proceed
// while we instruct the wallet to send this transaction.
paymentMap := map[string]int64{targetAddr.String(): in.Amount}
err := wallet.WithCoinSelectLock(func() error {
newTXID, err := r.sendCoinsOnChain(paymentMap, feePerKw)
if err != nil {
return err
}
txid = newTXID
return nil
})
if err != nil {
return nil, err
}
}
rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String())
return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil
}
// SendMany handles a request for a transaction create multiple specified
// outputs in parallel.
func (r *rpcServer) SendMany(ctx context.Context,
in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) {
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for this transaction.
satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight()
feePerKw, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
},
)
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] outputs=%v, sat/kw=%v",
spew.Sdump(in.AddrToAmount), int64(feePerKw))
var txid *chainhash.Hash
// We'll attempt to send to the target set of outputs, ensuring that we
// synchronize with any other ongoing coin selection attempts which
// happen to also be concurrently executing.
wallet := r.server.cc.wallet
err = wallet.WithCoinSelectLock(func() error {
sendManyTXID, err := r.sendCoinsOnChain(
in.AddrToAmount, feePerKw,
)
if err != nil {
return err
}
txid = sendManyTXID
return nil
})
if err != nil {
return nil, err
}
rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String())
return &lnrpc.SendManyResponse{Txid: txid.String()}, nil
}
// NewAddress creates a new address under control of the local wallet.
func (r *rpcServer) NewAddress(ctx context.Context,
in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) {
// Translate the gRPC proto address type to the wallet controller's
// available address types.
var (
addr btcutil.Address
err error
)
switch in.Type {
case lnrpc.AddressType_WITNESS_PUBKEY_HASH:
addr, err = r.server.cc.wallet.NewAddress(
lnwallet.WitnessPubKey, false,
)
if err != nil {
return nil, err
}
case lnrpc.AddressType_NESTED_PUBKEY_HASH:
addr, err = r.server.cc.wallet.NewAddress(
lnwallet.NestedWitnessPubKey, false,
)
if err != nil {
return nil, err
}
case lnrpc.AddressType_UNUSED_WITNESS_PUBKEY_HASH:
addr, err = r.server.cc.wallet.LastUnusedAddress(
lnwallet.WitnessPubKey,
)
if err != nil {
return nil, err
}
case lnrpc.AddressType_UNUSED_NESTED_PUBKEY_HASH:
addr, err = r.server.cc.wallet.LastUnusedAddress(
lnwallet.NestedWitnessPubKey,
)
if err != nil {
return nil, err
}
}
rpcsLog.Debugf("[newaddress] type=%v addr=%v", in.Type, addr.String())
return &lnrpc.NewAddressResponse{Address: addr.String()}, nil
}
var (
// signedMsgPrefix is a special prefix that we'll prepend to any
// messages we sign/verify. We do this to ensure that we don't
// accidentally sign a sighash, or other sensitive material. By
// prepending this fragment, we mind message signing to our particular
// context.
signedMsgPrefix = []byte("Lightning Signed Message:")
)
// SignMessage signs a message with the resident node's private key. The
// returned signature string is zbase32 encoded and pubkey recoverable, meaning
// that only the message digest and signature are needed for verification.
func (r *rpcServer) SignMessage(ctx context.Context,
in *lnrpc.SignMessageRequest) (*lnrpc.SignMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to sign")
}
in.Msg = append(signedMsgPrefix, in.Msg...)
sigBytes, err := r.server.nodeSigner.SignCompact(in.Msg)
if err != nil {
return nil, err
}
sig := zbase32.EncodeToString(sigBytes)
return &lnrpc.SignMessageResponse{Signature: sig}, nil
}
// VerifyMessage verifies a signature over a msg. The signature must be zbase32
// encoded and signed by an active node in the resident node's channel
// database. In addition to returning the validity of the signature,
// VerifyMessage also returns the recovered pubkey from the signature.
func (r *rpcServer) VerifyMessage(ctx context.Context,
in *lnrpc.VerifyMessageRequest) (*lnrpc.VerifyMessageResponse, error) {
if in.Msg == nil {
return nil, fmt.Errorf("need a message to verify")
}
// The signature should be zbase32 encoded
sig, err := zbase32.DecodeString(in.Signature)
if err != nil {
return nil, fmt.Errorf("failed to decode signature: %v", err)
}
// The signature is over the double-sha256 hash of the message.
in.Msg = append(signedMsgPrefix, in.Msg...)
digest := chainhash.DoubleHashB(in.Msg)
// RecoverCompact both recovers the pubkey and validates the signature.
pubKey, _, err := btcec.RecoverCompact(btcec.S256(), sig, digest)
if err != nil {
return &lnrpc.VerifyMessageResponse{Valid: false}, nil
}
pubKeyHex := hex.EncodeToString(pubKey.SerializeCompressed())
var pub [33]byte
copy(pub[:], pubKey.SerializeCompressed())
// Query the channel graph to ensure a node in the network with active
// channels signed the message.
//
// TODO(phlip9): Require valid nodes to have capital in active channels.
graph := r.server.chanDB.ChannelGraph()
_, active, err := graph.HasLightningNode(pub)
if err != nil {
return nil, fmt.Errorf("failed to query graph: %v", err)
}
return &lnrpc.VerifyMessageResponse{
Valid: active,
Pubkey: pubKeyHex,
}, nil
}
// ConnectPeer attempts to establish a connection to a remote peer.
func (r *rpcServer) ConnectPeer(ctx context.Context,
in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) {
// The server hasn't yet started, so it won't be able to service any of
// our requests, so we'll bail early here.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
if in.Addr == nil {
return nil, fmt.Errorf("need: lnc pubkeyhash@hostname")
}
pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256())
if err != nil {
return nil, err
}
// Connections to ourselves are disallowed for obvious reasons.
if pubKey.IsEqual(r.server.identityPriv.PubKey()) {
return nil, fmt.Errorf("cannot make connection to self")
}
addr, err := parseAddr(in.Addr.Host)
if err != nil {
return nil, err
}
peerAddr := &lnwire.NetAddress{
IdentityKey: pubKey,
Address: addr,
ChainNet: activeNetParams.Net,
}
rpcsLog.Debugf("[connectpeer] requested connection to %x@%s",
peerAddr.IdentityKey.SerializeCompressed(), peerAddr.Address)
if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil {
rpcsLog.Errorf("[connectpeer]: error connecting to peer: %v", err)
return nil, err
}
rpcsLog.Debugf("Connected to peer: %v", peerAddr.String())
return &lnrpc.ConnectPeerResponse{}, nil
}
// DisconnectPeer attempts to disconnect one peer from another identified by a
// given pubKey. In the case that we currently have a pending or active channel
// with the target peer, this action will be disallowed.
func (r *rpcServer) DisconnectPeer(ctx context.Context,
in *lnrpc.DisconnectPeerRequest) (*lnrpc.DisconnectPeerResponse, error) {
rpcsLog.Debugf("[disconnectpeer] from peer(%s)", in.PubKey)
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// First we'll validate the string passed in within the request to
// ensure that it's a valid hex-string, and also a valid compressed
// public key.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, fmt.Errorf("unable to decode pubkey bytes: %v", err)
}
peerPubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, fmt.Errorf("unable to parse pubkey: %v", err)
}
// Next, we'll fetch the pending/active channels we have with a
// particular peer.
nodeChannels, err := r.server.chanDB.FetchOpenChannels(peerPubKey)
if err != nil {
return nil, fmt.Errorf("unable to fetch channels for peer: %v", err)
}
// In order to avoid erroneously disconnecting from a peer that we have
// an active channel with, if we have any channels active with this
// peer, then we'll disallow disconnecting from them.
if len(nodeChannels) > 0 && !cfg.UnsafeDisconnect {
return nil, fmt.Errorf("cannot disconnect from peer(%x), "+
"all active channels with the peer need to be closed "+
"first", pubKeyBytes)
}
// With all initial validation complete, we'll now request that the
// server disconnects from the peer.
if err := r.server.DisconnectPeer(peerPubKey); err != nil {
return nil, fmt.Errorf("unable to disconnect peer: %v", err)
}
return &lnrpc.DisconnectPeerResponse{}, nil
}
// extractOpenChannelMinConfs extracts the minimum number of confirmations from
// the OpenChannelRequest that each output used to fund the channel's funding
// transaction should satisfy.
func extractOpenChannelMinConfs(in *lnrpc.OpenChannelRequest) (int32, error) {
switch {
// Ensure that the MinConfs parameter is non-negative.
case in.MinConfs < 0:
return 0, errors.New("minimum number of confirmations must " +
"be a non-negative number")
// The funding transaction should not be funded with unconfirmed outputs
// unless explicitly specified by SpendUnconfirmed. We do this to
// provide sane defaults to the OpenChannel RPC, as otherwise, if the
// MinConfs field isn't explicitly set by the caller, we'll use
// unconfirmed outputs without the caller being aware.
case in.MinConfs == 0 && !in.SpendUnconfirmed:
return 1, nil
// In the event that the caller set MinConfs > 0 and SpendUnconfirmed to
// true, we'll return an error to indicate the conflict.
case in.MinConfs > 0 && in.SpendUnconfirmed:
return 0, errors.New("SpendUnconfirmed set to true with " +
"MinConfs > 0")
// The funding transaction of the new channel to be created can be
// funded with unconfirmed outputs.
case in.SpendUnconfirmed:
return 0, nil
// If none of the above cases matched, we'll return the value set
// explicitly by the caller.
default:
return in.MinConfs, nil
}
}
// OpenChannel attempts to open a singly funded channel specified in the
// request to a remote peer.
func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest,
updateStream lnrpc.Lightning_OpenChannelServer) error {
rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+
"allocation(us=%v, them=%v)", in.NodePubkeyString,
in.LocalFundingAmount, in.PushSat)
if !r.server.Started() {
return fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat)
remoteCsvDelay := uint16(in.RemoteCsvDelay)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not exceed the amount the local party has requested
// for funding.
//
// TODO(roasbeef): incorporate base fee?
if remoteInitialBalance >= localFundingAmt {
return fmt.Errorf("amount pushed to remote peer for initial " +
"state must be below the local funding amount")
}
// Ensure that the user doesn't exceed the current soft-limit for
// channel size. If the funding amount is above the soft-limit, then
// we'll reject the request.
if localFundingAmt > maxFundingAmount {
return fmt.Errorf("funding amount is too large, the max "+
"channel size is: %v", maxFundingAmount)
}
// Restrict the size of the channel we'll actually open. At a later
// level, we'll ensure that the output we create after accounting for
// fees that a dust output isn't created.
if localFundingAmt < minChanFundingSize {
return fmt.Errorf("channel is too small, the minimum channel "+
"size is: %v SAT", int64(minChanFundingSize))
}
// Then, we'll extract the minimum number of confirmations that each
// output we use to fund the channel's funding transaction should
// satisfy.
minConfs, err := extractOpenChannelMinConfs(in)
if err != nil {
return err
}
var (
nodePubKey *btcec.PublicKey
nodePubKeyBytes []byte
)
// TODO(roasbeef): also return channel ID?
// Ensure that the NodePubKey is set before attempting to use it
if len(in.NodePubkey) == 0 {
return fmt.Errorf("NodePubKey is not set")
}
// Parse the raw bytes of the node key into a pubkey object so we
// can easily manipulate it.
nodePubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256())
if err != nil {
return err
}
// Making a channel to ourselves wouldn't be of any use, so we
// explicitly disallow them.
if nodePubKey.IsEqual(r.server.identityPriv.PubKey()) {
return fmt.Errorf("cannot open channel to self")
}
nodePubKeyBytes = nodePubKey.SerializeCompressed()
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for the funding transaction.
satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight()
feeRate, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
},
)
if err != nil {
return err
}
rpcsLog.Debugf("[openchannel]: using fee of %v sat/kw for funding tx",
int64(feeRate))
// Instruct the server to trigger the necessary events to attempt to
// open a new channel. A stream is returned in place, this stream will
// be used to consume updates of the state of the pending channel.
req := &openChanReq{
targetPubkey: nodePubKey,
chainHash: *activeNetParams.GenesisHash,
localFundingAmt: localFundingAmt,
pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance),
minHtlc: minHtlc,
fundingFeePerKw: feeRate,
private: in.Private,
remoteCsvDelay: remoteCsvDelay,
minConfs: minConfs,
}
updateChan, errChan := r.server.OpenChannel(req)
var outpoint wire.OutPoint
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v",
nodePubKeyBytes, err)
return err
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
if err := updateStream.Send(fundingUpdate); err != nil {
return err
}
// If a final channel open update is being sent, then
// we can break out of our recv loop as we no longer
// need to process any further updates.
switch update := fundingUpdate.Update.(type) {
case *lnrpc.OpenStatusUpdate_ChanOpen:
chanPoint := update.ChanOpen.ChannelPoint
txid, err := getChanPointFundingTxid(chanPoint)
if err != nil {
return err
}
outpoint = wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
break out
}
case <-r.quit:
return nil
}
}
rpcsLog.Tracef("[openchannel] success NodeKey(%x), ChannelPoint(%v)",
nodePubKeyBytes, outpoint)
return nil
}
// OpenChannelSync is a synchronous version of the OpenChannel RPC call. This
// call is meant to be consumed by clients to the REST proxy. As with all other
// sync calls, all byte slices are instead to be populated as hex encoded
// strings.
func (r *rpcServer) OpenChannelSync(ctx context.Context,
in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) {
rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+
"allocation(us=%v, them=%v)", in.NodePubkeyString,
in.LocalFundingAmount, in.PushSat)
// We don't allow new channels to be open while the server is still
// syncing, as otherwise we may not be able to obtain the relevant
// notifications.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// Creation of channels before the wallet syncs up is currently
// disallowed.
isSynced, _, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, err
}
if !isSynced {
return nil, errors.New("channels cannot be created before the " +
"wallet is fully synced")
}
// Decode the provided target node's public key, parsing it into a pub
// key object. For all sync call, byte slices are expected to be
// encoded as hex strings.
keyBytes, err := hex.DecodeString(in.NodePubkeyString)
if err != nil {
return nil, err
}
nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256())
if err != nil {
return nil, err
}
localFundingAmt := btcutil.Amount(in.LocalFundingAmount)
remoteInitialBalance := btcutil.Amount(in.PushSat)
minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat)
remoteCsvDelay := uint16(in.RemoteCsvDelay)
// Ensure that the initial balance of the remote party (if pushing
// satoshis) does not exceed the amount the local party has requested
// for funding.
if remoteInitialBalance >= localFundingAmt {
return nil, fmt.Errorf("amount pushed to remote peer for " +
"initial state must be below the local funding amount")
}
// Restrict the size of the channel we'll actually open. At a later
// level, we'll ensure that the output we create after accounting for
// fees that a dust output isn't created.
if localFundingAmt < minChanFundingSize {
return nil, fmt.Errorf("channel is too small, the minimum channel "+
"size is: %v SAT", int64(minChanFundingSize))
}
// Then, we'll extract the minimum number of confirmations that each
// output we use to fund the channel's funding transaction should
// satisfy.
minConfs, err := extractOpenChannelMinConfs(in)
if err != nil {
return nil, err
}
// Based on the passed fee related parameters, we'll determine an
// appropriate fee rate for the funding transaction.
satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight()
feeRate, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
},
)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[openchannel] target sat/kw for funding tx: %v",
int64(feeRate))
req := &openChanReq{
targetPubkey: nodepubKey,
chainHash: *activeNetParams.GenesisHash,
localFundingAmt: localFundingAmt,
pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance),
minHtlc: minHtlc,
fundingFeePerKw: feeRate,
private: in.Private,
remoteCsvDelay: remoteCsvDelay,
minConfs: minConfs,
}
updateChan, errChan := r.server.OpenChannel(req)
select {
// If an error occurs them immediately return the error to the client.
case err := <-errChan:
rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v",
nodepubKey, err)
return nil, err
// Otherwise, wait for the first channel update. The first update sent
// is when the funding transaction is broadcast to the network.
case fundingUpdate := <-updateChan:
rpcsLog.Tracef("[openchannel] sending update: %v",
fundingUpdate)
// Parse out the txid of the pending funding transaction. The
// sync client can use this to poll against the list of
// PendingChannels.
openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
chanUpdate := openUpdate.ChanPending
return &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: chanUpdate.Txid,
},
OutputIndex: chanUpdate.OutputIndex,
}, nil
case <-r.quit:
return nil, nil
}
}
// getChanPointFundingTxid returns the given channel point's funding txid in
// raw bytes.
func getChanPointFundingTxid(chanPoint *lnrpc.ChannelPoint) (*chainhash.Hash, error) {
var txid []byte
// A channel point's funding txid can be get/set as a byte slice or a
// string. In the case it is a string, decode it.
switch chanPoint.GetFundingTxid().(type) {
case *lnrpc.ChannelPoint_FundingTxidBytes:
txid = chanPoint.GetFundingTxidBytes()
case *lnrpc.ChannelPoint_FundingTxidStr:
s := chanPoint.GetFundingTxidStr()
h, err := chainhash.NewHashFromStr(s)
if err != nil {
return nil, err
}
txid = h[:]
}
return chainhash.NewHash(txid)
}
// CloseChannel attempts to close an active channel identified by its channel
// point. The actions of this method can additionally be augmented to attempt
// a force close after a timeout period in the case of an inactive peer.
func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest,
updateStream lnrpc.Lightning_CloseChannelServer) error {
// If the user didn't specify a channel point, then we'll reject this
// request all together.
if in.GetChannelPoint() == nil {
return fmt.Errorf("must specify channel point in close channel")
}
force := in.Force
index := in.ChannelPoint.OutputIndex
txid, err := getChanPointFundingTxid(in.GetChannelPoint())
if err != nil {
rpcsLog.Errorf("[closechannel] unable to get funding txid: %v", err)
return err
}
chanPoint := wire.NewOutPoint(txid, index)
rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v), force=%v",
chanPoint, force)
var (
updateChan chan interface{}
errChan chan error
)
// TODO(roasbeef): if force and peer online then don't force?
// First, we'll fetch the channel as is, as we'll need to examine it
// regardless of if this is a force close or not.
channel, err := r.fetchActiveChannel(*chanPoint)
if err != nil {
return err
}
// If a force closure was requested, then we'll handle all the details
// around the creation and broadcast of the unilateral closure
// transaction here rather than going to the switch as we don't require
// interaction from the peer.
if force {
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return err
}
// As we're force closing this channel, as a precaution, we'll
// ensure that the switch doesn't continue to see this channel
// as eligible for forwarding HTLC's. If the peer is online,
// then we'll also purge all of its indexes.
remotePub := &channel.StateSnapshot().RemoteIdentity
if peer, err := r.server.FindPeer(remotePub); err == nil {
// TODO(roasbeef): actually get the active channel
// instead too?
// * so only need to grab from database
peer.WipeChannel(channel.ChannelPoint())
} else {
chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint())
r.server.htlcSwitch.RemoveLink(chanID)
}
// With the necessary indexes cleaned up, we'll now force close
// the channel.
chainArbitrator := r.server.chainArb
closingTx, err := chainArbitrator.ForceCloseContract(
*chanPoint,
)
if err != nil {
rpcsLog.Errorf("unable to force close transaction: %v", err)
return err
}
closingTxid := closingTx.TxHash()
// With the transaction broadcast, we send our first update to
// the client.
updateChan = make(chan interface{}, 2)
updateChan <- &pendingUpdate{
Txid: closingTxid[:],
}
errChan = make(chan error, 1)
notifier := r.server.cc.chainNotifier
go waitForChanToClose(uint32(bestHeight), notifier, errChan, chanPoint,
&closingTxid, closingTx.TxOut[0].PkScript, func() {
// Respond to the local subsystem which
// requested the channel closure.
updateChan <- &channelCloseUpdate{
ClosingTxid: closingTxid[:],
Success: true,
}
})
} else {
// If the link is not known by the switch, we cannot gracefully close
// the channel.
channelID := lnwire.NewChanIDFromOutPoint(chanPoint)
if _, err := r.server.htlcSwitch.GetLink(channelID); err != nil {
rpcsLog.Debugf("Trying to non-force close offline channel with "+
"chan_point=%v", chanPoint)
return fmt.Errorf("unable to gracefully close channel while peer "+
"is offline (try force closing it instead): %v", err)
}
// Based on the passed fee related parameters, we'll determine
// an appropriate fee rate for the cooperative closure
// transaction.
satPerKw := lnwallet.SatPerKVByte(
in.SatPerByte * 1000,
).FeePerKWeight()
feeRate, err := sweep.DetermineFeePerKw(
r.server.cc.feeEstimator, sweep.FeePreference{
ConfTarget: uint32(in.TargetConf),
FeeRate: satPerKw,
},
)
if err != nil {
return err
}
rpcsLog.Debugf("Target sat/kw for closing transaction: %v",
int64(feeRate))
// Before we attempt the cooperative channel closure, we'll
// examine the channel to ensure that it doesn't have a
// lingering HTLC.
if len(channel.ActiveHtlcs()) != 0 {
return fmt.Errorf("cannot co-op close channel " +
"with active htlcs")
}
// Otherwise, the caller has requested a regular interactive
// cooperative channel closure. So we'll forward the request to
// the htlc switch which will handle the negotiation and
// broadcast details.
updateChan, errChan = r.server.htlcSwitch.CloseLink(
chanPoint, htlcswitch.CloseRegular, feeRate,
)
}
out:
for {
select {
case err := <-errChan:
rpcsLog.Errorf("[closechannel] unable to close "+
"ChannelPoint(%v): %v", chanPoint, err)
return err
case closingUpdate := <-updateChan:
rpcClosingUpdate, err := createRPCCloseUpdate(
closingUpdate,
)
if err != nil {
return err
}
rpcsLog.Tracef("[closechannel] sending update: %v",
rpcClosingUpdate)
if err := updateStream.Send(rpcClosingUpdate); err != nil {
return err
}
// If a final channel closing updates is being sent,
// then we can break out of our dispatch loop as we no
// longer need to process any further updates.
switch closeUpdate := closingUpdate.(type) {
case *channelCloseUpdate:
h, _ := chainhash.NewHash(closeUpdate.ClosingTxid)
rpcsLog.Infof("[closechannel] close completed: "+
"txid(%v)", h)
break out
}
case <-r.quit:
return nil
}
}
return nil
}
func createRPCCloseUpdate(update interface{}) (
*lnrpc.CloseStatusUpdate, error) {
switch u := update.(type) {
case *channelCloseUpdate:
return &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ChanClose{
ChanClose: &lnrpc.ChannelCloseUpdate{
ClosingTxid: u.ClosingTxid,
},
},
}, nil
case *pendingUpdate:
return &lnrpc.CloseStatusUpdate{
Update: &lnrpc.CloseStatusUpdate_ClosePending{
ClosePending: &lnrpc.PendingUpdate{
Txid: u.Txid,
OutputIndex: u.OutputIndex,
},
},
}, nil
}
return nil, errors.New("unknown close status update")
}
// AbandonChannel removes all channel state from the database except for a
// close summary. This method can be used to get rid of permanently unusable
// channels due to bugs fixed in newer versions of lnd.
func (r *rpcServer) AbandonChannel(ctx context.Context,
in *lnrpc.AbandonChannelRequest) (*lnrpc.AbandonChannelResponse, error) {
// If this isn't the dev build, then we won't allow the RPC to be
// executed, as it's an advanced feature and won't be activated in
// regular production/release builds.
if !build.IsDevBuild() {
return nil, fmt.Errorf("AbandonChannel RPC call only " +
"available in dev builds")
}
// We'll parse out the arguments to we can obtain the chanPoint of the
// target channel.
txid, err := getChanPointFundingTxid(in.GetChannelPoint())
if err != nil {
return nil, err
}
index := in.ChannelPoint.OutputIndex
chanPoint := wire.NewOutPoint(txid, index)
// With the chanPoint constructed, we'll attempt to find the target
// channel in the database. If we can't find the channel, then we'll
// return the error back to the caller.
dbChan, err := r.server.chanDB.FetchChannel(*chanPoint)
if err != nil {
return nil, err
}
// Now that we've found the channel, we'll populate a close summary for
// the channel, so we can store as much information for this abounded
// channel as possible. We also ensure that we set Pending to false, to
// indicate that this channel has been "fully" closed.
_, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
summary := &channeldb.ChannelCloseSummary{
CloseType: channeldb.Abandoned,
ChanPoint: *chanPoint,
ChainHash: dbChan.ChainHash,
CloseHeight: uint32(bestHeight),
RemotePub: dbChan.IdentityPub,
Capacity: dbChan.Capacity,
SettledBalance: dbChan.LocalCommitment.LocalBalance.ToSatoshis(),
ShortChanID: dbChan.ShortChanID(),
RemoteCurrentRevocation: dbChan.RemoteCurrentRevocation,
RemoteNextRevocation: dbChan.RemoteNextRevocation,
LocalChanConfig: dbChan.LocalChanCfg,
}
// Finally, we'll close the channel in the DB, and return back to the
// caller.
err = dbChan.CloseChannel(summary)
if err != nil {
return nil, err
}
return &lnrpc.AbandonChannelResponse{}, nil
}
// fetchActiveChannel attempts to locate a channel identified by its channel
// point from the database's set of all currently opened channels and
// return it as a fully populated state machine
func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) (
*lnwallet.LightningChannel, error) {
dbChan, err := r.server.chanDB.FetchChannel(chanPoint)
if err != nil {
return nil, err
}
// If the channel is successfully fetched from the database,
// we create a fully populated channel state machine which
// uses the db channel as backing storage.
return lnwallet.NewLightningChannel(
r.server.cc.wallet.Cfg.Signer, dbChan, nil,
)
}
// GetInfo returns general information concerning the lightning node including
// its identity pubkey, alias, the chains it is connected to, and information
// concerning the number of open+pending channels.
func (r *rpcServer) GetInfo(ctx context.Context,
in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) {
serverPeers := r.server.Peers()
openChannels, err := r.server.chanDB.FetchAllOpenChannels()
if err != nil {
return nil, err
}
var activeChannels uint32
for _, channel := range openChannels {
chanID := lnwire.NewChanIDFromOutPoint(&channel.FundingOutpoint)
if r.server.htlcSwitch.HasActiveLink(chanID) {
activeChannels++
}
}
inactiveChannels := uint32(len(openChannels)) - activeChannels
pendingChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
return nil, fmt.Errorf("unable to get retrieve pending "+
"channels: %v", err)
}
nPendingChannels := uint32(len(pendingChannels))
idPub := r.server.identityPriv.PubKey().SerializeCompressed()
encodedIDPub := hex.EncodeToString(idPub)
bestHash, bestHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, fmt.Errorf("unable to get best block info: %v", err)
}
isSynced, bestHeaderTimestamp, err := r.server.cc.wallet.IsSynced()
if err != nil {
return nil, fmt.Errorf("unable to sync PoV of the wallet "+
"with current best block in the main chain: %v", err)
}
network := normalizeNetwork(activeNetParams.Name)
activeChains := make([]*lnrpc.Chain, registeredChains.NumActiveChains())
for i, chain := range registeredChains.ActiveChains() {
activeChains[i] = &lnrpc.Chain{
Chain: chain.String(),
Network: network,
}
}
// Check if external IP addresses were provided to lnd and use them
// to set the URIs.
nodeAnn, err := r.server.genNodeAnnouncement(false)
if err != nil {
return nil, fmt.Errorf("unable to retrieve current fully signed "+
"node announcement: %v", err)
}
addrs := nodeAnn.Addresses
uris := make([]string, len(addrs))
for i, addr := range addrs {
uris[i] = fmt.Sprintf("%s@%s", encodedIDPub, addr.String())
}
// TODO(roasbeef): add synced height n stuff
return &lnrpc.GetInfoResponse{
IdentityPubkey: encodedIDPub,
NumPendingChannels: nPendingChannels,
NumActiveChannels: activeChannels,
NumInactiveChannels: inactiveChannels,
NumPeers: uint32(len(serverPeers)),
BlockHeight: uint32(bestHeight),
BlockHash: bestHash.String(),
SyncedToChain: isSynced,
Testnet: isTestnet(&activeNetParams),
Chains: activeChains,
Uris: uris,
Alias: nodeAnn.Alias.String(),
Color: routing.EncodeHexColor(nodeAnn.RGBColor),
BestHeaderTimestamp: int64(bestHeaderTimestamp),
Version: build.Version(),
}, nil
}
// ListPeers returns a verbose listing of all currently active peers.
func (r *rpcServer) ListPeers(ctx context.Context,
in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) {
rpcsLog.Tracef("[listpeers] request")
serverPeers := r.server.Peers()
resp := &lnrpc.ListPeersResponse{
Peers: make([]*lnrpc.Peer, 0, len(serverPeers)),
}
for _, serverPeer := range serverPeers {
var (
satSent int64
satRecv int64
)
// In order to display the total number of satoshis of outbound
// (sent) and inbound (recv'd) satoshis that have been
// transported through this peer, we'll sum up the sent/recv'd
// values for each of the active channels we have with the
// peer.
chans := serverPeer.ChannelSnapshots()
for _, c := range chans {
satSent += int64(c.TotalMSatSent.ToSatoshis())
satRecv += int64(c.TotalMSatReceived.ToSatoshis())
}
nodePub := serverPeer.PubKey()
// Retrieve the peer's sync type. If we don't currently have a
// syncer for the peer, then we'll default to a passive sync.
// This can happen if the RPC is called while a peer is
// initializing.
syncer, ok := r.server.authGossiper.SyncManager().GossipSyncer(
nodePub,
)
var lnrpcSyncType lnrpc.Peer_SyncType
if !ok {
rpcsLog.Warnf("Gossip syncer for peer=%x not found",
nodePub)
lnrpcSyncType = lnrpc.Peer_UNKNOWN_SYNC
} else {
syncType := syncer.SyncType()
switch syncType {
case discovery.ActiveSync:
lnrpcSyncType = lnrpc.Peer_ACTIVE_SYNC
case discovery.PassiveSync:
lnrpcSyncType = lnrpc.Peer_PASSIVE_SYNC
default:
return nil, fmt.Errorf("unhandled sync type %v",
syncType)
}
}
peer := &lnrpc.Peer{
PubKey: hex.EncodeToString(nodePub[:]),
Address: serverPeer.conn.RemoteAddr().String(),
Inbound: serverPeer.inbound,
BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived),
BytesSent: atomic.LoadUint64(&serverPeer.bytesSent),
SatSent: satSent,
SatRecv: satRecv,
PingTime: serverPeer.PingTime(),
SyncType: lnrpcSyncType,
}
resp.Peers = append(resp.Peers, peer)
}
rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers)
return resp, nil
}
// WalletBalance returns total unspent outputs(confirmed and unconfirmed), all
// confirmed unspent outputs and all unconfirmed unspent outputs under control
// by the wallet. This method can be modified by having the request specify
// only witness outputs should be factored into the final output sum.
// TODO(roasbeef): add async hooks into wallet balance changes
func (r *rpcServer) WalletBalance(ctx context.Context,
in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) {
// Get total balance, from txs that have >= 0 confirmations.
totalBal, err := r.server.cc.wallet.ConfirmedBalance(0)
if err != nil {
return nil, err
}
// Get confirmed balance, from txs that have >= 1 confirmations.
// TODO(halseth): get both unconfirmed and confirmed balance in one
// call, as this is racy.
confirmedBal, err := r.server.cc.wallet.ConfirmedBalance(1)
if err != nil {
return nil, err
}
// Get unconfirmed balance, from txs with 0 confirmations.
unconfirmedBal := totalBal - confirmedBal
rpcsLog.Debugf("[walletbalance] Total balance=%v (confirmed=%v, "+
"unconfirmed=%v)", totalBal, confirmedBal, unconfirmedBal)
return &lnrpc.WalletBalanceResponse{
TotalBalance: int64(totalBal),
ConfirmedBalance: int64(confirmedBal),
UnconfirmedBalance: int64(unconfirmedBal),
}, nil
}
// ChannelBalance returns the total available channel flow across all open
// channels in satoshis.
func (r *rpcServer) ChannelBalance(ctx context.Context,
in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) {
openChannels, err := r.server.chanDB.FetchAllOpenChannels()
if err != nil {
return nil, err
}
var balance btcutil.Amount
for _, channel := range openChannels {
balance += channel.LocalCommitment.LocalBalance.ToSatoshis()
}
pendingChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
return nil, err
}
var pendingOpenBalance btcutil.Amount
for _, channel := range pendingChannels {
pendingOpenBalance += channel.LocalCommitment.LocalBalance.ToSatoshis()
}
return &lnrpc.ChannelBalanceResponse{
Balance: int64(balance),
PendingOpenBalance: int64(pendingOpenBalance),
}, nil
}
// PendingChannels returns a list of all the channels that are currently
// considered "pending". A channel is pending if it has finished the funding
// workflow and is waiting for confirmations for the funding txn, or is in the
// process of closure, either initiated cooperatively or non-cooperatively.
func (r *rpcServer) PendingChannels(ctx context.Context,
in *lnrpc.PendingChannelsRequest) (*lnrpc.PendingChannelsResponse, error) {
rpcsLog.Debugf("[pendingchannels]")
resp := &lnrpc.PendingChannelsResponse{}
// First, we'll populate the response with all the channels that are
// soon to be opened. We can easily fetch this data from the database
// and map the db struct to the proto response.
pendingOpenChannels, err := r.server.chanDB.FetchPendingChannels()
if err != nil {
rpcsLog.Errorf("unable to fetch pending channels: %v", err)
return nil, err
}
resp.PendingOpenChannels = make([]*lnrpc.PendingChannelsResponse_PendingOpenChannel,
len(pendingOpenChannels))
for i, pendingChan := range pendingOpenChannels {
pub := pendingChan.IdentityPub.SerializeCompressed()
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
// TODO(roasbeef): query for funding tx from wallet, display
// that also?
localCommitment := pendingChan.LocalCommitment
utx := btcutil.NewTx(localCommitment.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + input.WitnessCommitmentTxWeight
resp.PendingOpenChannels[i] = &lnrpc.PendingChannelsResponse_PendingOpenChannel{
Channel: &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: pendingChan.FundingOutpoint.String(),
Capacity: int64(pendingChan.Capacity),
LocalBalance: int64(localCommitment.LocalBalance.ToSatoshis()),
RemoteBalance: int64(localCommitment.RemoteBalance.ToSatoshis()),
},
CommitWeight: commitWeight,
CommitFee: int64(localCommitment.CommitFee),
FeePerKw: int64(localCommitment.FeePerKw),
// TODO(roasbeef): need to track confirmation height
}
}
_, currentHeight, err := r.server.cc.chainIO.GetBestBlock()
if err != nil {
return nil, err
}
// Next, we'll examine the channels that are soon to be closed so we
// can populate these fields within the response.
pendingCloseChannels, err := r.server.chanDB.FetchClosedChannels(true)
if err != nil {
rpcsLog.Errorf("unable to fetch closed channels: %v", err)
return nil, err
}
for _, pendingClose := range pendingCloseChannels {
// First construct the channel struct itself, this will be
// needed regardless of how this channel was closed.
pub := pendingClose.RemotePub.SerializeCompressed()
chanPoint := pendingClose.ChanPoint
channel := &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: chanPoint.String(),
Capacity: int64(pendingClose.Capacity),
LocalBalance: int64(pendingClose.SettledBalance),
}
closeTXID := pendingClose.ClosingTXID.String()
switch pendingClose.CloseType {
// If the channel was closed cooperatively, then we'll only
// need to tack on the closing txid.
// TODO(halseth): remove. After recent changes, a coop closed
// channel should never be in the "pending close" state.
// Keeping for now to let someone that upgraded in the middle
// of a close let their closing tx confirm.
case channeldb.CooperativeClose:
resp.PendingClosingChannels = append(
resp.PendingClosingChannels,
&lnrpc.PendingChannelsResponse_ClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
},
)
resp.TotalLimboBalance += channel.LocalBalance
// If the channel was force closed, then we'll need to query
// the utxoNursery for additional information.
// TODO(halseth): distinguish remote and local case?
case channeldb.LocalForceClose, channeldb.RemoteForceClose:
forceClose := &lnrpc.PendingChannelsResponse_ForceClosedChannel{
Channel: channel,
ClosingTxid: closeTXID,
}
// Fetch reports from both nursery and resolvers. At the
// moment this is not an atomic snapshot. This is
// planned to be resolved when the nursery is removed
// and channel arbitrator will be the single source for
// these kind of reports.
err := r.nurseryPopulateForceCloseResp(
&chanPoint, currentHeight, forceClose,
)
if err != nil {
return nil, err
}
err = r.arbitratorPopulateForceCloseResp(
&chanPoint, currentHeight, forceClose,
)
if err != nil {
return nil, err
}
resp.TotalLimboBalance += int64(forceClose.LimboBalance)
resp.PendingForceClosingChannels = append(
resp.PendingForceClosingChannels,
forceClose,
)
}
}
// We'll also fetch all channels that are open, but have had their
// commitment broadcasted, meaning they are waiting for the closing
// transaction to confirm.
waitingCloseChans, err := r.server.chanDB.FetchWaitingCloseChannels()
if err != nil {
rpcsLog.Errorf("unable to fetch channels waiting close: %v",
err)
return nil, err
}
for _, waitingClose := range waitingCloseChans {
pub := waitingClose.IdentityPub.SerializeCompressed()
chanPoint := waitingClose.FundingOutpoint
channel := &lnrpc.PendingChannelsResponse_PendingChannel{
RemoteNodePub: hex.EncodeToString(pub),
ChannelPoint: chanPoint.String(),
Capacity: int64(waitingClose.Capacity),
LocalBalance: int64(waitingClose.LocalCommitment.LocalBalance.ToSatoshis()),
}
// A close tx has been broadcasted, all our balance will be in
// limbo until it confirms.
resp.WaitingCloseChannels = append(
resp.WaitingCloseChannels,
&lnrpc.PendingChannelsResponse_WaitingCloseChannel{
Channel: channel,
LimboBalance: channel.LocalBalance,
},
)
resp.TotalLimboBalance += channel.LocalBalance
}
return resp, nil
}
// arbitratorPopulateForceCloseResp populates the pending channels response
// message with channel resolution information from the contract resolvers.
func (r *rpcServer) arbitratorPopulateForceCloseResp(chanPoint *wire.OutPoint,
currentHeight int32,
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel) error {
// Query for contract resolvers state.
arbitrator, err := r.server.chainArb.GetChannelArbitrator(*chanPoint)
if err != nil {
return err
}
reports := arbitrator.Report()
for _, report := range reports {
htlc := &lnrpc.PendingHTLC{
Incoming: report.Incoming,
Amount: int64(report.Amount),
Outpoint: report.Outpoint.String(),
MaturityHeight: report.MaturityHeight,
Stage: report.Stage,
}
if htlc.MaturityHeight != 0 {
htlc.BlocksTilMaturity =
int32(htlc.MaturityHeight) - currentHeight
}
forceClose.LimboBalance += int64(report.LimboBalance)
forceClose.RecoveredBalance += int64(report.RecoveredBalance)
forceClose.PendingHtlcs = append(forceClose.PendingHtlcs, htlc)
}
return nil
}
// nurseryPopulateForceCloseResp populates the pending channels response
// message with contract resolution information from utxonursery.
func (r *rpcServer) nurseryPopulateForceCloseResp(chanPoint *wire.OutPoint,
currentHeight int32,
forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel) error {
// Query for the maturity state for this force closed channel. If we
// didn't have any time-locked outputs, then the nursery may not know of
// the contract.
nurseryInfo, err := r.server.utxoNursery.NurseryReport(chanPoint)
if err == ErrContractNotFound {
return nil
}
if err != nil {
return fmt.Errorf("unable to obtain "+
"nursery report for ChannelPoint(%v): %v",
chanPoint, err)
}
// If the nursery knows of this channel, then we can populate
// information detailing exactly how much funds are time locked and also
// the height in which we can ultimately sweep the funds into the
// wallet.
forceClose.LimboBalance = int64(nurseryInfo.limboBalance)
forceClose.RecoveredBalance = int64(nurseryInfo.recoveredBalance)
forceClose.MaturityHeight = nurseryInfo.maturityHeight
// If the transaction has been confirmed, then we can compute how many
// blocks it has left.
if forceClose.MaturityHeight != 0 {
forceClose.BlocksTilMaturity =
int32(forceClose.MaturityHeight) -
currentHeight
}
for _, htlcReport := range nurseryInfo.htlcs {
// TODO(conner) set incoming flag appropriately after handling
// incoming incubation
htlc := &lnrpc.PendingHTLC{
Incoming: false,
Amount: int64(htlcReport.amount),
Outpoint: htlcReport.outpoint.String(),
MaturityHeight: htlcReport.maturityHeight,
Stage: htlcReport.stage,
}
if htlc.MaturityHeight != 0 {
htlc.BlocksTilMaturity =
int32(htlc.MaturityHeight) -
currentHeight
}
forceClose.PendingHtlcs = append(forceClose.PendingHtlcs,
htlc)
}
return nil
}
// ClosedChannels returns a list of all the channels have been closed.
// This does not include channels that are still in the process of closing.
func (r *rpcServer) ClosedChannels(ctx context.Context,
in *lnrpc.ClosedChannelsRequest) (*lnrpc.ClosedChannelsResponse,
error) {
// Show all channels when no filter flags are set.
filterResults := in.Cooperative || in.LocalForce ||
in.RemoteForce || in.Breach || in.FundingCanceled ||
in.Abandoned
resp := &lnrpc.ClosedChannelsResponse{}
dbChannels, err := r.server.chanDB.FetchClosedChannels(false)
if err != nil {
return nil, err
}
// In order to make the response easier to parse for clients, we'll
// sort the set of closed channels by their closing height before
// serializing the proto response.
sort.Slice(dbChannels, func(i, j int) bool {
return dbChannels[i].CloseHeight < dbChannels[j].CloseHeight
})
for _, dbChannel := range dbChannels {
if dbChannel.IsPending {
continue
}
switch dbChannel.CloseType {
case channeldb.CooperativeClose:
if filterResults && !in.Cooperative {
continue
}
case channeldb.LocalForceClose:
if filterResults && !in.LocalForce {
continue
}
case channeldb.RemoteForceClose:
if filterResults && !in.RemoteForce {
continue
}
case channeldb.BreachClose:
if filterResults && !in.Breach {
continue
}
case channeldb.FundingCanceled:
if filterResults && !in.FundingCanceled {
continue
}
case channeldb.Abandoned:
if filterResults && !in.Abandoned {
continue
}
}
channel := createRPCClosedChannel(dbChannel)
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// ListChannels returns a description of all the open channels that this node
// is a participant in.
func (r *rpcServer) ListChannels(ctx context.Context,
in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) {
if in.ActiveOnly && in.InactiveOnly {
return nil, fmt.Errorf("either `active_only` or " +
"`inactive_only` can be set, but not both")
}
if in.PublicOnly && in.PrivateOnly {
return nil, fmt.Errorf("either `public_only` or " +
"`private_only` can be set, but not both")
}
resp := &lnrpc.ListChannelsResponse{}
graph := r.server.chanDB.ChannelGraph()
dbChannels, err := r.server.chanDB.FetchAllOpenChannels()
if err != nil {
return nil, err
}
rpcsLog.Debugf("[listchannels] fetched %v channels from DB",
len(dbChannels))
for _, dbChannel := range dbChannels {
nodePub := dbChannel.IdentityPub
chanPoint := dbChannel.FundingOutpoint
var peerOnline bool
if _, err := r.server.FindPeer(nodePub); err == nil {
peerOnline = true
}
channelID := lnwire.NewChanIDFromOutPoint(&chanPoint)
var linkActive bool
if link, err := r.server.htlcSwitch.GetLink(channelID); err == nil {
// A channel is only considered active if it is known
// by the switch *and* able to forward
// incoming/outgoing payments.
linkActive = link.EligibleToForward()
}
// Next, we'll determine whether we should add this channel to
// our list depending on the type of channels requested to us.
isActive := peerOnline && linkActive
channel := createRPCOpenChannel(r, graph, dbChannel, isActive)
// We'll only skip returning this channel if we were requested
// for a specific kind and this channel doesn't satisfy it.
switch {
case in.ActiveOnly && !isActive:
continue
case in.InactiveOnly && isActive:
continue
case in.PublicOnly && channel.Private:
continue
case in.PrivateOnly && !channel.Private:
continue
}
resp.Channels = append(resp.Channels, channel)
}
return resp, nil
}
// createRPCOpenChannel creates an *lnrpc.Channel from the *channeldb.Channel.
func createRPCOpenChannel(r *rpcServer, graph *channeldb.ChannelGraph,
dbChannel *channeldb.OpenChannel, isActive bool) *lnrpc.Channel {
nodePub := dbChannel.IdentityPub
nodeID := hex.EncodeToString(nodePub.SerializeCompressed())
chanPoint := dbChannel.FundingOutpoint
// Next, we'll determine whether the channel is public or not.
isPublic := dbChannel.ChannelFlags&lnwire.FFAnnounceChannel != 0
// As this is required for display purposes, we'll calculate
// the weight of the commitment transaction. We also add on the
// estimated weight of the witness to calculate the weight of
// the transaction if it were to be immediately unilaterally
// broadcast.
localCommit := dbChannel.LocalCommitment
utx := btcutil.NewTx(localCommit.CommitTx)
commitBaseWeight := blockchain.GetTransactionWeight(utx)
commitWeight := commitBaseWeight + input.WitnessCommitmentTxWeight
localBalance := localCommit.LocalBalance
remoteBalance := localCommit.RemoteBalance
// As an artifact of our usage of mSAT internally, either party
// may end up in a state where they're holding a fractional
// amount of satoshis which can't be expressed within the
// actual commitment output. Since we round down when going
// from mSAT -> SAT, we may at any point be adding an
// additional SAT to miners fees. As a result, we display a
// commitment fee that accounts for this externally.
var sumOutputs btcutil.Amount
for _, txOut := range localCommit.CommitTx.TxOut {
sumOutputs += btcutil.Amount(txOut.Value)
}
externalCommitFee := dbChannel.Capacity - sumOutputs
channel := &lnrpc.Channel{
Active: isActive,
Private: !isPublic,
RemotePubkey: nodeID,
ChannelPoint: chanPoint.String(),
ChanId: dbChannel.ShortChannelID.ToUint64(),
Capacity: int64(dbChannel.Capacity),
LocalBalance: int64(localBalance.ToSatoshis()),
RemoteBalance: int64(remoteBalance.ToSatoshis()),
CommitFee: int64(externalCommitFee),
CommitWeight: commitWeight,
FeePerKw: int64(localCommit.FeePerKw),
TotalSatoshisSent: int64(dbChannel.TotalMSatSent.ToSatoshis()),
TotalSatoshisReceived: int64(dbChannel.TotalMSatReceived.ToSatoshis()),
NumUpdates: localCommit.CommitHeight,
PendingHtlcs: make([]*lnrpc.HTLC, len(localCommit.Htlcs)),
CsvDelay: uint32(dbChannel.LocalChanCfg.CsvDelay),
Initiator: dbChannel.IsInitiator,
ChanStatusFlags: dbChannel.ChanStatus().String(),
}
for i, htlc := range localCommit.Htlcs {
var rHash [32]byte
copy(rHash[:], htlc.RHash[:])
channel.PendingHtlcs[i] = &lnrpc.HTLC{
Incoming: htlc.Incoming,
Amount: int64(htlc.Amt.ToSatoshis()),
HashLock: rHash[:],
ExpirationHeight: htlc.RefundTimeout,
}
// Add the Pending Htlc Amount to UnsettledBalance field.
channel.UnsettledBalance += channel.PendingHtlcs[i].Amount
}
return channel
}
// createRPCClosedChannel creates an *lnrpc.ClosedChannelSummary from a
// *channeldb.ChannelCloseSummary.
func createRPCClosedChannel(
dbChannel *channeldb.ChannelCloseSummary) *lnrpc.ChannelCloseSummary {
nodePub := dbChannel.RemotePub
nodeID := hex.EncodeToString(nodePub.SerializeCompressed())
var closeType lnrpc.ChannelCloseSummary_ClosureType
switch dbChannel.CloseType {
case channeldb.CooperativeClose:
closeType = lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE
case channeldb.LocalForceClose:
closeType = lnrpc.ChannelCloseSummary_LOCAL_FORCE_CLOSE
case channeldb.RemoteForceClose:
closeType = lnrpc.ChannelCloseSummary_REMOTE_FORCE_CLOSE
case channeldb.BreachClose:
closeType = lnrpc.ChannelCloseSummary_BREACH_CLOSE
case channeldb.FundingCanceled:
closeType = lnrpc.ChannelCloseSummary_FUNDING_CANCELED
case channeldb.Abandoned:
closeType = lnrpc.ChannelCloseSummary_ABANDONED
}
return &lnrpc.ChannelCloseSummary{
Capacity: int64(dbChannel.Capacity),
RemotePubkey: nodeID,
CloseHeight: dbChannel.CloseHeight,
CloseType: closeType,
ChannelPoint: dbChannel.ChanPoint.String(),
ChanId: dbChannel.ShortChanID.ToUint64(),
SettledBalance: int64(dbChannel.SettledBalance),
TimeLockedBalance: int64(dbChannel.TimeLockedBalance),
ChainHash: dbChannel.ChainHash.String(),
ClosingTxHash: dbChannel.ClosingTXID.String(),
}
}
// SubscribeChannelEvents returns a uni-directional stream (server -> client)
// for notifying the client of newly active, inactive or closed channels.
func (r *rpcServer) SubscribeChannelEvents(req *lnrpc.ChannelEventSubscription,
updateStream lnrpc.Lightning_SubscribeChannelEventsServer) error {
channelEventSub, err := r.server.channelNotifier.SubscribeChannelEvents()
if err != nil {
return err
}
// Ensure that the resources for the client is cleaned up once either
// the server, or client exits.
defer channelEventSub.Cancel()
graph := r.server.chanDB.ChannelGraph()
for {
select {
// A new update has been sent by the channel router, we'll
// marshal it into the form expected by the gRPC client, then
// send it off to the client(s).
case e := <-channelEventSub.Updates():
var update *lnrpc.ChannelEventUpdate
switch event := e.(type) {
case channelnotifier.OpenChannelEvent:
channel := createRPCOpenChannel(r, graph,
event.Channel, true)
update = &lnrpc.ChannelEventUpdate{
Type: lnrpc.ChannelEventUpdate_OPEN_CHANNEL,
Channel: &lnrpc.ChannelEventUpdate_OpenChannel{
OpenChannel: channel,
},
}
case channelnotifier.ClosedChannelEvent:
closedChannel := createRPCClosedChannel(event.CloseSummary)
update = &lnrpc.ChannelEventUpdate{
Type: lnrpc.ChannelEventUpdate_CLOSED_CHANNEL,
Channel: &lnrpc.ChannelEventUpdate_ClosedChannel{
ClosedChannel: closedChannel,
},
}
case channelnotifier.ActiveChannelEvent:
update = &lnrpc.ChannelEventUpdate{
Type: lnrpc.ChannelEventUpdate_ACTIVE_CHANNEL,
Channel: &lnrpc.ChannelEventUpdate_ActiveChannel{
ActiveChannel: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: event.ChannelPoint.Hash[:],
},
OutputIndex: event.ChannelPoint.Index,
},
},
}
case channelnotifier.InactiveChannelEvent:
update = &lnrpc.ChannelEventUpdate{
Type: lnrpc.ChannelEventUpdate_INACTIVE_CHANNEL,
Channel: &lnrpc.ChannelEventUpdate_InactiveChannel{
InactiveChannel: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: event.ChannelPoint.Hash[:],
},
OutputIndex: event.ChannelPoint.Index,
},
},
}
default:
return fmt.Errorf("unexpected channel event update: %v", event)
}
if err := updateStream.Send(update); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// savePayment saves a successfully completed payment to the database for
// historical record keeping.
func (r *rpcServer) savePayment(route *route.Route,
amount lnwire.MilliSatoshi, preImage []byte) error {
paymentPath := make([][33]byte, len(route.Hops))
for i, hop := range route.Hops {
hopPub := hop.PubKeyBytes
copy(paymentPath[i][:], hopPub[:])
}
payment := &channeldb.OutgoingPayment{
Invoice: channeldb.Invoice{
Terms: channeldb.ContractTerm{
Value: amount,
},
CreationDate: time.Now(),
},
Path: paymentPath,
Fee: route.TotalFees(),
TimeLockLength: route.TotalTimeLock,
}
copy(payment.PaymentPreimage[:], preImage)
return r.server.chanDB.AddPayment(payment)
}
// validatePayReqExpiry checks if the passed payment request has expired. In
// the case it has expired, an error will be returned.
func validatePayReqExpiry(payReq *zpay32.Invoice) error {
expiry := payReq.Expiry()
validUntil := payReq.Timestamp.Add(expiry)
if time.Now().After(validUntil) {
return fmt.Errorf("invoice expired. Valid until %v", validUntil)
}
return nil
}
// paymentStream enables different types of payment streams, such as:
// lnrpc.Lightning_SendPaymentServer and lnrpc.Lightning_SendToRouteServer to
// execute sendPayment. We use this struct as a sort of bridge to enable code
// re-use between SendPayment and SendToRoute.
type paymentStream struct {
recv func() (*rpcPaymentRequest, error)
send func(*lnrpc.SendResponse) error
}
// rpcPaymentRequest wraps lnrpc.SendRequest so that routes from
// lnrpc.SendToRouteRequest can be passed to sendPayment.
type rpcPaymentRequest struct {
*lnrpc.SendRequest
route *route.Route
}
// calculateFeeLimit returns the fee limit in millisatoshis. If a percentage
// based fee limit has been requested, we'll factor in the ratio provided with
// the amount of the payment.
func calculateFeeLimit(feeLimit *lnrpc.FeeLimit,
amount lnwire.MilliSatoshi) lnwire.MilliSatoshi {
switch feeLimit.GetLimit().(type) {
case *lnrpc.FeeLimit_Fixed:
return lnwire.NewMSatFromSatoshis(
btcutil.Amount(feeLimit.GetFixed()),
)
case *lnrpc.FeeLimit_Percent:
return amount * lnwire.MilliSatoshi(feeLimit.GetPercent()) / 100
default:
// If a fee limit was not specified, we'll use the payment's
// amount as an upper bound in order to avoid payment attempts
// from incurring fees higher than the payment amount itself.
return amount
}
}
// SendPayment dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network. A single RPC invocation creates a persistent
// bi-directional stream allowing clients to rapidly send payments through the
// Lightning Network with a single persistent connection.
func (r *rpcServer) SendPayment(stream lnrpc.Lightning_SendPaymentServer) error {
var lock sync.Mutex
return r.sendPayment(&paymentStream{
recv: func() (*rpcPaymentRequest, error) {
req, err := stream.Recv()
if err != nil {
return nil, err
}
return &rpcPaymentRequest{
SendRequest: req,
}, nil
},
send: func(r *lnrpc.SendResponse) error {
// Calling stream.Send concurrently is not safe.
lock.Lock()
defer lock.Unlock()
return stream.Send(r)
},
})
}
// SendToRoute dispatches a bi-directional streaming RPC for sending payments
// through the Lightning Network via predefined routes passed in. A single RPC
// invocation creates a persistent bi-directional stream allowing clients to
// rapidly send payments through the Lightning Network with a single persistent
// connection.
func (r *rpcServer) SendToRoute(stream lnrpc.Lightning_SendToRouteServer) error {
var lock sync.Mutex
return r.sendPayment(&paymentStream{
recv: func() (*rpcPaymentRequest, error) {
req, err := stream.Recv()
if err != nil {
return nil, err
}
return r.unmarshallSendToRouteRequest(req)
},
send: func(r *lnrpc.SendResponse) error {
// Calling stream.Send concurrently is not safe.
lock.Lock()
defer lock.Unlock()
return stream.Send(r)
},
})
}
// unmarshallSendToRouteRequest unmarshalls an rpc sendtoroute request
func (r *rpcServer) unmarshallSendToRouteRequest(
req *lnrpc.SendToRouteRequest) (*rpcPaymentRequest, error) {
if req.Route == nil {
return nil, fmt.Errorf("unable to send, no route provided")
}
route, err := r.routerBackend.UnmarshallRoute(req.Route)
if err != nil {
return nil, err
}
return &rpcPaymentRequest{
SendRequest: &lnrpc.SendRequest{
PaymentHash: req.PaymentHash,
PaymentHashString: req.PaymentHashString,
},
route: route,
}, nil
}
// rpcPaymentIntent is a small wrapper struct around the of values we can
// receive from a client over RPC if they wish to send a payment. We'll either
// extract these fields from a payment request (which may include routing
// hints), or we'll get a fully populated route from the user that we'll pass
// directly to the channel router for dispatching.
type rpcPaymentIntent struct {
msat lnwire.MilliSatoshi
feeLimit lnwire.MilliSatoshi
cltvLimit *uint32
dest route.Vertex
rHash [32]byte
cltvDelta uint16
routeHints [][]zpay32.HopHint
outgoingChannelID *uint64
route *route.Route
}
// extractPaymentIntent attempts to parse the complete details required to
// dispatch a client from the information presented by an RPC client. There are
// three ways a client can specify their payment details: a payment request,
// via manual details, or via a complete route.
func extractPaymentIntent(rpcPayReq *rpcPaymentRequest) (rpcPaymentIntent, error) {
payIntent := rpcPaymentIntent{}
// If a route was specified, then we can use that directly.
if rpcPayReq.route != nil {
// If the user is using the REST interface, then they'll be
// passing the payment hash as a hex encoded string.
if rpcPayReq.PaymentHashString != "" {
paymentHash, err := hex.DecodeString(
rpcPayReq.PaymentHashString,
)
if err != nil {
return payIntent, err
}
copy(payIntent.rHash[:], paymentHash)
} else {
copy(payIntent.rHash[:], rpcPayReq.PaymentHash)
}
payIntent.route = rpcPayReq.route
return payIntent, nil
}
// If there are no routes specified, pass along a outgoing channel
// restriction if specified.
if rpcPayReq.OutgoingChanId != 0 {
payIntent.outgoingChannelID = &rpcPayReq.OutgoingChanId
}
// Take cltv limit from request if set.
if rpcPayReq.CltvLimit != 0 {
payIntent.cltvLimit = &rpcPayReq.CltvLimit
}
// If the payment request field isn't blank, then the details of the
// invoice are encoded entirely within the encoded payReq. So we'll
// attempt to decode it, populating the payment accordingly.
if rpcPayReq.PaymentRequest != "" {
payReq, err := zpay32.Decode(
rpcPayReq.PaymentRequest, activeNetParams.Params,
)
if err != nil {
return payIntent, err
}
// Next, we'll ensure that this payreq hasn't already expired.
err = validatePayReqExpiry(payReq)
if err != nil {
return payIntent, err
}
// If the amount was not included in the invoice, then we let
// the payee specify the amount of satoshis they wish to send.
// We override the amount to pay with the amount provided from
// the payment request.
if payReq.MilliSat == nil {
if rpcPayReq.Amt == 0 {
return payIntent, errors.New("amount must be " +
"specified when paying a zero amount " +
"invoice")
}
payIntent.msat = lnwire.NewMSatFromSatoshis(
btcutil.Amount(rpcPayReq.Amt),
)
} else {
payIntent.msat = *payReq.MilliSat
}
// Calculate the fee limit that should be used for this payment.
payIntent.feeLimit = calculateFeeLimit(
rpcPayReq.FeeLimit, payIntent.msat,
)
copy(payIntent.rHash[:], payReq.PaymentHash[:])
destKey := payReq.Destination.SerializeCompressed()
copy(payIntent.dest[:], destKey)
payIntent.cltvDelta = uint16(payReq.MinFinalCLTVExpiry())
payIntent.routeHints = payReq.RouteHints
return payIntent, nil
}
// At this point, a destination MUST be specified, so we'll convert it
// into the proper representation now. The destination will either be
// encoded as raw bytes, or via a hex string.
var pubBytes []byte
if len(rpcPayReq.Dest) != 0 {
pubBytes = rpcPayReq.Dest
} else {
var err error
pubBytes, err = hex.DecodeString(rpcPayReq.DestString)
if err != nil {
return payIntent, err
}
}
if len(pubBytes) != 33 {
return payIntent, errors.New("invalid key length")
}
copy(payIntent.dest[:], pubBytes)
// Otherwise, If the payment request field was not specified
// (and a custom route wasn't specified), construct the payment
// from the other fields.
payIntent.msat = lnwire.NewMSatFromSatoshis(
btcutil.Amount(rpcPayReq.Amt),
)
// Calculate the fee limit that should be used for this payment.
payIntent.feeLimit = calculateFeeLimit(
rpcPayReq.FeeLimit, payIntent.msat,
)
payIntent.cltvDelta = uint16(rpcPayReq.FinalCltvDelta)
// If the user is manually specifying payment details, then the payment
// hash may be encoded as a string.
switch {
case rpcPayReq.PaymentHashString != "":
paymentHash, err := hex.DecodeString(
rpcPayReq.PaymentHashString,
)
if err != nil {
return payIntent, err
}
copy(payIntent.rHash[:], paymentHash)
// If we're in debug HTLC mode, then all outgoing HTLCs will pay to the
// same debug rHash. Otherwise, we pay to the rHash specified within
// the RPC request.
case cfg.DebugHTLC && bytes.Equal(payIntent.rHash[:], zeroHash[:]):
copy(payIntent.rHash[:], invoices.DebugHash[:])
default:
copy(payIntent.rHash[:], rpcPayReq.PaymentHash)
}
// Currently, within the bootstrap phase of the network, we limit the
// largest payment size allotted to (2^32) - 1 mSAT or 4.29 million
// satoshis.
if payIntent.msat > maxPaymentMSat {
// In this case, we'll send an error to the caller, but
// continue our loop for the next payment.
return payIntent, fmt.Errorf("payment of %v is too large, "+
"max payment allowed is %v", payIntent.msat,
maxPaymentMSat)
}
return payIntent, nil
}
type paymentIntentResponse struct {
Route *route.Route
Preimage [32]byte
Err error
}
// dispatchPaymentIntent attempts to fully dispatch an RPC payment intent.
// We'll either pass the payment as a whole to the channel router, or give it a
// pre-built route. The first error this method returns denotes if we were
// unable to save the payment. The second error returned denotes if the payment
// didn't succeed.
func (r *rpcServer) dispatchPaymentIntent(
payIntent *rpcPaymentIntent) (*paymentIntentResponse, error) {
// Construct a payment request to send to the channel router. If the
// payment is successful, the route chosen will be returned. Otherwise,
// we'll get a non-nil error.
var (
preImage [32]byte
route *route.Route
routerErr error
)
// If a route was specified, then we'll pass the route directly to the
// router, otherwise we'll create a payment session to execute it.
if payIntent.route == nil {
payment := &routing.LightningPayment{
Target: payIntent.dest,
Amount: payIntent.msat,
FeeLimit: payIntent.feeLimit,
CltvLimit: payIntent.cltvLimit,
PaymentHash: payIntent.rHash,
RouteHints: payIntent.routeHints,
OutgoingChannelID: payIntent.outgoingChannelID,
}
// If the final CLTV value was specified, then we'll use that
// rather than the default.
if payIntent.cltvDelta != 0 {
payment.FinalCLTVDelta = &payIntent.cltvDelta
}
preImage, route, routerErr = r.server.chanRouter.SendPayment(
payment,
)
} else {
preImage, routerErr = r.server.chanRouter.SendToRoute(
payIntent.rHash, payIntent.route,
)
route = payIntent.route
}
// If the route failed, then we'll return a nil save err, but a non-nil
// routing err.
if routerErr != nil {
return &paymentIntentResponse{
Err: routerErr,
}, nil
}
// Calculate amount paid to receiver.
amt := route.TotalAmount - route.TotalFees()
// Save the completed payment to the database for record keeping
// purposes.
err := r.savePayment(route, amt, preImage[:])
if err != nil {
// We weren't able to save the payment, so we return the save
// err, but a nil routing err.
return nil, err
}
return &paymentIntentResponse{
Route: route,
Preimage: preImage,
}, nil
}
// sendPayment takes a paymentStream (a source of pre-built routes or payment
// requests) and continually attempt to dispatch payment requests written to
// the write end of the stream. Responses will also be streamed back to the
// client via the write end of the stream. This method is by both SendToRoute
// and SendPayment as the logic is virtually identical.
func (r *rpcServer) sendPayment(stream *paymentStream) error {
payChan := make(chan *rpcPaymentIntent)
errChan := make(chan error, 1)
// We don't allow payments to be sent while the daemon itself is still
// syncing as we may be trying to sent a payment over a "stale"
// channel.
if !r.server.Started() {
return fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// TODO(roasbeef): check payment filter to see if already used?
// In order to limit the level of concurrency and prevent a client from
// attempting to OOM the server, we'll set up a semaphore to create an
// upper ceiling on the number of outstanding payments.
const numOutstandingPayments = 2000
htlcSema := make(chan struct{}, numOutstandingPayments)
for i := 0; i < numOutstandingPayments; i++ {
htlcSema <- struct{}{}
}
// Launch a new goroutine to handle reading new payment requests from
// the client. This way we can handle errors independently of blocking
// and waiting for the next payment request to come through.
reqQuit := make(chan struct{})
defer func() {
close(reqQuit)
}()
// TODO(joostjager): Callers expect result to come in in the same order
// as the request were sent, but this is far from guarantueed in the
// code below.
go func() {
for {
select {
case <-reqQuit:
return
case <-r.quit:
errChan <- nil
return
default:
// Receive the next pending payment within the
// stream sent by the client. If we read the
// EOF sentinel, then the client has closed the
// stream, and we can exit normally.
nextPayment, err := stream.recv()
if err == io.EOF {
errChan <- nil
return
} else if err != nil {
select {
case errChan <- err:
case <-reqQuit:
return
}
return
}
// Populate the next payment, either from the
// payment request, or from the explicitly set
// fields. If the payment proto wasn't well
// formed, then we'll send an error reply and
// wait for the next payment.
payIntent, err := extractPaymentIntent(nextPayment)
if err != nil {
if err := stream.send(&lnrpc.SendResponse{
PaymentError: err.Error(),
PaymentHash: payIntent.rHash[:],
}); err != nil {
select {
case errChan <- err:
case <-reqQuit:
return
}
}
continue
}
// If the payment was well formed, then we'll
// send to the dispatch goroutine, or exit,
// which ever comes first
select {
case payChan <- &payIntent:
case <-reqQuit:
return
}
}
}
}()
for {
select {
case err := <-errChan:
return err
case payIntent := <-payChan:
// We launch a new goroutine to execute the current
// payment so we can continue to serve requests while
// this payment is being dispatched.
go func() {
// Attempt to grab a free semaphore slot, using
// a defer to eventually release the slot
// regardless of payment success.
<-htlcSema
defer func() {
htlcSema <- struct{}{}
}()
resp, saveErr := r.dispatchPaymentIntent(
payIntent,
)
switch {
// If we were unable to save the state of the
// payment, then we'll return the error to the
// user, and terminate.
case saveErr != nil:
errChan <- saveErr
return
// If we receive payment error than, instead of
// terminating the stream, send error response
// to the user.
case resp.Err != nil:
err := stream.send(&lnrpc.SendResponse{
PaymentError: resp.Err.Error(),
PaymentHash: payIntent.rHash[:],
})
if err != nil {
errChan <- err
}
return
}
marshalledRouted := r.routerBackend.
MarshallRoute(resp.Route)
err := stream.send(&lnrpc.SendResponse{
PaymentHash: payIntent.rHash[:],
PaymentPreimage: resp.Preimage[:],
PaymentRoute: marshalledRouted,
})
if err != nil {
errChan <- err
return
}
}()
}
}
}
// SendPaymentSync is the synchronous non-streaming version of SendPayment.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the destination's public key and the payment
// hash (if any) to be encoded as hex strings.
func (r *rpcServer) SendPaymentSync(ctx context.Context,
nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) {
return r.sendPaymentSync(ctx, &rpcPaymentRequest{
SendRequest: nextPayment,
})
}
// SendToRouteSync is the synchronous non-streaming version of SendToRoute.
// This RPC is intended to be consumed by clients of the REST proxy.
// Additionally, this RPC expects the payment hash (if any) to be encoded as
// hex strings.
func (r *rpcServer) SendToRouteSync(ctx context.Context,
req *lnrpc.SendToRouteRequest) (*lnrpc.SendResponse, error) {
if req.Route == nil {
return nil, fmt.Errorf("unable to send, no routes provided")
}
paymentRequest, err := r.unmarshallSendToRouteRequest(req)
if err != nil {
return nil, err
}
return r.sendPaymentSync(ctx, paymentRequest)
}
// sendPaymentSync is the synchronous variant of sendPayment. It will block and
// wait until the payment has been fully completed.
func (r *rpcServer) sendPaymentSync(ctx context.Context,
nextPayment *rpcPaymentRequest) (*lnrpc.SendResponse, error) {
// We don't allow payments to be sent while the daemon itself is still
// syncing as we may be trying to sent a payment over a "stale"
// channel.
if !r.server.Started() {
return nil, fmt.Errorf("chain backend is still syncing, server " +
"not active yet")
}
// First we'll attempt to map the proto describing the next payment to
// an intent that we can pass to local sub-systems.
payIntent, err := extractPaymentIntent(nextPayment)
if err != nil {
return nil, err
}
// With the payment validated, we'll now attempt to dispatch the
// payment.
resp, saveErr := r.dispatchPaymentIntent(&payIntent)
switch {
case saveErr != nil:
return nil, saveErr
case resp.Err != nil:
return &lnrpc.SendResponse{
PaymentError: resp.Err.Error(),
PaymentHash: payIntent.rHash[:],
}, nil
}
return &lnrpc.SendResponse{
PaymentHash: payIntent.rHash[:],
PaymentPreimage: resp.Preimage[:],
PaymentRoute: r.routerBackend.MarshallRoute(resp.Route),
}, nil
}
// AddInvoice attempts to add a new invoice to the invoice database. Any
// duplicated invoices are rejected, therefore all invoices *must* have a
// unique payment preimage.
func (r *rpcServer) AddInvoice(ctx context.Context,
invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) {
defaultDelta := cfg.Bitcoin.TimeLockDelta
if registeredChains.PrimaryChain() == litecoinChain {
defaultDelta = cfg.Litecoin.TimeLockDelta
}
addInvoiceCfg := &invoicesrpc.AddInvoiceConfig{
AddInvoice: r.server.invoices.AddInvoice,
IsChannelActive: r.server.htlcSwitch.HasActiveLink,
ChainParams: activeNetParams.Params,
NodeSigner: r.server.nodeSigner,
MaxPaymentMSat: maxPaymentMSat,
DefaultCLTVExpiry: defaultDelta,
ChanDB: r.server.chanDB,
}
addInvoiceData := &invoicesrpc.AddInvoiceData{
Memo: invoice.Memo,
Receipt: invoice.Receipt,
Value: btcutil.Amount(invoice.Value),
DescriptionHash: invoice.DescriptionHash,
Expiry: invoice.Expiry,
FallbackAddr: invoice.FallbackAddr,
CltvExpiry: invoice.CltvExpiry,
Private: invoice.Private,
}
if invoice.RPreimage != nil {
preimage, err := lntypes.MakePreimage(invoice.RPreimage)
if err != nil {
return nil, err
}
addInvoiceData.Preimage = &preimage
}
hash, dbInvoice, err := invoicesrpc.AddInvoice(
ctx, addInvoiceCfg, addInvoiceData,
)
if err != nil {
return nil, err
}
return &lnrpc.AddInvoiceResponse{
AddIndex: dbInvoice.AddIndex,
PaymentRequest: string(dbInvoice.PaymentRequest),
RHash: hash[:],
}, nil
}
// LookupInvoice attempts to look up an invoice according to its payment hash.
// The passed payment hash *must* be exactly 32 bytes, if not an error is
// returned.
func (r *rpcServer) LookupInvoice(ctx context.Context,
req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) {
var (
payHash [32]byte
rHash []byte
err error
)
// If the RHash as a raw string was provided, then decode that and use
// that directly. Otherwise, we use the raw bytes provided.
if req.RHashStr != "" {
rHash, err = hex.DecodeString(req.RHashStr)
if err != nil {
return nil, err
}
} else {
rHash = req.RHash
}
// Ensure that the payment hash is *exactly* 32-bytes.
if len(rHash) != 0 && len(rHash) != 32 {
return nil, fmt.Errorf("payment hash must be exactly "+
"32 bytes, is instead %v", len(rHash))
}
copy(payHash[:], rHash)
rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:])
invoice, _, err := r.server.invoices.LookupInvoice(payHash)
if err != nil {
return nil, err
}
rpcsLog.Tracef("[lookupinvoice] located invoice %v",
newLogClosure(func() string {
return spew.Sdump(invoice)
}))
rpcInvoice, err := invoicesrpc.CreateRPCInvoice(
&invoice, activeNetParams.Params,
)
if err != nil {
return nil, err
}
return rpcInvoice, nil
}
// ListInvoices returns a list of all the invoices currently stored within the
// database. Any active debug invoices are ignored.
func (r *rpcServer) ListInvoices(ctx context.Context,
req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) {
// If the number of invoices was not specified, then we'll default to
// returning the latest 100 invoices.
if req.NumMaxInvoices == 0 {
req.NumMaxInvoices = 100
}
// Next, we'll map the proto request into a format that is understood by
// the database.
q := channeldb.InvoiceQuery{
IndexOffset: req.IndexOffset,
NumMaxInvoices: req.NumMaxInvoices,
PendingOnly: req.PendingOnly,
Reversed: req.Reversed,
}
invoiceSlice, err := r.server.chanDB.QueryInvoices(q)
if err != nil {
return nil, fmt.Errorf("unable to query invoices: %v", err)
}
// Before returning the response, we'll need to convert each invoice
// into it's proto representation.
resp := &lnrpc.ListInvoiceResponse{
Invoices: make([]*lnrpc.Invoice, len(invoiceSlice.Invoices)),
FirstIndexOffset: invoiceSlice.FirstIndexOffset,
LastIndexOffset: invoiceSlice.LastIndexOffset,
}
for i, invoice := range invoiceSlice.Invoices {
resp.Invoices[i], err = invoicesrpc.CreateRPCInvoice(
&invoice, activeNetParams.Params,
)
if err != nil {
return nil, err
}
}
return resp, nil
}
// SubscribeInvoices returns a uni-directional stream (server -> client) for
// notifying the client of newly added/settled invoices.
func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription,
updateStream lnrpc.Lightning_SubscribeInvoicesServer) error {
invoiceClient := r.server.invoices.SubscribeNotifications(
req.AddIndex, req.SettleIndex,
)
defer invoiceClient.Cancel()
for {
select {
case newInvoice := <-invoiceClient.NewInvoices:
rpcInvoice, err := invoicesrpc.CreateRPCInvoice(
newInvoice, activeNetParams.Params,
)
if err != nil {
return err
}
if err := updateStream.Send(rpcInvoice); err != nil {
return err
}
case settledInvoice := <-invoiceClient.SettledInvoices:
rpcInvoice, err := invoicesrpc.CreateRPCInvoice(
settledInvoice, activeNetParams.Params,
)
if err != nil {
return err
}
if err := updateStream.Send(rpcInvoice); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// SubscribeTransactions creates a uni-directional stream (server -> client) in
// which any newly discovered transactions relevant to the wallet are sent
// over.
func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest,
updateStream lnrpc.Lightning_SubscribeTransactionsServer) error {
txClient, err := r.server.cc.wallet.SubscribeTransactions()
if err != nil {
return err
}
defer txClient.Cancel()
for {
select {
case tx := <-txClient.ConfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: tx.BlockHash.String(),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case tx := <-txClient.UnconfirmedTransactions():
detail := &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
}
if err := updateStream.Send(detail); err != nil {
return err
}
case <-r.quit:
return nil
}
}
}
// GetTransactions returns a list of describing all the known transactions
// relevant to the wallet.
func (r *rpcServer) GetTransactions(ctx context.Context,
_ *lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) {
// TODO(roasbeef): add pagination support
transactions, err := r.server.cc.wallet.ListTransactionDetails()
if err != nil {
return nil, err
}
txDetails := &lnrpc.TransactionDetails{
Transactions: make([]*lnrpc.Transaction, len(transactions)),
}
for i, tx := range transactions {
var destAddresses []string
for _, destAddress := range tx.DestAddresses {
destAddresses = append(destAddresses, destAddress.EncodeAddress())
}
// We also get unconfirmed transactions, so BlockHash can be
// nil.
blockHash := ""
if tx.BlockHash != nil {
blockHash = tx.BlockHash.String()
}
txDetails.Transactions[i] = &lnrpc.Transaction{
TxHash: tx.Hash.String(),
Amount: int64(tx.Value),
NumConfirmations: tx.NumConfirmations,
BlockHash: blockHash,
BlockHeight: tx.BlockHeight,
TimeStamp: tx.Timestamp,
TotalFees: tx.TotalFees,
DestAddresses: destAddresses,
}
}
return txDetails, nil
}
// DescribeGraph returns a description of the latest graph state from the PoV
// of the node. The graph information is partitioned into two components: all
// the nodes/vertexes, and all the edges that connect the vertexes themselves.
// As this is a directed graph, the edges also contain the node directional
// specific routing policy which includes: the time lock delta, fee
// information, etc.
func (r *rpcServer) DescribeGraph(ctx context.Context,
req *lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) {
resp := &lnrpc.ChannelGraph{}
includeUnannounced := req.IncludeUnannounced
// Obtain the pointer to the global singleton channel graph, this will
// provide a consistent view of the graph due to bolt db's
// transactional model.
graph := r.server.chanDB.ChannelGraph()
// First iterate through all the known nodes (connected or unconnected
// within the graph), collating their current state into the RPC
// response.
err := graph.ForEachNode(nil, func(_ *bbolt.Tx, node *channeldb.LightningNode) error {
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: hex.EncodeToString(node.PubKeyBytes[:]),
Addresses: nodeAddrs,
Alias: node.Alias,
Color: routing.EncodeHexColor(node.Color),
})
return nil
})
if err != nil {
return nil, err
}
// Next, for each active channel we know of within the graph, create a
// similar response which details both the edge information as well as
// the routing policies of th nodes connecting the two edges.
err = graph.ForEachChannel(func(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) error {
// Do not include unannounced channels unless specifically
// requested. Unannounced channels include both private channels as
// well as public channels whose authentication proof were not
// confirmed yet, hence were not announced.
if !includeUnannounced && edgeInfo.AuthProof == nil {
return nil
}
edge := marshalDbEdge(edgeInfo, c1, c2)
resp.Edges = append(resp.Edges, edge)
return nil
})
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return nil, err
}
return resp, nil
}
func marshalDbEdge(edgeInfo *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) *lnrpc.ChannelEdge {
var (
lastUpdate int64
)
if c2 != nil {
lastUpdate = c2.LastUpdate.Unix()
}
if c1 != nil {
lastUpdate = c1.LastUpdate.Unix()
}
edge := &lnrpc.ChannelEdge{
ChannelId: edgeInfo.ChannelID,
ChanPoint: edgeInfo.ChannelPoint.String(),
// TODO(roasbeef): update should be on edge info itself
LastUpdate: uint32(lastUpdate),
Node1Pub: hex.EncodeToString(edgeInfo.NodeKey1Bytes[:]),
Node2Pub: hex.EncodeToString(edgeInfo.NodeKey2Bytes[:]),
Capacity: int64(edgeInfo.Capacity),
}
if c1 != nil {
edge.Node1Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c1.TimeLockDelta),
MinHtlc: int64(c1.MinHTLC),
MaxHtlcMsat: uint64(c1.MaxHTLC),
FeeBaseMsat: int64(c1.FeeBaseMSat),
FeeRateMilliMsat: int64(c1.FeeProportionalMillionths),
Disabled: c1.ChannelFlags&lnwire.ChanUpdateDisabled != 0,
}
}
if c2 != nil {
edge.Node2Policy = &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(c2.TimeLockDelta),
MinHtlc: int64(c2.MinHTLC),
MaxHtlcMsat: uint64(c2.MaxHTLC),
FeeBaseMsat: int64(c2.FeeBaseMSat),
FeeRateMilliMsat: int64(c2.FeeProportionalMillionths),
Disabled: c2.ChannelFlags&lnwire.ChanUpdateDisabled != 0,
}
}
return edge
}
// GetChanInfo returns the latest authenticated network announcement for the
// given channel identified by its channel ID: an 8-byte integer which uniquely
// identifies the location of transaction's funding output within the block
// chain.
func (r *rpcServer) GetChanInfo(ctx context.Context,
in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) {
graph := r.server.chanDB.ChannelGraph()
edgeInfo, edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId)
if err != nil {
return nil, err
}
// Convert the database's edge format into the network/RPC edge format
// which couples the edge itself along with the directional node
// routing policies of each node involved within the channel.
channelEdge := marshalDbEdge(edgeInfo, edge1, edge2)
return channelEdge, nil
}
// GetNodeInfo returns the latest advertised and aggregate authenticated
// channel information for the specified node identified by its public key.
func (r *rpcServer) GetNodeInfo(ctx context.Context,
in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) {
graph := r.server.chanDB.ChannelGraph()
// First, parse the hex-encoded public key into a full in-memory public
// key object we can work with for querying.
pubKeyBytes, err := hex.DecodeString(in.PubKey)
if err != nil {
return nil, err
}
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
if err != nil {
return nil, err
}
// With the public key decoded, attempt to fetch the node corresponding
// to this public key. If the node cannot be found, then an error will
// be returned.
node, err := graph.FetchLightningNode(pubKey)
if err != nil {
return nil, err
}
// With the node obtained, we'll now iterate through all its out going
// edges to gather some basic statistics about its out going channels.
var (
numChannels uint32
totalCapacity btcutil.Amount
channels []*lnrpc.ChannelEdge
)
if err := node.ForEachChannel(nil, func(_ *bbolt.Tx, edge *channeldb.ChannelEdgeInfo,
c1, c2 *channeldb.ChannelEdgePolicy) error {
numChannels++
totalCapacity += edge.Capacity
// Do not include unannounced channels - private channels or public
// channels whose authentication proof were not confirmed yet.
if edge.AuthProof == nil {
return nil
}
// Convert the database's edge format into the network/RPC edge format.
channelEdge := marshalDbEdge(edge, c1, c2)
channels = append(channels, channelEdge)
return nil
}); err != nil {
return nil, err
}
nodeAddrs := make([]*lnrpc.NodeAddress, 0)
for _, addr := range node.Addresses {
nodeAddr := &lnrpc.NodeAddress{
Network: addr.Network(),
Addr: addr.String(),
}
nodeAddrs = append(nodeAddrs, nodeAddr)
}
return &lnrpc.NodeInfo{
Node: &lnrpc.LightningNode{
LastUpdate: uint32(node.LastUpdate.Unix()),
PubKey: in.PubKey,
Addresses: nodeAddrs,
Alias: node.Alias,
Color: routing.EncodeHexColor(node.Color),
},
NumChannels: numChannels,
TotalCapacity: int64(totalCapacity),
Channels: channels,
}, nil
}
// QueryRoutes attempts to query the daemons' Channel Router for a possible
// route to a target destination capable of carrying a specific amount of
// satoshis within the route's flow. The retuned route contains the full
// details required to craft and send an HTLC, also including the necessary
// information that should be present within the Sphinx packet encapsulated
// within the HTLC.
//
// TODO(roasbeef): should return a slice of routes in reality
// * create separate PR to send based on well formatted route
func (r *rpcServer) QueryRoutes(ctx context.Context,
in *lnrpc.QueryRoutesRequest) (*lnrpc.QueryRoutesResponse, error) {
return r.routerBackend.QueryRoutes(ctx, in)
}
// GetNetworkInfo returns some basic stats about the known channel graph from
// the PoV of the node.
func (r *rpcServer) GetNetworkInfo(ctx context.Context,
_ *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) {
graph := r.server.chanDB.ChannelGraph()
var (
numNodes uint32
numChannels uint32
maxChanOut uint32
totalNetworkCapacity btcutil.Amount
minChannelSize btcutil.Amount = math.MaxInt64
maxChannelSize btcutil.Amount
medianChanSize btcutil.Amount
)
// We'll use this map to de-duplicate channels during our traversal.
// This is needed since channels are directional, so there will be two
// edges for each channel within the graph.
seenChans := make(map[uint64]struct{})
// We also keep a list of all encountered capacities, in order to
// calculate the median channel size.
var allChans []btcutil.Amount
// We'll run through all the known nodes in the within our view of the
// network, tallying up the total number of nodes, and also gathering
// each node so we can measure the graph diameter and degree stats
// below.
if err := graph.ForEachNode(nil, func(tx *bbolt.Tx, node *channeldb.LightningNode) error {
// Increment the total number of nodes with each iteration.
numNodes++
// For each channel we'll compute the out degree of each node,
// and also update our running tallies of the min/max channel
// capacity, as well as the total channel capacity. We pass
// through the db transaction from the outer view so we can
// re-use it within this inner view.
var outDegree uint32
if err := node.ForEachChannel(tx, func(_ *bbolt.Tx,
edge *channeldb.ChannelEdgeInfo, _, _ *channeldb.ChannelEdgePolicy) error {
// Bump up the out degree for this node for each
// channel encountered.
outDegree++
// If we've already seen this channel, then we'll
// return early to ensure that we don't double-count
// stats.
if _, ok := seenChans[edge.ChannelID]; ok {
return nil
}
// Compare the capacity of this channel against the
// running min/max to see if we should update the
// extrema.
chanCapacity := edge.Capacity
if chanCapacity < minChannelSize {
minChannelSize = chanCapacity
}
if chanCapacity > maxChannelSize {
maxChannelSize = chanCapacity
}
// Accumulate the total capacity of this channel to the
// network wide-capacity.
totalNetworkCapacity += chanCapacity
numChannels++
seenChans[edge.ChannelID] = struct{}{}
allChans = append(allChans, edge.Capacity)
return nil
}); err != nil {
return err
}
// Finally, if the out degree of this node is greater than what
// we've seen so far, update the maxChanOut variable.
if outDegree > maxChanOut {
maxChanOut = outDegree
}
return nil
}); err != nil {
return nil, err
}
// Find the median.
medianChanSize = autopilot.Median(allChans)
// If we don't have any channels, then reset the minChannelSize to zero
// to avoid outputting NaN in encoded JSON.
if numChannels == 0 {
minChannelSize = 0
}
// TODO(roasbeef): graph diameter
// TODO(roasbeef): also add oldest channel?
netInfo := &lnrpc.NetworkInfo{
MaxOutDegree: maxChanOut,
AvgOutDegree: float64(2*numChannels) / float64(numNodes),
NumNodes: numNodes,
NumChannels: numChannels,
TotalNetworkCapacity: int64(totalNetworkCapacity),
AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels),
MinChannelSize: int64(minChannelSize),
MaxChannelSize: int64(maxChannelSize),
MedianChannelSizeSat: int64(medianChanSize),
}
// Similarly, if we don't have any channels, then we'll also set the
// average channel size to zero in order to avoid weird JSON encoding
// outputs.
if numChannels == 0 {
netInfo.AvgChannelSize = 0
}
return netInfo, nil
}
// StopDaemon will send a shutdown request to the interrupt handler, triggering
// a graceful shutdown of the daemon.
func (r *rpcServer) StopDaemon(ctx context.Context,
_ *lnrpc.StopRequest) (*lnrpc.StopResponse, error) {
signal.RequestShutdown()
return &lnrpc.StopResponse{}, nil
}
// SubscribeChannelGraph launches a streaming RPC that allows the caller to
// receive notifications upon any changes the channel graph topology from the
// review of the responding node. Events notified include: new nodes coming
// online, nodes updating their authenticated attributes, new channels being
// advertised, updates in the routing policy for a directional channel edge,
// and finally when prior channels are closed on-chain.
func (r *rpcServer) SubscribeChannelGraph(req *lnrpc.GraphTopologySubscription,
updateStream lnrpc.Lightning_SubscribeChannelGraphServer) error {
// First, we start by subscribing to a new intent to receive
// notifications from the channel router.
client, err := r.server.chanRouter.SubscribeTopology()
if err != nil {
return err
}
// Ensure that the resources for the topology update client is cleaned
// up once either the server, or client exists.
defer client.Cancel()
for {
select {
// A new update has been sent by the channel router, we'll
// marshal it into the form expected by the gRPC client, then
// send it off.
case topChange, ok := <-client.TopologyChanges:
// If the second value from the channel read is nil,
// then this means that the channel router is exiting
// or the notification client was cancelled. So we'll
// exit early.
if !ok {
return errors.New("server shutting down")
}
// Convert the struct from the channel router into the
// form expected by the gRPC service then send it off
// to the client.
graphUpdate := marshallTopologyChange(topChange)
if err := updateStream.Send(graphUpdate); err != nil {
return err
}
// The server is quitting, so we'll exit immediately. Returning
// nil will close the clients read end of the stream.
case <-r.quit:
return nil
}
}
}
// marshallTopologyChange performs a mapping from the topology change struct
// returned by the router to the form of notifications expected by the current
// gRPC service.
func marshallTopologyChange(topChange *routing.TopologyChange) *lnrpc.GraphTopologyUpdate {
// encodeKey is a simple helper function that converts a live public
// key into a hex-encoded version of the compressed serialization for
// the public key.
encodeKey := func(k *btcec.PublicKey) string {
return hex.EncodeToString(k.SerializeCompressed())
}
nodeUpdates := make([]*lnrpc.NodeUpdate, len(topChange.NodeUpdates))
for i, nodeUpdate := range topChange.NodeUpdates {
addrs := make([]string, len(nodeUpdate.Addresses))
for i, addr := range nodeUpdate.Addresses {
addrs[i] = addr.String()
}
nodeUpdates[i] = &lnrpc.NodeUpdate{
Addresses: addrs,
IdentityKey: encodeKey(nodeUpdate.IdentityKey),
GlobalFeatures: nodeUpdate.GlobalFeatures,
Alias: nodeUpdate.Alias,
Color: nodeUpdate.Color,
}
}
channelUpdates := make([]*lnrpc.ChannelEdgeUpdate, len(topChange.ChannelEdgeUpdates))
for i, channelUpdate := range topChange.ChannelEdgeUpdates {
channelUpdates[i] = &lnrpc.ChannelEdgeUpdate{
ChanId: channelUpdate.ChanID,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: channelUpdate.ChanPoint.Hash[:],
},
OutputIndex: channelUpdate.ChanPoint.Index,
},
Capacity: int64(channelUpdate.Capacity),
RoutingPolicy: &lnrpc.RoutingPolicy{
TimeLockDelta: uint32(channelUpdate.TimeLockDelta),
MinHtlc: int64(channelUpdate.MinHTLC),
MaxHtlcMsat: uint64(channelUpdate.MaxHTLC),
FeeBaseMsat: int64(channelUpdate.BaseFee),
FeeRateMilliMsat: int64(channelUpdate.FeeRate),
Disabled: channelUpdate.Disabled,
},
AdvertisingNode: encodeKey(channelUpdate.AdvertisingNode),
ConnectingNode: encodeKey(channelUpdate.ConnectingNode),
}
}
closedChans := make([]*lnrpc.ClosedChannelUpdate, len(topChange.ClosedChannels))
for i, closedChan := range topChange.ClosedChannels {
closedChans[i] = &lnrpc.ClosedChannelUpdate{
ChanId: closedChan.ChanID,
Capacity: int64(closedChan.Capacity),
ClosedHeight: closedChan.ClosedHeight,
ChanPoint: &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: closedChan.ChanPoint.Hash[:],
},
OutputIndex: closedChan.ChanPoint.Index,
},
}
}
return &lnrpc.GraphTopologyUpdate{
NodeUpdates: nodeUpdates,
ChannelUpdates: channelUpdates,
ClosedChans: closedChans,
}
}
// ListPayments returns a list of all outgoing payments.
func (r *rpcServer) ListPayments(ctx context.Context,
_ *lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) {
rpcsLog.Debugf("[ListPayments]")
payments, err := r.server.chanDB.FetchAllPayments()
if err != nil && err != channeldb.ErrNoPaymentsCreated {
return nil, err
}
paymentsResp := &lnrpc.ListPaymentsResponse{
Payments: make([]*lnrpc.Payment, len(payments)),
}
for i, payment := range payments {
path := make([]string, len(payment.Path))
for i, hop := range payment.Path {
path[i] = hex.EncodeToString(hop[:])
}
msatValue := int64(payment.Terms.Value)
satValue := int64(payment.Terms.Value.ToSatoshis())
paymentHash := sha256.Sum256(payment.PaymentPreimage[:])
paymentsResp.Payments[i] = &lnrpc.Payment{
PaymentHash: hex.EncodeToString(paymentHash[:]),
Value: satValue,
ValueMsat: msatValue,
ValueSat: satValue,
CreationDate: payment.CreationDate.Unix(),
Path: path,
Fee: int64(payment.Fee.ToSatoshis()),
PaymentPreimage: hex.EncodeToString(payment.PaymentPreimage[:]),
}
}
return paymentsResp, nil
}
// DeleteAllPayments deletes all outgoing payments from DB.
func (r *rpcServer) DeleteAllPayments(ctx context.Context,
_ *lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) {
rpcsLog.Debugf("[DeleteAllPayments]")
if err := r.server.chanDB.DeleteAllPayments(); err != nil {
return nil, err
}
return &lnrpc.DeleteAllPaymentsResponse{}, nil
}
// DebugLevel allows a caller to programmatically set the logging verbosity of
// lnd. The logging can be targeted according to a coarse daemon-wide logging
// level, or in a granular fashion to specify the logging for a target
// sub-system.
func (r *rpcServer) DebugLevel(ctx context.Context,
req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) {
// If show is set, then we simply print out the list of available
// sub-systems.
if req.Show {
return &lnrpc.DebugLevelResponse{
SubSystems: strings.Join(supportedSubsystems(), " "),
}, nil
}
rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec)
// Otherwise, we'll attempt to set the logging level using the
// specified level spec.
if err := parseAndSetDebugLevels(req.LevelSpec); err != nil {
return nil, err
}
return &lnrpc.DebugLevelResponse{}, nil
}
// DecodePayReq takes an encoded payment request string and attempts to decode
// it, returning a full description of the conditions encoded within the
// payment request.
func (r *rpcServer) DecodePayReq(ctx context.Context,
req *lnrpc.PayReqString) (*lnrpc.PayReq, error) {
rpcsLog.Tracef("[decodepayreq] decoding: %v", req.PayReq)
// Fist we'll attempt to decode the payment request string, if the
// request is invalid or the checksum doesn't match, then we'll exit
// here with an error.
payReq, err := zpay32.Decode(req.PayReq, activeNetParams.Params)
if err != nil {
return nil, err
}
// Let the fields default to empty strings.
desc := ""
if payReq.Description != nil {
desc = *payReq.Description
}
descHash := []byte("")
if payReq.DescriptionHash != nil {
descHash = payReq.DescriptionHash[:]
}
fallbackAddr := ""
if payReq.FallbackAddr != nil {
fallbackAddr = payReq.FallbackAddr.String()
}
// Expiry time will default to 3600 seconds if not specified
// explicitly.
expiry := int64(payReq.Expiry().Seconds())
// Convert between the `lnrpc` and `routing` types.
routeHints := invoicesrpc.CreateRPCRouteHints(payReq.RouteHints)
amt := int64(0)
if payReq.MilliSat != nil {
amt = int64(payReq.MilliSat.ToSatoshis())
}
dest := payReq.Destination.SerializeCompressed()
return &lnrpc.PayReq{
Destination: hex.EncodeToString(dest),
PaymentHash: hex.EncodeToString(payReq.PaymentHash[:]),
NumSatoshis: amt,
Timestamp: payReq.Timestamp.Unix(),
Description: desc,
DescriptionHash: hex.EncodeToString(descHash[:]),
FallbackAddr: fallbackAddr,
Expiry: expiry,
CltvExpiry: int64(payReq.MinFinalCLTVExpiry()),
RouteHints: routeHints,
}, nil
}
// feeBase is the fixed point that fee rate computation are performed over.
// Nodes on the network advertise their fee rate using this point as a base.
// This means that the minimal possible fee rate if 1e-6, or 0.000001, or
// 0.0001%.
const feeBase = 1000000
// FeeReport allows the caller to obtain a report detailing the current fee
// schedule enforced by the node globally for each channel.
func (r *rpcServer) FeeReport(ctx context.Context,
_ *lnrpc.FeeReportRequest) (*lnrpc.FeeReportResponse, error) {
// TODO(roasbeef): use UnaryInterceptor to add automated logging
rpcsLog.Debugf("[feereport]")
channelGraph := r.server.chanDB.ChannelGraph()
selfNode, err := channelGraph.SourceNode()
if err != nil {
return nil, err
}
var feeReports []*lnrpc.ChannelFeeReport
err = selfNode.ForEachChannel(nil, func(_ *bbolt.Tx, chanInfo *channeldb.ChannelEdgeInfo,
edgePolicy, _ *channeldb.ChannelEdgePolicy) error {
// Self node should always have policies for its channels.
if edgePolicy == nil {
return fmt.Errorf("no policy for outgoing channel %v ",
chanInfo.ChannelID)
}
// We'll compute the effective fee rate by converting from a
// fixed point fee rate to a floating point fee rate. The fee
// rate field in the database the amount of mSAT charged per
// 1mil mSAT sent, so will divide by this to get the proper fee
// rate.
feeRateFixedPoint := edgePolicy.FeeProportionalMillionths
feeRate := float64(feeRateFixedPoint) / float64(feeBase)
// TODO(roasbeef): also add stats for revenue for each channel
feeReports = append(feeReports, &lnrpc.ChannelFeeReport{
ChanPoint: chanInfo.ChannelPoint.String(),
BaseFeeMsat: int64(edgePolicy.FeeBaseMSat),
FeePerMil: int64(feeRateFixedPoint),
FeeRate: feeRate,
})
return nil
})
if err != nil {
return nil, err
}
fwdEventLog := r.server.chanDB.ForwardingLog()
// computeFeeSum is a helper function that computes the total fees for
// a particular time slice described by a forwarding event query.
computeFeeSum := func(query channeldb.ForwardingEventQuery) (lnwire.MilliSatoshi, error) {
var totalFees lnwire.MilliSatoshi
// We'll continue to fetch the next query and accumulate the
// fees until the next query returns no events.
for {
timeSlice, err := fwdEventLog.Query(query)
if err != nil {
return 0, nil
}
// If the timeslice is empty, then we'll return as
// we've retrieved all the entries in this range.
if len(timeSlice.ForwardingEvents) == 0 {
break
}
// Otherwise, we'll tally up an accumulate the total
// fees for this time slice.
for _, event := range timeSlice.ForwardingEvents {
fee := event.AmtIn - event.AmtOut
totalFees += fee
}
// We'll now take the last offset index returned as
// part of this response, and modify our query to start
// at this index. This has a pagination effect in the
// case that our query bounds has more than 100k
// entries.
query.IndexOffset = timeSlice.LastIndexOffset
}
return totalFees, nil
}
now := time.Now()
// Before we perform the queries below, we'll instruct the switch to
// flush any pending events to disk. This ensure we get a complete
// snapshot at this particular time.
if err := r.server.htlcSwitch.FlushForwardingEvents(); err != nil {
return nil, fmt.Errorf("unable to flush forwarding "+
"events: %v", err)
}
// In addition to returning the current fee schedule for each channel.
// We'll also perform a series of queries to obtain the total fees
// earned over the past day, week, and month.
dayQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24),
EndTime: now,
NumMaxEvents: 1000,
}
dayFees, err := computeFeeSum(dayQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
weekQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24 * 7),
EndTime: now,
NumMaxEvents: 1000,
}
weekFees, err := computeFeeSum(weekQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
monthQuery := channeldb.ForwardingEventQuery{
StartTime: now.Add(-time.Hour * 24 * 30),
EndTime: now,
NumMaxEvents: 1000,
}
monthFees, err := computeFeeSum(monthQuery)
if err != nil {
return nil, fmt.Errorf("unable to retrieve day fees: %v", err)
}
return &lnrpc.FeeReportResponse{
ChannelFees: feeReports,
DayFeeSum: uint64(dayFees.ToSatoshis()),
WeekFeeSum: uint64(weekFees.ToSatoshis()),
MonthFeeSum: uint64(monthFees.ToSatoshis()),
}, nil
}
// minFeeRate is the smallest permitted fee rate within the network. This is
// derived by the fact that fee rates are computed using a fixed point of
// 1,000,000. As a result, the smallest representable fee rate is 1e-6, or
// 0.000001, or 0.0001%.
const minFeeRate = 1e-6
// UpdateChannelPolicy allows the caller to update the channel forwarding policy
// for all channels globally, or a particular channel.
func (r *rpcServer) UpdateChannelPolicy(ctx context.Context,
req *lnrpc.PolicyUpdateRequest) (*lnrpc.PolicyUpdateResponse, error) {
var targetChans []wire.OutPoint
switch scope := req.Scope.(type) {
// If the request is targeting all active channels, then we don't need
// target any channels by their channel point.
case *lnrpc.PolicyUpdateRequest_Global:
// Otherwise, we're targeting an individual channel by its channel
// point.
case *lnrpc.PolicyUpdateRequest_ChanPoint:
txid, err := getChanPointFundingTxid(scope.ChanPoint)
if err != nil {
return nil, err
}
targetChans = append(targetChans, wire.OutPoint{
Hash: *txid,
Index: scope.ChanPoint.OutputIndex,
})
default:
return nil, fmt.Errorf("unknown scope: %v", scope)
}
// As a sanity check, we'll ensure that the passed fee rate is below
// 1e-6, or the lowest allowed fee rate, and that the passed timelock
// is large enough.
if req.FeeRate < minFeeRate {
return nil, fmt.Errorf("fee rate of %v is too small, min fee "+
"rate is %v", req.FeeRate, minFeeRate)
}
if req.TimeLockDelta < minTimeLockDelta {
return nil, fmt.Errorf("time lock delta of %v is too small, "+
"minimum supported is %v", req.TimeLockDelta,
minTimeLockDelta)
}
// We'll also need to convert the floating point fee rate we accept
// over RPC to the fixed point rate that we use within the protocol. We
// do this by multiplying the passed fee rate by the fee base. This
// gives us the fixed point, scaled by 1 million that's used within the
// protocol.
feeRateFixed := uint32(req.FeeRate * feeBase)
baseFeeMsat := lnwire.MilliSatoshi(req.BaseFeeMsat)
feeSchema := routing.FeeSchema{
BaseFee: baseFeeMsat,
FeeRate: feeRateFixed,
}
chanPolicy := routing.ChannelPolicy{
FeeSchema: feeSchema,
TimeLockDelta: req.TimeLockDelta,
}
rpcsLog.Debugf("[updatechanpolicy] updating channel policy base_fee=%v, "+
"rate_float=%v, rate_fixed=%v, time_lock_delta: %v, targets=%v",
req.BaseFeeMsat, req.FeeRate, feeRateFixed, req.TimeLockDelta,
spew.Sdump(targetChans))
// With the scope resolved, we'll now send this to the
// AuthenticatedGossiper so it can propagate the new policy for our
// target channel(s).
err := r.server.authGossiper.PropagateChanPolicyUpdate(
chanPolicy, targetChans...,
)
if err != nil {
return nil, err
}
// Finally, we'll apply the set of active links amongst the target
// channels.
//
// We create a partially policy as the logic won't overwrite a valid
// sub-policy with a "nil" one.
p := htlcswitch.ForwardingPolicy{
BaseFee: baseFeeMsat,
FeeRate: lnwire.MilliSatoshi(feeRateFixed),
TimeLockDelta: req.TimeLockDelta,
}
err = r.server.htlcSwitch.UpdateForwardingPolicies(p, targetChans...)
if err != nil {
// If we're unable update the fees due to the links not being
// online, then we don't need to fail the call. We'll simply
// log the failure.
rpcsLog.Warnf("Unable to update link fees: %v", err)
}
return &lnrpc.PolicyUpdateResponse{}, nil
}
// ForwardingHistory allows the caller to query the htlcswitch for a record of
// all HTLC's forwarded within the target time range, and integer offset within
// that time range. If no time-range is specified, then the first chunk of the
// past 24 hrs of forwarding history are returned.
// A list of forwarding events are returned. The size of each forwarding event
// is 40 bytes, and the max message size able to be returned in gRPC is 4 MiB.
// In order to safely stay under this max limit, we'll return 50k events per
// response. Each response has the index offset of the last entry. The index
// offset can be provided to the request to allow the caller to skip a series
// of records.
func (r *rpcServer) ForwardingHistory(ctx context.Context,
req *lnrpc.ForwardingHistoryRequest) (*lnrpc.ForwardingHistoryResponse, error) {
rpcsLog.Debugf("[forwardinghistory]")
// Before we perform the queries below, we'll instruct the switch to
// flush any pending events to disk. This ensure we get a complete
// snapshot at this particular time.
if err := r.server.htlcSwitch.FlushForwardingEvents(); err != nil {
return nil, fmt.Errorf("unable to flush forwarding "+
"events: %v", err)
}
var (
startTime, endTime time.Time
numEvents uint32
)
// If the start and end time were not set, then we'll just return the
// records over the past 24 hours.
if req.StartTime == 0 && req.EndTime == 0 {
now := time.Now()
startTime = now.Add(-time.Hour * 24)
endTime = now
} else {
startTime = time.Unix(int64(req.StartTime), 0)
endTime = time.Unix(int64(req.EndTime), 0)
}
// If the number of events wasn't specified, then we'll default to
// returning the last 100 events.
numEvents = req.NumMaxEvents
if numEvents == 0 {
numEvents = 100
}
// Next, we'll map the proto request into a format the is understood by
// the forwarding log.
eventQuery := channeldb.ForwardingEventQuery{
StartTime: startTime,
EndTime: endTime,
IndexOffset: req.IndexOffset,
NumMaxEvents: numEvents,
}
timeSlice, err := r.server.chanDB.ForwardingLog().Query(eventQuery)
if err != nil {
return nil, fmt.Errorf("unable to query forwarding log: %v", err)
}
// TODO(roasbeef): add settlement latency?
// * use FPE on all records?
// With the events retrieved, we'll now map them into the proper proto
// response.
//
// TODO(roasbeef): show in ns for the outside?
resp := &lnrpc.ForwardingHistoryResponse{
ForwardingEvents: make([]*lnrpc.ForwardingEvent, len(timeSlice.ForwardingEvents)),
LastOffsetIndex: timeSlice.LastIndexOffset,
}
for i, event := range timeSlice.ForwardingEvents {
amtInSat := event.AmtIn.ToSatoshis()
amtOutSat := event.AmtOut.ToSatoshis()
feeMsat := event.AmtIn - event.AmtOut
resp.ForwardingEvents[i] = &lnrpc.ForwardingEvent{
Timestamp: uint64(event.Timestamp.Unix()),
ChanIdIn: event.IncomingChanID.ToUint64(),
ChanIdOut: event.OutgoingChanID.ToUint64(),
AmtIn: uint64(amtInSat),
AmtOut: uint64(amtOutSat),
Fee: uint64(feeMsat.ToSatoshis()),
FeeMsat: uint64(feeMsat),
}
}
return resp, nil
}
// ExportChannelBackup attempts to return an encrypted static channel backup
// for the target channel identified by it channel point. The backup is
// encrypted with a key generated from the aezeed seed of the user. The
// returned backup can either be restored using the RestoreChannelBackup method
// once lnd is running, or via the InitWallet and UnlockWallet methods from the
// WalletUnlocker service.
func (r *rpcServer) ExportChannelBackup(ctx context.Context,
in *lnrpc.ExportChannelBackupRequest) (*lnrpc.ChannelBackup, error) {
// First, we'll convert the lnrpc channel point into a wire.OutPoint
// that we can manipulate.
txid, err := getChanPointFundingTxid(in.ChanPoint)
if err != nil {
return nil, err
}
chanPoint := wire.OutPoint{
Hash: *txid,
Index: in.ChanPoint.OutputIndex,
}
// Next, we'll attempt to fetch a channel backup for this channel from
// the database. If this channel has been closed, or the outpoint is
// unknown, then we'll return an error
unpackedBackup, err := chanbackup.FetchBackupForChan(
chanPoint, r.server.chanDB,
)
if err != nil {
return nil, err
}
// At this point, we have an unpacked backup (plaintext) so we'll now
// attempt to serialize and encrypt it in order to create a packed
// backup.
packedBackups, err := chanbackup.PackStaticChanBackups(
[]chanbackup.Single{*unpackedBackup},
r.server.cc.keyRing,
)
if err != nil {
return nil, fmt.Errorf("packing of back ups failed: %v", err)
}
// Before we proceed, we'll ensure that we received a backup for this
// channel, otherwise, we'll bail out.
packedBackup, ok := packedBackups[chanPoint]
if !ok {
return nil, fmt.Errorf("expected single backup for "+
"ChannelPoint(%v), got %v", chanPoint,
len(packedBackup))
}
return &lnrpc.ChannelBackup{
ChanPoint: in.ChanPoint,
ChanBackup: packedBackup,
}, nil
}
// VerifyChanBackup allows a caller to verify the integrity of a channel backup
// snapshot. This method will accept both either a packed Single or a packed
// Multi. Specifying both will result in an error.
func (r *rpcServer) VerifyChanBackup(ctx context.Context,
in *lnrpc.ChanBackupSnapshot) (*lnrpc.VerifyChanBackupResponse, error) {
switch {
// If neither a Single or Multi has been specified, then we have nothing
// to verify.
case in.GetSingleChanBackups() == nil && in.GetMultiChanBackup() == nil:
return nil, errors.New("either a Single or Multi channel " +
"backup must be specified")
// Either a Single or a Multi must be specified, but not both.
case in.GetSingleChanBackups() != nil && in.GetMultiChanBackup() != nil:
return nil, errors.New("either a Single or Multi channel " +
"backup must be specified, but not both")
// If a Single is specified then we'll only accept one of them to allow
// the caller to map the valid/invalid state for each individual Single.
case in.GetSingleChanBackups() != nil:
chanBackupsProtos := in.GetSingleChanBackups().ChanBackups
if len(chanBackupsProtos) != 1 {
return nil, errors.New("only one Single is accepted " +
"at a time")
}
// First, we'll convert the raw byte slice into a type we can
// work with a bit better.
chanBackup := chanbackup.PackedSingles(
[][]byte{chanBackupsProtos[0].ChanBackup},
)
// With our PackedSingles created, we'll attempt to unpack the
// backup. If this fails, then we know the backup is invalid for
// some reason.
_, err := chanBackup.Unpack(r.server.cc.keyRing)
if err != nil {
return nil, fmt.Errorf("invalid single channel "+
"backup: %v", err)
}
case in.GetMultiChanBackup() != nil:
// We'll convert the raw byte slice into a PackedMulti that we
// can easily work with.
packedMultiBackup := in.GetMultiChanBackup().MultiChanBackup
packedMulti := chanbackup.PackedMulti(packedMultiBackup)
// We'll now attempt to unpack the Multi. If this fails, then we
// know it's invalid.
_, err := packedMulti.Unpack(r.server.cc.keyRing)
if err != nil {
return nil, fmt.Errorf("invalid multi channel backup: "+
"%v", err)
}
}
return &lnrpc.VerifyChanBackupResponse{}, nil
}
// createBackupSnapshot converts the passed Single backup into a snapshot which
// contains individual packed single backups, as well as a single packed multi
// backup.
func (r *rpcServer) createBackupSnapshot(backups []chanbackup.Single) (
*lnrpc.ChanBackupSnapshot, error) {
// Once we have the set of back ups, we'll attempt to pack them all
// into a series of single channel backups.
singleChanPackedBackups, err := chanbackup.PackStaticChanBackups(
backups, r.server.cc.keyRing,
)
if err != nil {
return nil, fmt.Errorf("unable to pack set of chan "+
"backups: %v", err)
}
// Now that we have our set of single packed backups, we'll morph that
// into a form that the proto response requires.
numBackups := len(singleChanPackedBackups)
singleBackupResp := &lnrpc.ChannelBackups{
ChanBackups: make([]*lnrpc.ChannelBackup, 0, numBackups),
}
for chanPoint, singlePackedBackup := range singleChanPackedBackups {
txid := chanPoint.Hash
rpcChanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: txid[:],
},
OutputIndex: chanPoint.Index,
}
singleBackupResp.ChanBackups = append(
singleBackupResp.ChanBackups,
&lnrpc.ChannelBackup{
ChanPoint: rpcChanPoint,
ChanBackup: singlePackedBackup,
},
)
}
// In addition, to the set of single chan backups, we'll also create a
// single multi-channel backup which can be serialized into a single
// file for safe storage.
var b bytes.Buffer
unpackedMultiBackup := chanbackup.Multi{
StaticBackups: backups,
}
err = unpackedMultiBackup.PackToWriter(&b, r.server.cc.keyRing)
if err != nil {
return nil, fmt.Errorf("unable to multi-pack backups: %v", err)
}
multiBackupResp := &lnrpc.MultiChanBackup{
MultiChanBackup: b.Bytes(),
}
for _, singleBackup := range singleBackupResp.ChanBackups {
multiBackupResp.ChanPoints = append(
multiBackupResp.ChanPoints, singleBackup.ChanPoint,
)
}
return &lnrpc.ChanBackupSnapshot{
SingleChanBackups: singleBackupResp,
MultiChanBackup: multiBackupResp,
}, nil
}
// ExportAllChannelBackups returns static channel backups for all existing
// channels known to lnd. A set of regular singular static channel backups for
// each channel are returned. Additionally, a multi-channel backup is returned
// as well, which contains a single encrypted blob containing the backups of
// each channel.
func (r *rpcServer) ExportAllChannelBackups(ctx context.Context,
in *lnrpc.ChanBackupExportRequest) (*lnrpc.ChanBackupSnapshot, error) {
// First, we'll attempt to read back ups for ALL currently opened
// channels from disk.
allUnpackedBackups, err := chanbackup.FetchStaticChanBackups(
r.server.chanDB,
)
if err != nil {
return nil, fmt.Errorf("unable to fetch all static chan "+
"backups: %v", err)
}
// With the backups assembled, we'll create a full snapshot.
return r.createBackupSnapshot(allUnpackedBackups)
}
// RestoreChannelBackups accepts a set of singular channel backups, or a single
// encrypted multi-chan backup and attempts to recover any funds remaining
// within the channel. If we're able to unpack the backup, then the new channel
// will be shown under listchannels, as well as pending channels.
func (r *rpcServer) RestoreChannelBackups(ctx context.Context,
in *lnrpc.RestoreChanBackupRequest) (*lnrpc.RestoreBackupResponse, error) {
// First, we'll make our implementation of the
// chanbackup.ChannelRestorer interface which we'll use to properly
// restore either a set of chanbackup.Single or chanbackup.Multi
// backups.
chanRestorer := &chanDBRestorer{
db: r.server.chanDB,
secretKeys: r.server.cc.keyRing,
chainArb: r.server.chainArb,
}
// We'll accept either a list of Single backups, or a single Multi
// backup which contains several single backups.
switch {
case in.GetChanBackups() != nil:
chanBackupsProtos := in.GetChanBackups()
// Now that we know what type of backup we're working with,
// we'll parse them all out into a more suitable format.
packedBackups := make([][]byte, 0, len(chanBackupsProtos.ChanBackups))
for _, chanBackup := range chanBackupsProtos.ChanBackups {
packedBackups = append(
packedBackups, chanBackup.ChanBackup,
)
}
// With our backups obtained, we'll now restore them which will
// write the new backups to disk, and then attempt to connect
// out to any peers that we know of which were our prior
// channel peers.
err := chanbackup.UnpackAndRecoverSingles(
chanbackup.PackedSingles(packedBackups),
r.server.cc.keyRing, chanRestorer, r.server,
)
if err != nil {
return nil, fmt.Errorf("unable to unpack single "+
"backups: %v", err)
}
case in.GetMultiChanBackup() != nil:
packedMultiBackup := in.GetMultiChanBackup()
// With our backups obtained, we'll now restore them which will
// write the new backups to disk, and then attempt to connect
// out to any peers that we know of which were our prior
// channel peers.
packedMulti := chanbackup.PackedMulti(packedMultiBackup)
err := chanbackup.UnpackAndRecoverMulti(
packedMulti, r.server.cc.keyRing, chanRestorer,
r.server,
)
if err != nil {
return nil, fmt.Errorf("unable to unpack chan "+
"backup: %v", err)
}
}
return &lnrpc.RestoreBackupResponse{}, nil
}
// SubscribeChannelBackups allows a client to sub-subscribe to the most up to
// date information concerning the state of all channel back ups. Each time a
// new channel is added, we return the new set of channels, along with a
// multi-chan backup containing the backup info for all channels. Each time a
// channel is closed, we send a new update, which contains new new chan back
// ups, but the updated set of encrypted multi-chan backups with the closed
// channel(s) removed.
func (r *rpcServer) SubscribeChannelBackups(req *lnrpc.ChannelBackupSubscription,
updateStream lnrpc.Lightning_SubscribeChannelBackupsServer) error {
// First, we'll subscribe to the primary channel notifier so we can
// obtain events for new opened/closed channels.
chanSubscription, err := r.server.channelNotifier.SubscribeChannelEvents()
if err != nil {
return err
}
defer chanSubscription.Cancel()
for {
select {
// A new event has been sent by the channel notifier, we'll
// assemble, then sling out a new event to the client.
case e := <-chanSubscription.Updates():
// TODO(roasbeef): batch dispatch ntnfs
switch e.(type) {
// We only care about new/closed channels, so we'll
// skip any events for active/inactive channels.
case channelnotifier.ActiveChannelEvent:
continue
case channelnotifier.InactiveChannelEvent:
continue
}
// Now that we know the channel state has changed,
// we'll obtains the current set of single channel
// backups from disk.
chanBackups, err := chanbackup.FetchStaticChanBackups(
r.server.chanDB,
)
if err != nil {
return fmt.Errorf("unable to fetch all "+
"static chan backups: %v", err)
}
// With our backups obtained, we'll pack them into a
// snapshot and send them back to the client.
backupSnapshot, err := r.createBackupSnapshot(
chanBackups,
)
if err != nil {
return err
}
err = updateStream.Send(backupSnapshot)
if err != nil {
return err
}
case <-r.quit:
return nil
}
}
}