lnd.xprv/discovery/syncer.go
Conner Fromknecht a4b4fe666a
discovery: make batch size distinct from chunk size, reduce to 500
This commit reduces the number of channels a syncer will request from
the remote node in a single QueryShortChanIDs message. The current size
is derived from the chunkSize, which is meant to signal the maximum
number of short chan ids that can fit in a single ReplyChannelRange
message. For EncodingSortedPlain, this number is 8000, and we use the
same number to dictate the size of the batch from the remote peer.

We modify this by introducing a separately configurable batchSize, so
that both can be tuned independently. The value is chosen to reduce the
amount of buffering the remote party will perform, only requiring them
queue 500 responses, as opposed to 8000. In turn, this reduces larges
spikes in allocation on the remote node at the expense of a few extra
round trips for the control messages. However, will be negligible since
the control messages are much smaller than the messages being returned.
2019-04-06 15:27:26 -07:00

1206 lines
38 KiB
Go

package discovery
import (
"errors"
"fmt"
"math"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/lightningnetwork/lnd/lnwire"
"golang.org/x/time/rate"
)
// SyncerType encapsulates the different types of syncing mechanisms for a
// gossip syncer.
type SyncerType uint8
const (
// ActiveSync denotes that a gossip syncer should exercise its default
// behavior. This includes reconciling the set of missing graph updates
// with the remote peer _and_ receiving new updates from them.
ActiveSync SyncerType = iota
// PassiveSync denotes that a gossip syncer:
//
// 1. Should not attempt to query the remote peer for graph updates.
// 2. Should respond to queries from the remote peer.
// 3. Should not receive new updates from the remote peer.
//
// They are started in a chansSynced state in order to accomplish their
// responsibilities above.
PassiveSync
)
// String returns a human readable string describing the target SyncerType.
func (t SyncerType) String() string {
switch t {
case ActiveSync:
return "ActiveSync"
case PassiveSync:
return "PassiveSync"
default:
return fmt.Sprintf("unknown sync type %d", t)
}
}
// syncerState is an enum that represents the current state of the GossipSyncer.
// As the syncer is a state machine, we'll gate our actions based off of the
// current state and the next incoming message.
type syncerState uint32
const (
// syncingChans is the default state of the GossipSyncer. We start in
// this state when a new peer first connects and we don't yet know if
// we're fully synchronized.
syncingChans syncerState = iota
// waitingQueryRangeReply is the second main phase of the GossipSyncer.
// We enter this state after we send out our first QueryChannelRange
// reply. We'll stay in this state until the remote party sends us a
// ReplyShortChanIDsEnd message that indicates they've responded to our
// query entirely. After this state, we'll transition to
// waitingQueryChanReply after we send out requests for all the new
// chan ID's to us.
waitingQueryRangeReply
// queryNewChannels is the third main phase of the GossipSyncer. In
// this phase we'll send out all of our QueryShortChanIDs messages in
// response to the new channels that we don't yet know about.
queryNewChannels
// waitingQueryChanReply is the fourth main phase of the GossipSyncer.
// We enter this phase once we've sent off a query chink to the remote
// peer. We'll stay in this phase until we receive a
// ReplyShortChanIDsEnd message which indicates that the remote party
// has responded to all of our requests.
waitingQueryChanReply
// chansSynced is the terminal stage of the GossipSyncer. Once we enter
// this phase, we'll send out our update horizon, which filters out the
// set of channel updates that we're interested in. In this state,
// we'll be able to accept any outgoing messages from the
// AuthenticatedGossiper, and decide if we should forward them to our
// target peer based on its update horizon.
chansSynced
)
// String returns a human readable string describing the target syncerState.
func (s syncerState) String() string {
switch s {
case syncingChans:
return "syncingChans"
case waitingQueryRangeReply:
return "waitingQueryRangeReply"
case queryNewChannels:
return "queryNewChannels"
case waitingQueryChanReply:
return "waitingQueryChanReply"
case chansSynced:
return "chansSynced"
default:
return "UNKNOWN STATE"
}
}
const (
// DefaultMaxUndelayedQueryReplies specifies how many gossip queries we
// will respond to immediately before starting to delay responses.
DefaultMaxUndelayedQueryReplies = 10
// DefaultDelayedQueryReplyInterval is the length of time we will wait
// before responding to gossip queries after replying to
// maxUndelayedQueryReplies queries.
DefaultDelayedQueryReplyInterval = 5 * time.Second
// chanRangeQueryBuffer is the number of blocks back that we'll go when
// asking the remote peer for their any channels they know of beyond
// our highest known channel ID.
chanRangeQueryBuffer = 144
// syncTransitionTimeout is the default timeout in which we'll wait up
// to when attempting to perform a sync transition.
syncTransitionTimeout = 5 * time.Second
// requestBatchSize is the maximum number of channels we will query the
// remote peer for in a QueryShortChanIDs message.
requestBatchSize = 500
)
var (
// encodingTypeToChunkSize maps an encoding type, to the max number of
// short chan ID's using the encoding type that we can fit into a
// single message safely.
encodingTypeToChunkSize = map[lnwire.ShortChanIDEncoding]int32{
lnwire.EncodingSortedPlain: 8000,
}
// ErrGossipSyncerExiting signals that the syncer has been killed.
ErrGossipSyncerExiting = errors.New("gossip syncer exiting")
// ErrSyncTransitionTimeout is an error returned when we've timed out
// attempting to perform a sync transition.
ErrSyncTransitionTimeout = errors.New("timed out attempting to " +
"transition sync type")
// zeroTimestamp is the timestamp we'll use when we want to indicate to
// peers that we do not want to receive any new graph updates.
zeroTimestamp time.Time
)
// syncTransitionReq encapsulates a request for a gossip syncer sync transition.
type syncTransitionReq struct {
newSyncType SyncerType
errChan chan error
}
// gossipSyncerCfg is a struct that packages all the information a GossipSyncer
// needs to carry out its duties.
type gossipSyncerCfg struct {
// chainHash is the chain that this syncer is responsible for.
chainHash chainhash.Hash
// peerPub is the public key of the peer we're syncing with, serialized
// in compressed format.
peerPub [33]byte
// syncChanUpdates is a bool that indicates if we should request a
// continual channel update stream or not.
syncChanUpdates bool
// channelSeries is the primary interface that we'll use to generate
// our queries and respond to the queries of the remote peer.
channelSeries ChannelGraphTimeSeries
// encodingType is the current encoding type we're aware of. Requests
// with different encoding types will be rejected.
encodingType lnwire.ShortChanIDEncoding
// chunkSize is the max number of short chan IDs using the syncer's
// encoding type that we can fit into a single message safely.
chunkSize int32
// batchSize is the max number of channels the syncer will query from
// the remote node in a single QueryShortChanIDs request.
batchSize int32
// sendToPeer is a function closure that should send the set of
// targeted messages to the peer we've been assigned to sync the graph
// state from.
sendToPeer func(...lnwire.Message) error
// maxUndelayedQueryReplies specifies how many gossip queries we will
// respond to immediately before starting to delay responses.
maxUndelayedQueryReplies int
// delayedQueryReplyInterval is the length of time we will wait before
// responding to gossip queries after replying to
// maxUndelayedQueryReplies queries.
delayedQueryReplyInterval time.Duration
}
// GossipSyncer is a struct that handles synchronizing the channel graph state
// with a remote peer. The GossipSyncer implements a state machine that will
// progressively ensure we're synchronized with the channel state of the remote
// node. Once both nodes have been synchronized, we'll use an update filter to
// filter out which messages should be sent to a remote peer based on their
// update horizon. If the update horizon isn't specified, then we won't send
// them any channel updates at all.
type GossipSyncer struct {
started sync.Once
stopped sync.Once
// state is the current state of the GossipSyncer.
//
// NOTE: This variable MUST be used atomically.
state uint32
// syncType denotes the SyncerType the gossip syncer is currently
// exercising.
//
// NOTE: This variable MUST be used atomically.
syncType uint32
// remoteUpdateHorizon is the update horizon of the remote peer. We'll
// use this to properly filter out any messages.
remoteUpdateHorizon *lnwire.GossipTimestampRange
// localUpdateHorizon is our local update horizon, we'll use this to
// determine if we've already sent out our update.
localUpdateHorizon *lnwire.GossipTimestampRange
// syncTransitions is a channel through which new sync type transition
// requests will be sent through. These requests should only be handled
// when the gossip syncer is in a chansSynced state to ensure its state
// machine behaves as expected.
syncTransitionReqs chan *syncTransitionReq
// historicalSyncReqs is a channel that serves as a signal for the
// gossip syncer to perform a historical sync. Theese can only be done
// once the gossip syncer is in a chansSynced state to ensure its state
// machine behaves as expected.
historicalSyncReqs chan struct{}
// genHistoricalChanRangeQuery when true signals to the gossip syncer
// that it should request the remote peer for all of its known channel
// IDs starting from the genesis block of the chain. This can only
// happen if the gossip syncer receives a request to attempt a
// historical sync. It can be unset if the syncer ever transitions from
// PassiveSync to ActiveSync.
genHistoricalChanRangeQuery bool
// gossipMsgs is a channel that all messages from the target peer will
// be sent over.
gossipMsgs chan lnwire.Message
// bufferedChanRangeReplies is used in the waitingQueryChanReply to
// buffer all the chunked response to our query.
bufferedChanRangeReplies []lnwire.ShortChannelID
// newChansToQuery is used to pass the set of channels we should query
// for from the waitingQueryChanReply state to the queryNewChannels
// state.
newChansToQuery []lnwire.ShortChannelID
cfg gossipSyncerCfg
// rateLimiter dictates the frequency with which we will reply to gossip
// queries from a peer. This is used to delay responses to peers to
// prevent DOS vulnerabilities if they are spamming with an unreasonable
// number of queries.
rateLimiter *rate.Limiter
// syncedSignal is a channel that, if set, will be closed when the
// GossipSyncer reaches its terminal chansSynced state.
syncedSignal chan struct{}
sync.Mutex
quit chan struct{}
wg sync.WaitGroup
}
// newGossipSyncer returns a new instance of the GossipSyncer populated using
// the passed config.
func newGossipSyncer(cfg gossipSyncerCfg) *GossipSyncer {
// If no parameter was specified for max undelayed query replies, set it
// to the default of 5 queries.
if cfg.maxUndelayedQueryReplies <= 0 {
cfg.maxUndelayedQueryReplies = DefaultMaxUndelayedQueryReplies
}
// If no parameter was specified for delayed query reply interval, set
// to the default of 5 seconds.
if cfg.delayedQueryReplyInterval <= 0 {
cfg.delayedQueryReplyInterval = DefaultDelayedQueryReplyInterval
}
// Construct a rate limiter that will govern how frequently we reply to
// gossip queries from this peer. The limiter will automatically adjust
// during periods of quiescence, and increase the reply interval under
// load.
interval := rate.Every(cfg.delayedQueryReplyInterval)
rateLimiter := rate.NewLimiter(
interval, cfg.maxUndelayedQueryReplies,
)
return &GossipSyncer{
cfg: cfg,
rateLimiter: rateLimiter,
syncTransitionReqs: make(chan *syncTransitionReq),
historicalSyncReqs: make(chan struct{}),
gossipMsgs: make(chan lnwire.Message, 100),
quit: make(chan struct{}),
}
}
// Start starts the GossipSyncer and any goroutines that it needs to carry out
// its duties.
func (g *GossipSyncer) Start() {
g.started.Do(func() {
log.Debugf("Starting GossipSyncer(%x)", g.cfg.peerPub[:])
g.wg.Add(1)
go g.channelGraphSyncer()
})
}
// Stop signals the GossipSyncer for a graceful exit, then waits until it has
// exited.
func (g *GossipSyncer) Stop() {
g.stopped.Do(func() {
close(g.quit)
g.wg.Wait()
})
}
// channelGraphSyncer is the main goroutine responsible for ensuring that we
// properly channel graph state with the remote peer, and also that we only
// send them messages which actually pass their defined update horizon.
func (g *GossipSyncer) channelGraphSyncer() {
defer g.wg.Done()
for {
state := g.syncState()
syncType := g.SyncType()
log.Debugf("GossipSyncer(%x): state=%v, type=%v",
g.cfg.peerPub[:], state, syncType)
switch syncerState(state) {
// When we're in this state, we're trying to synchronize our
// view of the network with the remote peer. We'll kick off
// this sync by asking them for the set of channels they
// understand, as we'll as responding to any other queries by
// them.
case syncingChans:
// If we're in this state, then we'll send the remote
// peer our opening QueryChannelRange message.
queryRangeMsg, err := g.genChanRangeQuery(
g.genHistoricalChanRangeQuery,
)
if err != nil {
log.Errorf("unable to gen chan range "+
"query: %v", err)
return
}
err = g.cfg.sendToPeer(queryRangeMsg)
if err != nil {
log.Errorf("unable to send chan range "+
"query: %v", err)
return
}
// With the message sent successfully, we'll transition
// into the next state where we wait for their reply.
g.setSyncState(waitingQueryRangeReply)
// In this state, we've sent out our initial channel range
// query and are waiting for the final response from the remote
// peer before we perform a diff to see with channels they know
// of that we don't.
case waitingQueryRangeReply:
// We'll wait to either process a new message from the
// remote party, or exit due to the gossiper exiting,
// or us being signalled to do so.
select {
case msg := <-g.gossipMsgs:
// The remote peer is sending a response to our
// initial query, we'll collate this response,
// and see if it's the final one in the series.
// If so, we can then transition to querying
// for the new channels.
queryReply, ok := msg.(*lnwire.ReplyChannelRange)
if ok {
err := g.processChanRangeReply(queryReply)
if err != nil {
log.Errorf("unable to "+
"process chan range "+
"query: %v", err)
return
}
continue
}
// Otherwise, it's the remote peer performing a
// query, which we'll attempt to reply to.
err := g.replyPeerQueries(msg)
if err != nil && err != ErrGossipSyncerExiting {
log.Errorf("unable to reply to peer "+
"query: %v", err)
}
case <-g.quit:
return
}
// We'll enter this state once we've discovered which channels
// the remote party knows of that we don't yet know of
// ourselves.
case queryNewChannels:
// First, we'll attempt to continue our channel
// synchronization by continuing to send off another
// query chunk.
done, err := g.synchronizeChanIDs()
if err != nil {
log.Errorf("unable to sync chan IDs: %v", err)
}
// If this wasn't our last query, then we'll need to
// transition to our waiting state.
if !done {
g.setSyncState(waitingQueryChanReply)
continue
}
// If we're fully synchronized, then we can transition
// to our terminal state.
g.setSyncState(chansSynced)
// In this state, we've just sent off a new query for channels
// that we don't yet know of. We'll remain in this state until
// the remote party signals they've responded to our query in
// totality.
case waitingQueryChanReply:
// Once we've sent off our query, we'll wait for either
// an ending reply, or just another query from the
// remote peer.
select {
case msg := <-g.gossipMsgs:
// If this is the final reply to one of our
// queries, then we'll loop back into our query
// state to send of the remaining query chunks.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if ok {
g.setSyncState(queryNewChannels)
continue
}
// Otherwise, it's the remote peer performing a
// query, which we'll attempt to deploy to.
err := g.replyPeerQueries(msg)
if err != nil && err != ErrGossipSyncerExiting {
log.Errorf("unable to reply to peer "+
"query: %v", err)
}
case <-g.quit:
return
}
// This is our final terminal state where we'll only reply to
// any further queries by the remote peer.
case chansSynced:
g.Lock()
if g.syncedSignal != nil {
close(g.syncedSignal)
g.syncedSignal = nil
}
g.Unlock()
// If we haven't yet sent out our update horizon, and
// we want to receive real-time channel updates, we'll
// do so now.
if g.localUpdateHorizon == nil && syncType == ActiveSync {
err := g.sendGossipTimestampRange(
time.Now(), math.MaxUint32,
)
if err != nil {
log.Errorf("Unable to send update "+
"horizon to %x: %v",
g.cfg.peerPub, err)
}
}
// With our horizon set, we'll simply reply to any new
// messages or process any state transitions and exit if
// needed.
select {
case msg := <-g.gossipMsgs:
err := g.replyPeerQueries(msg)
if err != nil && err != ErrGossipSyncerExiting {
log.Errorf("unable to reply to peer "+
"query: %v", err)
}
case req := <-g.syncTransitionReqs:
req.errChan <- g.handleSyncTransition(req)
case <-g.historicalSyncReqs:
g.handleHistoricalSync()
case <-g.quit:
return
}
}
}
}
// sendGossipTimestampRange constructs and sets a GossipTimestampRange for the
// syncer and sends it to the remote peer.
func (g *GossipSyncer) sendGossipTimestampRange(firstTimestamp time.Time,
timestampRange uint32) error {
endTimestamp := firstTimestamp.Add(
time.Duration(timestampRange) * time.Second,
)
log.Infof("GossipSyncer(%x): applying gossipFilter(start=%v, end=%v)",
g.cfg.peerPub[:], firstTimestamp, endTimestamp)
localUpdateHorizon := &lnwire.GossipTimestampRange{
ChainHash: g.cfg.chainHash,
FirstTimestamp: uint32(firstTimestamp.Unix()),
TimestampRange: timestampRange,
}
if err := g.cfg.sendToPeer(localUpdateHorizon); err != nil {
return err
}
if firstTimestamp == zeroTimestamp && timestampRange == 0 {
g.localUpdateHorizon = nil
} else {
g.localUpdateHorizon = localUpdateHorizon
}
return nil
}
// synchronizeChanIDs is called by the channelGraphSyncer when we need to query
// the remote peer for its known set of channel IDs within a particular block
// range. This method will be called continually until the entire range has
// been queried for with a response received. We'll chunk our requests as
// required to ensure they fit into a single message. We may re-renter this
// state in the case that chunking is required.
func (g *GossipSyncer) synchronizeChanIDs() (bool, error) {
// If we're in this state yet there are no more new channels to query
// for, then we'll transition to our final synced state and return true
// to signal that we're fully synchronized.
if len(g.newChansToQuery) == 0 {
log.Infof("GossipSyncer(%x): no more chans to query",
g.cfg.peerPub[:])
return true, nil
}
// Otherwise, we'll issue our next chunked query to receive replies
// for.
var queryChunk []lnwire.ShortChannelID
// If the number of channels to query for is less than the chunk size,
// then we can issue a single query.
if int32(len(g.newChansToQuery)) < g.cfg.batchSize {
queryChunk = g.newChansToQuery
g.newChansToQuery = nil
} else {
// Otherwise, we'll need to only query for the next chunk.
// We'll slice into our query chunk, then slide down our main
// pointer down by the chunk size.
queryChunk = g.newChansToQuery[:g.cfg.batchSize]
g.newChansToQuery = g.newChansToQuery[g.cfg.batchSize:]
}
log.Infof("GossipSyncer(%x): querying for %v new channels",
g.cfg.peerPub[:], len(queryChunk))
// With our chunk obtained, we'll send over our next query, then return
// false indicating that we're net yet fully synced.
err := g.cfg.sendToPeer(&lnwire.QueryShortChanIDs{
ChainHash: g.cfg.chainHash,
EncodingType: lnwire.EncodingSortedPlain,
ShortChanIDs: queryChunk,
})
return false, err
}
// processChanRangeReply is called each time the GossipSyncer receives a new
// reply to the initial range query to discover new channels that it didn't
// previously know of.
func (g *GossipSyncer) processChanRangeReply(msg *lnwire.ReplyChannelRange) error {
g.bufferedChanRangeReplies = append(
g.bufferedChanRangeReplies, msg.ShortChanIDs...,
)
log.Infof("GossipSyncer(%x): buffering chan range reply of size=%v",
g.cfg.peerPub[:], len(msg.ShortChanIDs))
// If this isn't the last response, then we can exit as we've already
// buffered the latest portion of the streaming reply.
if msg.Complete == 0 {
return nil
}
log.Infof("GossipSyncer(%x): filtering through %v chans",
g.cfg.peerPub[:], len(g.bufferedChanRangeReplies))
// Otherwise, this is the final response, so we'll now check to see
// which channels they know of that we don't.
newChans, err := g.cfg.channelSeries.FilterKnownChanIDs(
g.cfg.chainHash, g.bufferedChanRangeReplies,
)
if err != nil {
return fmt.Errorf("unable to filter chan ids: %v", err)
}
// As we've received the entirety of the reply, we no longer need to
// hold on to the set of buffered replies, so we'll let that be garbage
// collected now.
g.bufferedChanRangeReplies = nil
// If there aren't any channels that we don't know of, then we can
// switch straight to our terminal state.
if len(newChans) == 0 {
log.Infof("GossipSyncer(%x): remote peer has no new chans",
g.cfg.peerPub[:])
g.setSyncState(chansSynced)
return nil
}
// Otherwise, we'll set the set of channels that we need to query for
// the next state, and also transition our state.
g.newChansToQuery = newChans
g.setSyncState(queryNewChannels)
log.Infof("GossipSyncer(%x): starting query for %v new chans",
g.cfg.peerPub[:], len(newChans))
return nil
}
// genChanRangeQuery generates the initial message we'll send to the remote
// party when we're kicking off the channel graph synchronization upon
// connection. The historicalQuery boolean can be used to generate a query from
// the genesis block of the chain.
func (g *GossipSyncer) genChanRangeQuery(
historicalQuery bool) (*lnwire.QueryChannelRange, error) {
// First, we'll query our channel graph time series for its highest
// known channel ID.
newestChan, err := g.cfg.channelSeries.HighestChanID(g.cfg.chainHash)
if err != nil {
return nil, err
}
// Once we have the chan ID of the newest, we'll obtain the block height
// of the channel, then subtract our default horizon to ensure we don't
// miss any channels. By default, we go back 1 day from the newest
// channel, unless we're attempting a historical sync, where we'll
// actually start from the genesis block instead.
var startHeight uint32
switch {
case historicalQuery:
fallthrough
case newestChan.BlockHeight <= chanRangeQueryBuffer:
startHeight = 0
default:
startHeight = uint32(newestChan.BlockHeight - chanRangeQueryBuffer)
}
log.Infof("GossipSyncer(%x): requesting new chans from height=%v "+
"and %v blocks after", g.cfg.peerPub[:], startHeight,
math.MaxUint32-startHeight)
// Finally, we'll craft the channel range query, using our starting
// height, then asking for all known channels to the foreseeable end of
// the main chain.
return &lnwire.QueryChannelRange{
ChainHash: g.cfg.chainHash,
FirstBlockHeight: startHeight,
NumBlocks: math.MaxUint32 - startHeight,
}, nil
}
// replyPeerQueries is called in response to any query by the remote peer.
// We'll examine our state and send back our best response.
func (g *GossipSyncer) replyPeerQueries(msg lnwire.Message) error {
reservation := g.rateLimiter.Reserve()
delay := reservation.Delay()
// If we've already replied a handful of times, we will start to delay
// responses back to the remote peer. This can help prevent DOS attacks
// where the remote peer spams us endlessly.
if delay > 0 {
log.Infof("GossipSyncer(%x): rate limiting gossip replies, "+
"responding in %s", g.cfg.peerPub[:], delay)
select {
case <-time.After(delay):
case <-g.quit:
return ErrGossipSyncerExiting
}
}
switch msg := msg.(type) {
// In this state, we'll also handle any incoming channel range queries
// from the remote peer as they're trying to sync their state as well.
case *lnwire.QueryChannelRange:
return g.replyChanRangeQuery(msg)
// If the remote peer skips straight to requesting new channels that
// they don't know of, then we'll ensure that we also handle this case.
case *lnwire.QueryShortChanIDs:
return g.replyShortChanIDs(msg)
default:
return fmt.Errorf("unknown message: %T", msg)
}
}
// replyChanRangeQuery will be dispatched in response to a channel range query
// by the remote node. We'll query the channel time series for channels that
// meet the channel range, then chunk our responses to the remote node. We also
// ensure that our final fragment carries the "complete" bit to indicate the
// end of our streaming response.
func (g *GossipSyncer) replyChanRangeQuery(query *lnwire.QueryChannelRange) error {
log.Infof("GossipSyncer(%x): filtering chan range: start_height=%v, "+
"num_blocks=%v", g.cfg.peerPub[:], query.FirstBlockHeight,
query.NumBlocks)
// Next, we'll consult the time series to obtain the set of known
// channel ID's that match their query.
startBlock := query.FirstBlockHeight
channelRange, err := g.cfg.channelSeries.FilterChannelRange(
query.ChainHash, startBlock, startBlock+query.NumBlocks,
)
if err != nil {
return err
}
// TODO(roasbeef): means can't send max uint above?
// * or make internal 64
numChannels := int32(len(channelRange))
numChansSent := int32(0)
for {
// We'll send our this response in a streaming manner,
// chunk-by-chunk. We do this as there's a transport message
// size limit which we'll need to adhere to.
var channelChunk []lnwire.ShortChannelID
// We know this is the final chunk, if the difference between
// the total number of channels, and the number of channels
// we've sent is less-than-or-equal to the chunk size.
isFinalChunk := (numChannels - numChansSent) <= g.cfg.chunkSize
// If this is indeed the last chunk, then we'll send the
// remainder of the channels.
if isFinalChunk {
channelChunk = channelRange[numChansSent:]
log.Infof("GossipSyncer(%x): sending final chan "+
"range chunk, size=%v", g.cfg.peerPub[:],
len(channelChunk))
} else {
// Otherwise, we'll only send off a fragment exactly
// sized to the proper chunk size.
channelChunk = channelRange[numChansSent : numChansSent+g.cfg.chunkSize]
log.Infof("GossipSyncer(%x): sending range chunk of "+
"size=%v", g.cfg.peerPub[:], len(channelChunk))
}
// With our chunk assembled, we'll now send to the remote peer
// the current chunk.
replyChunk := lnwire.ReplyChannelRange{
QueryChannelRange: *query,
Complete: 0,
EncodingType: g.cfg.encodingType,
ShortChanIDs: channelChunk,
}
if isFinalChunk {
replyChunk.Complete = 1
}
if err := g.cfg.sendToPeer(&replyChunk); err != nil {
return err
}
// If this was the final chunk, then we'll exit now as our
// response is now complete.
if isFinalChunk {
return nil
}
numChansSent += int32(len(channelChunk))
}
}
// replyShortChanIDs will be dispatched in response to a query by the remote
// node for information concerning a set of short channel ID's. Our response
// will be sent in a streaming chunked manner to ensure that we remain below
// the current transport level message size.
func (g *GossipSyncer) replyShortChanIDs(query *lnwire.QueryShortChanIDs) error {
// Before responding, we'll check to ensure that the remote peer is
// querying for the same chain that we're on. If not, we'll send back a
// response with a complete value of zero to indicate we're on a
// different chain.
if g.cfg.chainHash != query.ChainHash {
log.Warnf("Remote peer requested QueryShortChanIDs for "+
"chain=%v, we're on chain=%v", g.cfg.chainHash,
query.ChainHash)
return g.cfg.sendToPeer(&lnwire.ReplyShortChanIDsEnd{
ChainHash: query.ChainHash,
Complete: 0,
})
}
if len(query.ShortChanIDs) == 0 {
log.Infof("GossipSyncer(%x): ignoring query for blank short chan ID's",
g.cfg.peerPub[:])
return nil
}
log.Infof("GossipSyncer(%x): fetching chan anns for %v chans",
g.cfg.peerPub[:], len(query.ShortChanIDs))
// Now that we know we're on the same chain, we'll query the channel
// time series for the set of messages that we know of which satisfies
// the requirement of being a chan ann, chan update, or a node ann
// related to the set of queried channels.
replyMsgs, err := g.cfg.channelSeries.FetchChanAnns(
query.ChainHash, query.ShortChanIDs,
)
if err != nil {
return fmt.Errorf("unable to fetch chan anns for %v..., %v",
query.ShortChanIDs[0].ToUint64(), err)
}
// If we didn't find any messages related to those channel ID's, then
// we'll send over a reply marking the end of our response, and exit
// early.
if len(replyMsgs) == 0 {
return g.cfg.sendToPeer(&lnwire.ReplyShortChanIDsEnd{
ChainHash: query.ChainHash,
Complete: 1,
})
}
// Otherwise, we'll send over our set of messages responding to the
// query, with the ending message appended to it.
replyMsgs = append(replyMsgs, &lnwire.ReplyShortChanIDsEnd{
ChainHash: query.ChainHash,
Complete: 1,
})
return g.cfg.sendToPeer(replyMsgs...)
}
// ApplyGossipFilter applies a gossiper filter sent by the remote node to the
// state machine. Once applied, we'll ensure that we don't forward any messages
// to the peer that aren't within the time range of the filter.
func (g *GossipSyncer) ApplyGossipFilter(filter *lnwire.GossipTimestampRange) error {
g.Lock()
g.remoteUpdateHorizon = filter
startTime := time.Unix(int64(g.remoteUpdateHorizon.FirstTimestamp), 0)
endTime := startTime.Add(
time.Duration(g.remoteUpdateHorizon.TimestampRange) * time.Second,
)
g.Unlock()
// Now that the remote peer has applied their filter, we'll query the
// database for all the messages that are beyond this filter.
newUpdatestoSend, err := g.cfg.channelSeries.UpdatesInHorizon(
g.cfg.chainHash, startTime, endTime,
)
if err != nil {
return err
}
log.Infof("GossipSyncer(%x): applying new update horizon: start=%v, "+
"end=%v, backlog_size=%v", g.cfg.peerPub[:], startTime, endTime,
len(newUpdatestoSend))
// If we don't have any to send, then we can return early.
if len(newUpdatestoSend) == 0 {
return nil
}
// We'll conclude by launching a goroutine to send out any updates.
g.wg.Add(1)
go func() {
defer g.wg.Done()
if err := g.cfg.sendToPeer(newUpdatestoSend...); err != nil {
log.Errorf("unable to send messages for peer catch "+
"up: %v", err)
}
}()
return nil
}
// FilterGossipMsgs takes a set of gossip messages, and only send it to a peer
// iff the message is within the bounds of their set gossip filter. If the peer
// doesn't have a gossip filter set, then no messages will be forwarded.
func (g *GossipSyncer) FilterGossipMsgs(msgs ...msgWithSenders) {
// If the peer doesn't have an update horizon set, then we won't send
// it any new update messages.
if g.remoteUpdateHorizon == nil {
return
}
// If we've been signaled to exit, or are exiting, then we'll stop
// short.
select {
case <-g.quit:
return
default:
}
// TODO(roasbeef): need to ensure that peer still online...send msg to
// gossiper on peer termination to signal peer disconnect?
var err error
// Before we filter out the messages, we'll construct an index over the
// set of channel announcements and channel updates. This will allow us
// to quickly check if we should forward a chan ann, based on the known
// channel updates for a channel.
chanUpdateIndex := make(map[lnwire.ShortChannelID][]*lnwire.ChannelUpdate)
for _, msg := range msgs {
chanUpdate, ok := msg.msg.(*lnwire.ChannelUpdate)
if !ok {
continue
}
chanUpdateIndex[chanUpdate.ShortChannelID] = append(
chanUpdateIndex[chanUpdate.ShortChannelID], chanUpdate,
)
}
// We'll construct a helper function that we'll us below to determine
// if a given messages passes the gossip msg filter.
g.Lock()
startTime := time.Unix(int64(g.remoteUpdateHorizon.FirstTimestamp), 0)
endTime := startTime.Add(
time.Duration(g.remoteUpdateHorizon.TimestampRange) * time.Second,
)
g.Unlock()
passesFilter := func(timeStamp uint32) bool {
t := time.Unix(int64(timeStamp), 0)
return t.Equal(startTime) ||
(t.After(startTime) && t.Before(endTime))
}
msgsToSend := make([]lnwire.Message, 0, len(msgs))
for _, msg := range msgs {
// If the target peer is the peer that sent us this message,
// then we'll exit early as we don't need to filter this
// message.
if _, ok := msg.senders[g.cfg.peerPub]; ok {
continue
}
switch msg := msg.msg.(type) {
// For each channel announcement message, we'll only send this
// message if the channel updates for the channel are between
// our time range.
case *lnwire.ChannelAnnouncement:
// First, we'll check if the channel updates are in
// this message batch.
chanUpdates, ok := chanUpdateIndex[msg.ShortChannelID]
if !ok {
// If not, we'll attempt to query the database
// to see if we know of the updates.
chanUpdates, err = g.cfg.channelSeries.FetchChanUpdates(
g.cfg.chainHash, msg.ShortChannelID,
)
if err != nil {
log.Warnf("no channel updates found for "+
"short_chan_id=%v",
msg.ShortChannelID)
continue
}
}
for _, chanUpdate := range chanUpdates {
if passesFilter(chanUpdate.Timestamp) {
msgsToSend = append(msgsToSend, msg)
break
}
}
if len(chanUpdates) == 0 {
msgsToSend = append(msgsToSend, msg)
}
// For each channel update, we'll only send if it the timestamp
// is between our time range.
case *lnwire.ChannelUpdate:
if passesFilter(msg.Timestamp) {
msgsToSend = append(msgsToSend, msg)
}
// Similarly, we only send node announcements if the update
// timestamp ifs between our set gossip filter time range.
case *lnwire.NodeAnnouncement:
if passesFilter(msg.Timestamp) {
msgsToSend = append(msgsToSend, msg)
}
}
}
log.Tracef("GossipSyncer(%x): filtered gossip msgs: set=%v, sent=%v",
g.cfg.peerPub[:], len(msgs), len(msgsToSend))
if len(msgsToSend) == 0 {
return
}
g.cfg.sendToPeer(msgsToSend...)
}
// ProcessQueryMsg is used by outside callers to pass new channel time series
// queries to the internal processing goroutine.
func (g *GossipSyncer) ProcessQueryMsg(msg lnwire.Message, peerQuit <-chan struct{}) {
select {
case g.gossipMsgs <- msg:
case <-peerQuit:
case <-g.quit:
}
}
// setSyncState sets the gossip syncer's state to the given state.
func (g *GossipSyncer) setSyncState(state syncerState) {
atomic.StoreUint32(&g.state, uint32(state))
}
// syncState returns the current syncerState of the target GossipSyncer.
func (g *GossipSyncer) syncState() syncerState {
return syncerState(atomic.LoadUint32(&g.state))
}
// ResetSyncedSignal returns a channel that will be closed in order to serve as
// a signal for when the GossipSyncer has reached its chansSynced state.
func (g *GossipSyncer) ResetSyncedSignal() chan struct{} {
g.Lock()
defer g.Unlock()
syncedSignal := make(chan struct{})
syncState := syncerState(atomic.LoadUint32(&g.state))
if syncState == chansSynced {
close(syncedSignal)
return syncedSignal
}
g.syncedSignal = syncedSignal
return g.syncedSignal
}
// ProcessSyncTransition sends a request to the gossip syncer to transition its
// sync type to a new one.
//
// NOTE: This can only be done once the gossip syncer has reached its final
// chansSynced state.
func (g *GossipSyncer) ProcessSyncTransition(newSyncType SyncerType) error {
errChan := make(chan error, 1)
select {
case g.syncTransitionReqs <- &syncTransitionReq{
newSyncType: newSyncType,
errChan: errChan,
}:
case <-time.After(syncTransitionTimeout):
return ErrSyncTransitionTimeout
case <-g.quit:
return ErrGossipSyncerExiting
}
select {
case err := <-errChan:
return err
case <-g.quit:
return ErrGossipSyncerExiting
}
}
// handleSyncTransition handles a new sync type transition request.
//
// NOTE: The gossip syncer might have another sync state as a result of this
// transition.
func (g *GossipSyncer) handleSyncTransition(req *syncTransitionReq) error {
// Return early from any NOP sync transitions.
syncType := g.SyncType()
if syncType == req.newSyncType {
return nil
}
log.Debugf("GossipSyncer(%x): transitioning from %v to %v",
g.cfg.peerPub, syncType, req.newSyncType)
var (
firstTimestamp time.Time
timestampRange uint32
newState syncerState
)
switch req.newSyncType {
// If an active sync has been requested, then we should resume receiving
// new graph updates from the remote peer.
case ActiveSync:
firstTimestamp = time.Now()
timestampRange = math.MaxUint32
newState = syncingChans
// We'll set genHistoricalChanRangeQuery to false since in order
// to not perform another historical sync if we previously have.
g.genHistoricalChanRangeQuery = false
// If a PassiveSync transition has been requested, then we should no
// longer receive any new updates from the remote peer. We can do this
// by setting our update horizon to a range in the past ensuring no
// graph updates match the timestamp range.
case PassiveSync:
firstTimestamp = zeroTimestamp
timestampRange = 0
newState = chansSynced
default:
return fmt.Errorf("unhandled sync transition %v",
req.newSyncType)
}
err := g.sendGossipTimestampRange(firstTimestamp, timestampRange)
if err != nil {
return fmt.Errorf("unable to send local update horizon: %v", err)
}
g.setSyncState(newState)
g.setSyncType(req.newSyncType)
return nil
}
// setSyncType sets the gossip syncer's sync type to the given type.
func (g *GossipSyncer) setSyncType(syncType SyncerType) {
atomic.StoreUint32(&g.syncType, uint32(syncType))
}
// SyncType returns the current SyncerType of the target GossipSyncer.
func (g *GossipSyncer) SyncType() SyncerType {
return SyncerType(atomic.LoadUint32(&g.syncType))
}
// historicalSync sends a request to the gossip syncer to perofmr a historical
// sync.
//
// NOTE: This can only be done once the gossip syncer has reached its final
// chansSynced state.
func (g *GossipSyncer) historicalSync() error {
select {
case g.historicalSyncReqs <- struct{}{}:
return nil
case <-time.After(syncTransitionTimeout):
return ErrSyncTransitionTimeout
case <-g.quit:
return ErrGossiperShuttingDown
}
}
// handleHistoricalSync handles a request to the gossip syncer to perform a
// historical sync.
func (g *GossipSyncer) handleHistoricalSync() {
// We'll go back to our initial syncingChans state in order to request
// the remote peer to give us all of the channel IDs they know of
// starting from the genesis block.
g.genHistoricalChanRangeQuery = true
g.setSyncState(syncingChans)
}