2352 lines
68 KiB
Go
2352 lines
68 KiB
Go
package routing
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/sha256"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"math"
|
|
"math/big"
|
|
"net"
|
|
"os"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/routing/route"
|
|
"github.com/lightningnetwork/lnd/zpay32"
|
|
)
|
|
|
|
const (
|
|
// basicGraphFilePath is the file path for a basic graph used within
|
|
// the tests. The basic graph consists of 5 nodes with 5 channels
|
|
// connecting them.
|
|
basicGraphFilePath = "testdata/basic_graph.json"
|
|
|
|
// excessiveHopsGraphFilePath is a file path which stores the JSON dump
|
|
// of a graph which was previously triggering an erroneous excessive
|
|
// hops error. The error has since been fixed, but a test case
|
|
// exercising it is kept around to guard against regressions.
|
|
excessiveHopsGraphFilePath = "testdata/excessive_hops.json"
|
|
|
|
// specExampleFilePath is a file path which stores an example which
|
|
// implementations will use in order to ensure that they're calculating
|
|
// the payload for each hop in path properly.
|
|
specExampleFilePath = "testdata/spec_example.json"
|
|
|
|
// noFeeLimit is the maximum value of a payment through Lightning. We
|
|
// can use this value to signal there is no fee limit since payments
|
|
// should never be larger than this.
|
|
noFeeLimit = lnwire.MilliSatoshi(math.MaxUint32)
|
|
)
|
|
|
|
var (
|
|
noRestrictions = &RestrictParams{
|
|
FeeLimit: noFeeLimit,
|
|
ProbabilitySource: noProbabilitySource,
|
|
CltvLimit: math.MaxUint32,
|
|
}
|
|
|
|
testPathFindingConfig = &PathFindingConfig{}
|
|
)
|
|
|
|
var (
|
|
testSig = &btcec.Signature{
|
|
R: new(big.Int),
|
|
S: new(big.Int),
|
|
}
|
|
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
|
|
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
|
|
|
|
testAuthProof = channeldb.ChannelAuthProof{
|
|
NodeSig1Bytes: testSig.Serialize(),
|
|
NodeSig2Bytes: testSig.Serialize(),
|
|
BitcoinSig1Bytes: testSig.Serialize(),
|
|
BitcoinSig2Bytes: testSig.Serialize(),
|
|
}
|
|
)
|
|
|
|
// noProbabilitySource is used in testing to return the same probability 1 for
|
|
// all edges.
|
|
func noProbabilitySource(route.Vertex, route.Vertex, lnwire.MilliSatoshi) float64 {
|
|
return 1
|
|
}
|
|
|
|
// testGraph is the struct which corresponds to the JSON format used to encode
|
|
// graphs within the files in the testdata directory.
|
|
//
|
|
// TODO(roasbeef): add test graph auto-generator
|
|
type testGraph struct {
|
|
Info []string `json:"info"`
|
|
Nodes []testNode `json:"nodes"`
|
|
Edges []testChan `json:"edges"`
|
|
}
|
|
|
|
// testNode represents a node within the test graph above. We skip certain
|
|
// information such as the node's IP address as that information isn't needed
|
|
// for our tests.
|
|
type testNode struct {
|
|
Source bool `json:"source"`
|
|
PubKey string `json:"pubkey"`
|
|
Alias string `json:"alias"`
|
|
}
|
|
|
|
// testChan represents the JSON version of a payment channel. This struct
|
|
// matches the Json that's encoded under the "edges" key within the test graph.
|
|
type testChan struct {
|
|
Node1 string `json:"node_1"`
|
|
Node2 string `json:"node_2"`
|
|
ChannelID uint64 `json:"channel_id"`
|
|
ChannelPoint string `json:"channel_point"`
|
|
ChannelFlags uint8 `json:"channel_flags"`
|
|
MessageFlags uint8 `json:"message_flags"`
|
|
Expiry uint16 `json:"expiry"`
|
|
MinHTLC int64 `json:"min_htlc"`
|
|
MaxHTLC int64 `json:"max_htlc"`
|
|
FeeBaseMsat int64 `json:"fee_base_msat"`
|
|
FeeRate int64 `json:"fee_rate"`
|
|
Capacity int64 `json:"capacity"`
|
|
}
|
|
|
|
// makeTestGraph creates a new instance of a channeldb.ChannelGraph for testing
|
|
// purposes. A callback which cleans up the created temporary directories is
|
|
// also returned and intended to be executed after the test completes.
|
|
func makeTestGraph() (*channeldb.ChannelGraph, func(), error) {
|
|
// First, create a temporary directory to be used for the duration of
|
|
// this test.
|
|
tempDirName, err := ioutil.TempDir("", "channeldb")
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Next, create channeldb for the first time.
|
|
cdb, err := channeldb.Open(tempDirName)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
cleanUp := func() {
|
|
cdb.Close()
|
|
os.RemoveAll(tempDirName)
|
|
}
|
|
|
|
return cdb.ChannelGraph(), cleanUp, nil
|
|
}
|
|
|
|
// parseTestGraph returns a fully populated ChannelGraph given a path to a JSON
|
|
// file which encodes a test graph.
|
|
func parseTestGraph(path string) (*testGraphInstance, error) {
|
|
graphJSON, err := ioutil.ReadFile(path)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// First unmarshal the JSON graph into an instance of the testGraph
|
|
// struct. Using the struct tags created above in the struct, the JSON
|
|
// will be properly parsed into the struct above.
|
|
var g testGraph
|
|
if err := json.Unmarshal(graphJSON, &g); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// We'll use this fake address for the IP address of all the nodes in
|
|
// our tests. This value isn't needed for path finding so it doesn't
|
|
// need to be unique.
|
|
var testAddrs []net.Addr
|
|
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
testAddrs = append(testAddrs, testAddr)
|
|
|
|
// Next, create a temporary graph database for usage within the test.
|
|
graph, cleanUp, err := makeTestGraph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aliasMap := make(map[string]route.Vertex)
|
|
var source *channeldb.LightningNode
|
|
|
|
// First we insert all the nodes within the graph as vertexes.
|
|
for _, node := range g.Nodes {
|
|
pubBytes, err := hex.DecodeString(node.PubKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
dbNode := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
AuthSigBytes: testSig.Serialize(),
|
|
LastUpdate: testTime,
|
|
Addresses: testAddrs,
|
|
Alias: node.Alias,
|
|
Features: testFeatures,
|
|
}
|
|
copy(dbNode.PubKeyBytes[:], pubBytes)
|
|
|
|
// We require all aliases within the graph to be unique for our
|
|
// tests.
|
|
if _, ok := aliasMap[node.Alias]; ok {
|
|
return nil, errors.New("aliases for nodes " +
|
|
"must be unique!")
|
|
}
|
|
|
|
// If the alias is unique, then add the node to the
|
|
// alias map for easy lookup.
|
|
aliasMap[node.Alias] = dbNode.PubKeyBytes
|
|
|
|
// If the node is tagged as the source, then we create a
|
|
// pointer to is so we can mark the source in the graph
|
|
// properly.
|
|
if node.Source {
|
|
// If we come across a node that's marked as the
|
|
// source, and we've already set the source in a prior
|
|
// iteration, then the JSON has an error as only ONE
|
|
// node can be the source in the graph.
|
|
if source != nil {
|
|
return nil, errors.New("JSON is invalid " +
|
|
"multiple nodes are tagged as the source")
|
|
}
|
|
|
|
source = dbNode
|
|
}
|
|
|
|
// With the node fully parsed, add it as a vertex within the
|
|
// graph.
|
|
if err := graph.AddLightningNode(dbNode); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
if source != nil {
|
|
// Set the selected source node
|
|
if err := graph.SetSourceNode(source); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// With all the vertexes inserted, we can now insert the edges into the
|
|
// test graph.
|
|
for _, edge := range g.Edges {
|
|
node1Bytes, err := hex.DecodeString(edge.Node1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
node2Bytes, err := hex.DecodeString(edge.Node2)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if bytes.Compare(node1Bytes, node2Bytes) == 1 {
|
|
return nil, fmt.Errorf(
|
|
"channel %v node order incorrect",
|
|
edge.ChannelID,
|
|
)
|
|
}
|
|
|
|
fundingTXID := strings.Split(edge.ChannelPoint, ":")[0]
|
|
txidBytes, err := chainhash.NewHashFromStr(fundingTXID)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
fundingPoint := wire.OutPoint{
|
|
Hash: *txidBytes,
|
|
Index: 0,
|
|
}
|
|
|
|
// We first insert the existence of the edge between the two
|
|
// nodes.
|
|
edgeInfo := channeldb.ChannelEdgeInfo{
|
|
ChannelID: edge.ChannelID,
|
|
AuthProof: &testAuthProof,
|
|
ChannelPoint: fundingPoint,
|
|
Capacity: btcutil.Amount(edge.Capacity),
|
|
}
|
|
|
|
copy(edgeInfo.NodeKey1Bytes[:], node1Bytes)
|
|
copy(edgeInfo.NodeKey2Bytes[:], node2Bytes)
|
|
copy(edgeInfo.BitcoinKey1Bytes[:], node1Bytes)
|
|
copy(edgeInfo.BitcoinKey2Bytes[:], node2Bytes)
|
|
|
|
err = graph.AddChannelEdge(&edgeInfo)
|
|
if err != nil && err != channeldb.ErrEdgeAlreadyExist {
|
|
return nil, err
|
|
}
|
|
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
MessageFlags: lnwire.ChanUpdateMsgFlags(edge.MessageFlags),
|
|
ChannelFlags: lnwire.ChanUpdateChanFlags(edge.ChannelFlags),
|
|
ChannelID: edge.ChannelID,
|
|
LastUpdate: testTime,
|
|
TimeLockDelta: edge.Expiry,
|
|
MinHTLC: lnwire.MilliSatoshi(edge.MinHTLC),
|
|
MaxHTLC: lnwire.MilliSatoshi(edge.MaxHTLC),
|
|
FeeBaseMSat: lnwire.MilliSatoshi(edge.FeeBaseMsat),
|
|
FeeProportionalMillionths: lnwire.MilliSatoshi(edge.FeeRate),
|
|
}
|
|
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return &testGraphInstance{
|
|
graph: graph,
|
|
cleanUp: cleanUp,
|
|
aliasMap: aliasMap,
|
|
}, nil
|
|
}
|
|
|
|
type testChannelPolicy struct {
|
|
Expiry uint16
|
|
MinHTLC lnwire.MilliSatoshi
|
|
MaxHTLC lnwire.MilliSatoshi
|
|
FeeBaseMsat lnwire.MilliSatoshi
|
|
FeeRate lnwire.MilliSatoshi
|
|
LastUpdate time.Time
|
|
Disabled bool
|
|
Direction bool
|
|
}
|
|
|
|
type testChannelEnd struct {
|
|
Alias string
|
|
*testChannelPolicy
|
|
}
|
|
|
|
func symmetricTestChannel(alias1 string, alias2 string, capacity btcutil.Amount,
|
|
policy *testChannelPolicy, chanID ...uint64) *testChannel {
|
|
|
|
// Leaving id zero will result in auto-generation of a channel id during
|
|
// graph construction.
|
|
var id uint64
|
|
if len(chanID) > 0 {
|
|
id = chanID[0]
|
|
}
|
|
|
|
node2Policy := *policy
|
|
node2Policy.Direction = !policy.Direction
|
|
|
|
return &testChannel{
|
|
Capacity: capacity,
|
|
Node1: &testChannelEnd{
|
|
Alias: alias1,
|
|
testChannelPolicy: policy,
|
|
},
|
|
Node2: &testChannelEnd{
|
|
Alias: alias2,
|
|
testChannelPolicy: &node2Policy,
|
|
},
|
|
ChannelID: id,
|
|
}
|
|
}
|
|
|
|
type testChannel struct {
|
|
Node1 *testChannelEnd
|
|
Node2 *testChannelEnd
|
|
Capacity btcutil.Amount
|
|
ChannelID uint64
|
|
}
|
|
|
|
type testGraphInstance struct {
|
|
graph *channeldb.ChannelGraph
|
|
cleanUp func()
|
|
|
|
// aliasMap is a map from a node's alias to its public key. This type is
|
|
// provided in order to allow easily look up from the human memorable alias
|
|
// to an exact node's public key.
|
|
aliasMap map[string]route.Vertex
|
|
|
|
// privKeyMap maps a node alias to its private key. This is used to be
|
|
// able to mock a remote node's signing behaviour.
|
|
privKeyMap map[string]*btcec.PrivateKey
|
|
}
|
|
|
|
// createTestGraphFromChannels returns a fully populated ChannelGraph based on a set of
|
|
// test channels. Additional required information like keys are derived in
|
|
// a deterministical way and added to the channel graph. A list of nodes is
|
|
// not required and derived from the channel data. The goal is to keep
|
|
// instantiating a test channel graph as light weight as possible.
|
|
func createTestGraphFromChannels(testChannels []*testChannel, source string) (
|
|
*testGraphInstance, error) {
|
|
|
|
// We'll use this fake address for the IP address of all the nodes in
|
|
// our tests. This value isn't needed for path finding so it doesn't
|
|
// need to be unique.
|
|
var testAddrs []net.Addr
|
|
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
testAddrs = append(testAddrs, testAddr)
|
|
|
|
// Next, create a temporary graph database for usage within the test.
|
|
graph, cleanUp, err := makeTestGraph()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aliasMap := make(map[string]route.Vertex)
|
|
privKeyMap := make(map[string]*btcec.PrivateKey)
|
|
|
|
nodeIndex := byte(0)
|
|
addNodeWithAlias := func(alias string) (*channeldb.LightningNode, error) {
|
|
keyBytes := make([]byte, 32)
|
|
keyBytes = []byte{
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, nodeIndex + 1,
|
|
}
|
|
|
|
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(),
|
|
keyBytes)
|
|
|
|
dbNode := &channeldb.LightningNode{
|
|
HaveNodeAnnouncement: true,
|
|
AuthSigBytes: testSig.Serialize(),
|
|
LastUpdate: testTime,
|
|
Addresses: testAddrs,
|
|
Alias: alias,
|
|
Features: testFeatures,
|
|
}
|
|
|
|
copy(dbNode.PubKeyBytes[:], pubKey.SerializeCompressed())
|
|
|
|
privKeyMap[alias] = privKey
|
|
|
|
// With the node fully parsed, add it as a vertex within the
|
|
// graph.
|
|
if err := graph.AddLightningNode(dbNode); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aliasMap[alias] = dbNode.PubKeyBytes
|
|
nodeIndex++
|
|
|
|
return dbNode, nil
|
|
}
|
|
|
|
// Add the source node.
|
|
dbNode, err := addNodeWithAlias(source)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err = graph.SetSourceNode(dbNode); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Initialize variable that keeps track of the next channel id to assign
|
|
// if none is specified.
|
|
nextUnassignedChannelID := uint64(100000)
|
|
|
|
for _, testChannel := range testChannels {
|
|
for _, alias := range []string{
|
|
testChannel.Node1.Alias, testChannel.Node2.Alias} {
|
|
|
|
_, exists := aliasMap[alias]
|
|
if !exists {
|
|
_, err := addNodeWithAlias(alias)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
channelID := testChannel.ChannelID
|
|
|
|
// If no channel id is specified, generate an id.
|
|
if channelID == 0 {
|
|
channelID = nextUnassignedChannelID
|
|
nextUnassignedChannelID++
|
|
}
|
|
|
|
var hash [sha256.Size]byte
|
|
hash[len(hash)-1] = byte(channelID)
|
|
|
|
fundingPoint := &wire.OutPoint{
|
|
Hash: chainhash.Hash(hash),
|
|
Index: 0,
|
|
}
|
|
|
|
// Sort nodes
|
|
node1 := testChannel.Node1
|
|
node2 := testChannel.Node2
|
|
node1Vertex := aliasMap[node1.Alias]
|
|
node2Vertex := aliasMap[node2.Alias]
|
|
if bytes.Compare(node1Vertex[:], node2Vertex[:]) == 1 {
|
|
node1, node2 = node2, node1
|
|
node1Vertex, node2Vertex = node2Vertex, node1Vertex
|
|
}
|
|
|
|
// We first insert the existence of the edge between the two
|
|
// nodes.
|
|
edgeInfo := channeldb.ChannelEdgeInfo{
|
|
ChannelID: channelID,
|
|
AuthProof: &testAuthProof,
|
|
ChannelPoint: *fundingPoint,
|
|
Capacity: testChannel.Capacity,
|
|
|
|
NodeKey1Bytes: node1Vertex,
|
|
BitcoinKey1Bytes: node1Vertex,
|
|
NodeKey2Bytes: node2Vertex,
|
|
BitcoinKey2Bytes: node2Vertex,
|
|
}
|
|
|
|
err = graph.AddChannelEdge(&edgeInfo)
|
|
if err != nil && err != channeldb.ErrEdgeAlreadyExist {
|
|
return nil, err
|
|
}
|
|
|
|
if testChannel.Node1.testChannelPolicy != nil {
|
|
var msgFlags lnwire.ChanUpdateMsgFlags
|
|
if testChannel.Node1.MaxHTLC != 0 {
|
|
msgFlags |= lnwire.ChanUpdateOptionMaxHtlc
|
|
}
|
|
var channelFlags lnwire.ChanUpdateChanFlags
|
|
if testChannel.Node1.Disabled {
|
|
channelFlags |= lnwire.ChanUpdateDisabled
|
|
}
|
|
if testChannel.Node1.Direction {
|
|
channelFlags |= lnwire.ChanUpdateDirection
|
|
}
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
MessageFlags: msgFlags,
|
|
ChannelFlags: channelFlags,
|
|
ChannelID: channelID,
|
|
LastUpdate: node1.LastUpdate,
|
|
TimeLockDelta: node1.Expiry,
|
|
MinHTLC: node1.MinHTLC,
|
|
MaxHTLC: node1.MaxHTLC,
|
|
FeeBaseMSat: node1.FeeBaseMsat,
|
|
FeeProportionalMillionths: node1.FeeRate,
|
|
}
|
|
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
if testChannel.Node2.testChannelPolicy != nil {
|
|
var msgFlags lnwire.ChanUpdateMsgFlags
|
|
if testChannel.Node2.MaxHTLC != 0 {
|
|
msgFlags |= lnwire.ChanUpdateOptionMaxHtlc
|
|
}
|
|
channelFlags := lnwire.ChanUpdateChanFlags(0)
|
|
if testChannel.Node2.Disabled {
|
|
channelFlags |= lnwire.ChanUpdateDisabled
|
|
}
|
|
if testChannel.Node2.Direction {
|
|
channelFlags |= lnwire.ChanUpdateDirection
|
|
}
|
|
edgePolicy := &channeldb.ChannelEdgePolicy{
|
|
SigBytes: testSig.Serialize(),
|
|
MessageFlags: msgFlags,
|
|
ChannelFlags: channelFlags,
|
|
ChannelID: channelID,
|
|
LastUpdate: node2.LastUpdate,
|
|
TimeLockDelta: node2.Expiry,
|
|
MinHTLC: node2.MinHTLC,
|
|
MaxHTLC: node2.MaxHTLC,
|
|
FeeBaseMSat: node2.FeeBaseMsat,
|
|
FeeProportionalMillionths: node2.FeeRate,
|
|
}
|
|
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
channelID++
|
|
}
|
|
|
|
return &testGraphInstance{
|
|
graph: graph,
|
|
cleanUp: cleanUp,
|
|
aliasMap: aliasMap,
|
|
privKeyMap: privKeyMap,
|
|
}, nil
|
|
}
|
|
|
|
// TestFindLowestFeePath tests that out of two routes with identical total
|
|
// time lock values, the route with the lowest total fee should be returned.
|
|
// The fee rates are chosen such that the test failed on the previous edge
|
|
// weight function where one of the terms was fee squared.
|
|
func TestFindLowestFeePath(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with two paths from roasbeef to target. Both
|
|
// paths have equal total time locks, but the path through b has lower
|
|
// fees (700 compared to 800 for the path through a).
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("roasbeef", "first", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000000,
|
|
}),
|
|
symmetricTestChannel("first", "a", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000000,
|
|
}),
|
|
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000000,
|
|
}),
|
|
symmetricTestChannel("first", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 100,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000000,
|
|
}),
|
|
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 600,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000000,
|
|
}),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
|
|
defer ctx.cleanup()
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.keyFromAlias("target")
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
route, err := newRoute(
|
|
paymentAmt, ctx.source, path, startingHeight,
|
|
finalHopCLTV, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create path: %v", err)
|
|
}
|
|
|
|
// Assert that the lowest fee route is returned.
|
|
if route.Hops[1].PubKeyBytes != ctx.keyFromAlias("b") {
|
|
t.Fatalf("expected route to pass through b, "+
|
|
"but got a route through %v",
|
|
ctx.aliasFromKey(route.Hops[1].PubKeyBytes))
|
|
}
|
|
}
|
|
|
|
func getAliasFromPubKey(pubKey route.Vertex,
|
|
aliases map[string]route.Vertex) string {
|
|
|
|
for alias, key := range aliases {
|
|
if key == pubKey {
|
|
return alias
|
|
}
|
|
}
|
|
return ""
|
|
}
|
|
|
|
type expectedHop struct {
|
|
alias string
|
|
fee lnwire.MilliSatoshi
|
|
fwdAmount lnwire.MilliSatoshi
|
|
timeLock uint32
|
|
}
|
|
|
|
type basicGraphPathFindingTestCase struct {
|
|
target string
|
|
paymentAmt btcutil.Amount
|
|
feeLimit lnwire.MilliSatoshi
|
|
expectedTotalAmt lnwire.MilliSatoshi
|
|
expectedTotalTimeLock uint32
|
|
expectedHops []expectedHop
|
|
expectFailureNoPath bool
|
|
}
|
|
|
|
var basicGraphPathFindingTests = []basicGraphPathFindingTestCase{
|
|
// Basic route with one intermediate hop.
|
|
{target: "sophon", paymentAmt: 100, feeLimit: noFeeLimit,
|
|
expectedTotalTimeLock: 102, expectedTotalAmt: 100110,
|
|
expectedHops: []expectedHop{
|
|
{alias: "songoku", fwdAmount: 100000, fee: 110, timeLock: 101},
|
|
{alias: "sophon", fwdAmount: 100000, fee: 0, timeLock: 101},
|
|
}},
|
|
|
|
// Basic direct (one hop) route.
|
|
{target: "luoji", paymentAmt: 100, feeLimit: noFeeLimit,
|
|
expectedTotalTimeLock: 101, expectedTotalAmt: 100000,
|
|
expectedHops: []expectedHop{
|
|
{alias: "luoji", fwdAmount: 100000, fee: 0, timeLock: 101},
|
|
}},
|
|
|
|
// Three hop route where fees need to be added in to the forwarding amount.
|
|
// The high fee hop phamnewun should be avoided.
|
|
{target: "elst", paymentAmt: 50000, feeLimit: noFeeLimit,
|
|
expectedTotalTimeLock: 103, expectedTotalAmt: 50050210,
|
|
expectedHops: []expectedHop{
|
|
{alias: "songoku", fwdAmount: 50000200, fee: 50010, timeLock: 102},
|
|
{alias: "sophon", fwdAmount: 50000000, fee: 200, timeLock: 101},
|
|
{alias: "elst", fwdAmount: 50000000, fee: 0, timeLock: 101},
|
|
}},
|
|
// Three hop route where fees need to be added in to the forwarding amount.
|
|
// However this time the fwdAmount becomes too large for the roasbeef <->
|
|
// songoku channel. Then there is no other option than to choose the
|
|
// expensive phamnuwen channel. This test case was failing before
|
|
// the route search was executed backwards.
|
|
{target: "elst", paymentAmt: 100000, feeLimit: noFeeLimit,
|
|
expectedTotalTimeLock: 103, expectedTotalAmt: 110010220,
|
|
expectedHops: []expectedHop{
|
|
{alias: "phamnuwen", fwdAmount: 100000200, fee: 10010020, timeLock: 102},
|
|
{alias: "sophon", fwdAmount: 100000000, fee: 200, timeLock: 101},
|
|
{alias: "elst", fwdAmount: 100000000, fee: 0, timeLock: 101},
|
|
}},
|
|
|
|
// Basic route with fee limit.
|
|
{target: "sophon", paymentAmt: 100, feeLimit: 50,
|
|
expectFailureNoPath: true,
|
|
}}
|
|
|
|
func TestBasicGraphPathFinding(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
testGraphInstance, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer testGraphInstance.cleanUp()
|
|
|
|
// With the test graph loaded, we'll test some basic path finding using
|
|
// the pre-generated graph. Consult the testdata/basic_graph.json file
|
|
// to follow along with the assumptions we'll use to test the path
|
|
// finding.
|
|
|
|
for _, testCase := range basicGraphPathFindingTests {
|
|
t.Run(testCase.target, func(subT *testing.T) {
|
|
testBasicGraphPathFindingCase(subT, testGraphInstance, &testCase)
|
|
})
|
|
}
|
|
}
|
|
|
|
func testBasicGraphPathFindingCase(t *testing.T, graphInstance *testGraphInstance,
|
|
test *basicGraphPathFindingTestCase) {
|
|
|
|
aliases := graphInstance.aliasMap
|
|
expectedHops := test.expectedHops
|
|
expectedHopCount := len(expectedHops)
|
|
|
|
sourceNode, err := graphInstance.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
sourceVertex := route.Vertex(sourceNode.PubKeyBytes)
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(test.paymentAmt)
|
|
target := graphInstance.aliasMap[test.target]
|
|
path, err := findPath(
|
|
&graphParams{
|
|
graph: graphInstance.graph,
|
|
},
|
|
&RestrictParams{
|
|
FeeLimit: test.feeLimit,
|
|
ProbabilitySource: noProbabilitySource,
|
|
CltvLimit: math.MaxUint32,
|
|
},
|
|
testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, paymentAmt,
|
|
)
|
|
if test.expectFailureNoPath {
|
|
if err == nil {
|
|
t.Fatal("expected no path to be found")
|
|
}
|
|
return
|
|
}
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
|
|
route, err := newRoute(
|
|
paymentAmt, sourceVertex, path, startingHeight,
|
|
finalHopCLTV, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create path: %v", err)
|
|
}
|
|
|
|
if len(route.Hops) != len(expectedHops) {
|
|
t.Fatalf("route is of incorrect length, expected %v got %v",
|
|
expectedHopCount, len(route.Hops))
|
|
}
|
|
|
|
// Check hop nodes
|
|
for i := 0; i < len(expectedHops); i++ {
|
|
if route.Hops[i].PubKeyBytes != aliases[expectedHops[i].alias] {
|
|
|
|
t.Fatalf("%v-th hop should be %v, is instead: %v",
|
|
i, expectedHops[i],
|
|
getAliasFromPubKey(route.Hops[i].PubKeyBytes,
|
|
aliases))
|
|
}
|
|
}
|
|
|
|
// Next, we'll assert that the "next hop" field in each route payload
|
|
// properly points to the channel ID that the HTLC should be forwarded
|
|
// along.
|
|
sphinxPath, err := route.ToSphinxPath()
|
|
if err != nil {
|
|
t.Fatalf("unable to make sphinx path: %v", err)
|
|
}
|
|
if sphinxPath.TrueRouteLength() != expectedHopCount {
|
|
t.Fatalf("incorrect number of hop payloads: expected %v, got %v",
|
|
expectedHopCount, sphinxPath.TrueRouteLength())
|
|
}
|
|
|
|
// Hops should point to the next hop
|
|
for i := 0; i < len(expectedHops)-1; i++ {
|
|
var expectedHop [8]byte
|
|
binary.BigEndian.PutUint64(expectedHop[:], route.Hops[i+1].ChannelID)
|
|
|
|
hopData, err := sphinxPath[i].HopPayload.HopData()
|
|
if err != nil {
|
|
t.Fatalf("unable to make hop data: %v", err)
|
|
}
|
|
|
|
if !bytes.Equal(hopData.NextAddress[:], expectedHop[:]) {
|
|
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
|
|
expectedHop[:], hopData.NextAddress[:])
|
|
}
|
|
}
|
|
|
|
// The final hop should have a next hop value of all zeroes in order
|
|
// to indicate it's the exit hop.
|
|
var exitHop [8]byte
|
|
lastHopIndex := len(expectedHops) - 1
|
|
|
|
hopData, err := sphinxPath[lastHopIndex].HopPayload.HopData()
|
|
if err != nil {
|
|
t.Fatalf("unable to create hop data: %v", err)
|
|
}
|
|
|
|
if !bytes.Equal(hopData.NextAddress[:], exitHop[:]) {
|
|
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
|
|
exitHop[:], hopData.NextAddress)
|
|
}
|
|
|
|
var expectedTotalFee lnwire.MilliSatoshi
|
|
for i := 0; i < expectedHopCount; i++ {
|
|
// We'll ensure that the amount to forward, and fees
|
|
// computed for each hop are correct.
|
|
|
|
fee := route.HopFee(i)
|
|
if fee != expectedHops[i].fee {
|
|
t.Fatalf("fee incorrect for hop %v: expected %v, got %v",
|
|
i, expectedHops[i].fee, fee)
|
|
}
|
|
|
|
if route.Hops[i].AmtToForward != expectedHops[i].fwdAmount {
|
|
t.Fatalf("forwarding amount for hop %v incorrect: "+
|
|
"expected %v, got %v",
|
|
i, expectedHops[i].fwdAmount,
|
|
route.Hops[i].AmtToForward)
|
|
}
|
|
|
|
// We'll also assert that the outgoing CLTV value for each
|
|
// hop was set accordingly.
|
|
if route.Hops[i].OutgoingTimeLock != expectedHops[i].timeLock {
|
|
t.Fatalf("outgoing time-lock for hop %v is incorrect: "+
|
|
"expected %v, got %v", i,
|
|
expectedHops[i].timeLock,
|
|
route.Hops[i].OutgoingTimeLock)
|
|
}
|
|
|
|
expectedTotalFee += expectedHops[i].fee
|
|
}
|
|
|
|
if route.TotalAmount != test.expectedTotalAmt {
|
|
t.Fatalf("total amount incorrect: "+
|
|
"expected %v, got %v",
|
|
test.expectedTotalAmt, route.TotalAmount)
|
|
}
|
|
|
|
if route.TotalTimeLock != test.expectedTotalTimeLock {
|
|
t.Fatalf("expected time lock of %v, instead have %v", 2,
|
|
route.TotalTimeLock)
|
|
}
|
|
}
|
|
|
|
func TestPathFindingWithAdditionalEdges(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
|
|
// In this test, we'll test that we're able to find paths through
|
|
// private channels when providing them as additional edges in our path
|
|
// finding algorithm. To do so, we'll create a new node, doge, and
|
|
// create a private channel between it and songoku. We'll then attempt
|
|
// to find a path from our source node, roasbeef, to doge.
|
|
dogePubKeyHex := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
|
|
dogePubKeyBytes, err := hex.DecodeString(dogePubKeyHex)
|
|
if err != nil {
|
|
t.Fatalf("unable to decode public key: %v", err)
|
|
}
|
|
dogePubKey, err := btcec.ParsePubKey(dogePubKeyBytes, btcec.S256())
|
|
if err != nil {
|
|
t.Fatalf("unable to parse public key from bytes: %v", err)
|
|
}
|
|
|
|
doge := &channeldb.LightningNode{}
|
|
doge.AddPubKey(dogePubKey)
|
|
doge.Alias = "doge"
|
|
copy(doge.PubKeyBytes[:], dogePubKeyBytes)
|
|
graph.aliasMap["doge"] = doge.PubKeyBytes
|
|
|
|
// Create the channel edge going from songoku to doge and include it in
|
|
// our map of additional edges.
|
|
songokuToDoge := &channeldb.ChannelEdgePolicy{
|
|
Node: doge,
|
|
ChannelID: 1337,
|
|
FeeBaseMSat: 1,
|
|
FeeProportionalMillionths: 1000,
|
|
TimeLockDelta: 9,
|
|
}
|
|
|
|
additionalEdges := map[route.Vertex][]*channeldb.ChannelEdgePolicy{
|
|
graph.aliasMap["songoku"]: {songokuToDoge},
|
|
}
|
|
|
|
// We should now be able to find a path from roasbeef to doge.
|
|
path, err := findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
additionalEdges: additionalEdges,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, doge.PubKeyBytes, paymentAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find private path to doge: %v", err)
|
|
}
|
|
|
|
// The path should represent the following hops:
|
|
// roasbeef -> songoku -> doge
|
|
assertExpectedPath(t, graph.aliasMap, path, "songoku", "doge")
|
|
}
|
|
|
|
// TestNewRoute tests whether the construction of hop payloads by newRoute
|
|
// is executed correctly.
|
|
func TestNewRoute(t *testing.T) {
|
|
|
|
var sourceKey [33]byte
|
|
sourceVertex := route.Vertex(sourceKey)
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
|
|
createHop := func(baseFee lnwire.MilliSatoshi,
|
|
feeRate lnwire.MilliSatoshi,
|
|
bandwidth lnwire.MilliSatoshi,
|
|
timeLockDelta uint16) *channeldb.ChannelEdgePolicy {
|
|
|
|
return &channeldb.ChannelEdgePolicy{
|
|
Node: &channeldb.LightningNode{
|
|
Features: lnwire.NewFeatureVector(
|
|
nil, nil,
|
|
),
|
|
},
|
|
FeeProportionalMillionths: feeRate,
|
|
FeeBaseMSat: baseFee,
|
|
TimeLockDelta: timeLockDelta,
|
|
}
|
|
}
|
|
|
|
testCases := []struct {
|
|
// name identifies the test case in the test output.
|
|
name string
|
|
|
|
// hops is the list of hops (the route) that gets passed into
|
|
// the call to newRoute.
|
|
hops []*channeldb.ChannelEdgePolicy
|
|
|
|
// paymentAmount is the amount that is send into the route
|
|
// indicated by hops.
|
|
paymentAmount lnwire.MilliSatoshi
|
|
|
|
// expectedFees is a list of fees that every hop is expected
|
|
// to charge for forwarding.
|
|
expectedFees []lnwire.MilliSatoshi
|
|
|
|
// expectedTimeLocks is a list of time lock values that every
|
|
// hop is expected to specify in its outgoing HTLC. The time
|
|
// lock values in this list are relative to the current block
|
|
// height.
|
|
expectedTimeLocks []uint32
|
|
|
|
// expectedTotalAmount is the total amount that is expected to
|
|
// be returned from newRoute. This amount should include all
|
|
// the fees to be paid to intermediate hops.
|
|
expectedTotalAmount lnwire.MilliSatoshi
|
|
|
|
// expectedTotalTimeLock is the time lock that is expected to
|
|
// be returned from newRoute. This is the time lock that should
|
|
// be specified in the HTLC that is sent by the source node.
|
|
// expectedTotalTimeLock is relative to the current block height.
|
|
expectedTotalTimeLock uint32
|
|
|
|
// expectError indicates whether the newRoute call is expected
|
|
// to fail or succeed.
|
|
expectError bool
|
|
|
|
// expectedErrorCode indicates the expected error code when
|
|
// expectError is true.
|
|
expectedErrorCode errorCode
|
|
}{
|
|
{
|
|
// For a single hop payment, no fees are expected to be paid.
|
|
name: "single hop",
|
|
paymentAmount: 100000,
|
|
hops: []*channeldb.ChannelEdgePolicy{
|
|
createHop(100, 1000, 1000000, 10),
|
|
},
|
|
expectedFees: []lnwire.MilliSatoshi{0},
|
|
expectedTimeLocks: []uint32{1},
|
|
expectedTotalAmount: 100000,
|
|
expectedTotalTimeLock: 1,
|
|
}, {
|
|
// For a two hop payment, only the fee for the first hop
|
|
// needs to be paid. The destination hop does not require
|
|
// a fee to receive the payment.
|
|
name: "two hop",
|
|
paymentAmount: 100000,
|
|
hops: []*channeldb.ChannelEdgePolicy{
|
|
createHop(0, 1000, 1000000, 10),
|
|
createHop(30, 1000, 1000000, 5),
|
|
},
|
|
expectedFees: []lnwire.MilliSatoshi{130, 0},
|
|
expectedTimeLocks: []uint32{1, 1},
|
|
expectedTotalAmount: 100130,
|
|
expectedTotalTimeLock: 6,
|
|
}, {
|
|
// A three hop payment where the first and second hop
|
|
// will both charge 1 msat. The fee for the first hop
|
|
// is actually slightly higher than 1, because the amount
|
|
// to forward also includes the fee for the second hop. This
|
|
// gets rounded down to 1.
|
|
name: "three hop",
|
|
paymentAmount: 100000,
|
|
hops: []*channeldb.ChannelEdgePolicy{
|
|
createHop(0, 10, 1000000, 10),
|
|
createHop(0, 10, 1000000, 5),
|
|
createHop(0, 10, 1000000, 3),
|
|
},
|
|
expectedFees: []lnwire.MilliSatoshi{1, 1, 0},
|
|
expectedTotalAmount: 100002,
|
|
expectedTimeLocks: []uint32{4, 1, 1},
|
|
expectedTotalTimeLock: 9,
|
|
}, {
|
|
// A three hop payment where the fee of the first hop
|
|
// is slightly higher (11) than the fee at the second hop,
|
|
// because of the increase amount to forward.
|
|
name: "three hop with fee carry over",
|
|
paymentAmount: 100000,
|
|
hops: []*channeldb.ChannelEdgePolicy{
|
|
createHop(0, 10000, 1000000, 10),
|
|
createHop(0, 10000, 1000000, 5),
|
|
createHop(0, 10000, 1000000, 3),
|
|
},
|
|
expectedFees: []lnwire.MilliSatoshi{1010, 1000, 0},
|
|
expectedTotalAmount: 102010,
|
|
expectedTimeLocks: []uint32{4, 1, 1},
|
|
expectedTotalTimeLock: 9,
|
|
}, {
|
|
// A three hop payment where the fee policies of the first and
|
|
// second hop are just high enough to show the fee carry over
|
|
// effect.
|
|
name: "three hop with minimal fees for carry over",
|
|
paymentAmount: 100000,
|
|
hops: []*channeldb.ChannelEdgePolicy{
|
|
createHop(0, 10000, 1000000, 10),
|
|
|
|
// First hop charges 0.1% so the second hop fee
|
|
// should show up in the first hop fee as 1 msat
|
|
// extra.
|
|
createHop(0, 1000, 1000000, 5),
|
|
|
|
// Second hop charges a fixed 1000 msat.
|
|
createHop(1000, 0, 1000000, 3),
|
|
},
|
|
expectedFees: []lnwire.MilliSatoshi{101, 1000, 0},
|
|
expectedTotalAmount: 101101,
|
|
expectedTimeLocks: []uint32{4, 1, 1},
|
|
expectedTotalTimeLock: 9,
|
|
}}
|
|
|
|
for _, testCase := range testCases {
|
|
assertRoute := func(t *testing.T, route *route.Route) {
|
|
if route.TotalAmount != testCase.expectedTotalAmount {
|
|
t.Errorf("Expected total amount is be %v"+
|
|
", but got %v instead",
|
|
testCase.expectedTotalAmount,
|
|
route.TotalAmount)
|
|
}
|
|
|
|
for i := 0; i < len(testCase.expectedFees); i++ {
|
|
fee := route.HopFee(i)
|
|
if testCase.expectedFees[i] != fee {
|
|
|
|
t.Errorf("Expected fee for hop %v to "+
|
|
"be %v, but got %v instead",
|
|
i, testCase.expectedFees[i],
|
|
fee)
|
|
}
|
|
}
|
|
|
|
expectedTimeLockHeight := startingHeight +
|
|
testCase.expectedTotalTimeLock
|
|
|
|
if route.TotalTimeLock != expectedTimeLockHeight {
|
|
|
|
t.Errorf("Expected total time lock to be %v"+
|
|
", but got %v instead",
|
|
expectedTimeLockHeight,
|
|
route.TotalTimeLock)
|
|
}
|
|
|
|
for i := 0; i < len(testCase.expectedTimeLocks); i++ {
|
|
expectedTimeLockHeight := startingHeight +
|
|
testCase.expectedTimeLocks[i]
|
|
|
|
if expectedTimeLockHeight !=
|
|
route.Hops[i].OutgoingTimeLock {
|
|
|
|
t.Errorf("Expected time lock for hop "+
|
|
"%v to be %v, but got %v instead",
|
|
i, expectedTimeLockHeight,
|
|
route.Hops[i].OutgoingTimeLock)
|
|
}
|
|
}
|
|
}
|
|
|
|
t.Run(testCase.name, func(t *testing.T) {
|
|
route, err := newRoute(
|
|
testCase.paymentAmount, sourceVertex,
|
|
testCase.hops, startingHeight, finalHopCLTV,
|
|
nil,
|
|
)
|
|
|
|
if testCase.expectError {
|
|
expectedCode := testCase.expectedErrorCode
|
|
if err == nil || !IsError(err, expectedCode) {
|
|
t.Fatalf("expected newRoute to fail "+
|
|
"with error code %v but got "+
|
|
"%v instead",
|
|
expectedCode, err)
|
|
}
|
|
} else {
|
|
if err != nil {
|
|
t.Errorf("unable to create path: %v", err)
|
|
return
|
|
}
|
|
|
|
assertRoute(t, route)
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestNewRoutePathTooLong(t *testing.T) {
|
|
t.Skip()
|
|
|
|
// Ensure that potential paths which are over the maximum hop-limit are
|
|
// rejected.
|
|
graph, err := parseTestGraph(excessiveHopsGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
|
|
// We start by confirming that routing a payment 20 hops away is
|
|
// possible. Alice should be able to find a valid route to ursula.
|
|
target := graph.aliasMap["ursula"]
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, paymentAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("path should have been found")
|
|
}
|
|
|
|
// Vincent is 21 hops away from Alice, and thus no valid route should be
|
|
// presented to Alice.
|
|
target = graph.aliasMap["vincent"]
|
|
path, err := findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, paymentAmt,
|
|
)
|
|
if err == nil {
|
|
t.Fatalf("should not have been able to find path, supposed to be "+
|
|
"greater than 20 hops, found route with %v hops",
|
|
len(path))
|
|
}
|
|
|
|
}
|
|
|
|
func TestPathNotAvailable(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
// With the test graph loaded, we'll test that queries for target that
|
|
// are either unreachable within the graph, or unknown result in an
|
|
// error.
|
|
unknownNodeStr := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
|
|
unknownNodeBytes, err := hex.DecodeString(unknownNodeStr)
|
|
if err != nil {
|
|
t.Fatalf("unable to parse bytes: %v", err)
|
|
}
|
|
var unknownNode route.Vertex
|
|
copy(unknownNode[:], unknownNodeBytes)
|
|
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, unknownNode, 100,
|
|
)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("path shouldn't have been found: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestPathInsufficientCapacity(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
// Next, test that attempting to find a path in which the current
|
|
// channel graph cannot support due to insufficient capacity triggers
|
|
// an error.
|
|
|
|
// To test his we'll attempt to make a payment of 1 BTC, or 100 million
|
|
// satoshis. The largest channel in the basic graph is of size 100k
|
|
// satoshis, so we shouldn't be able to find a path to sophon even
|
|
// though we have a 2-hop link.
|
|
target := graph.aliasMap["sophon"]
|
|
|
|
payAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("graph shouldn't be able to support payment: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestRouteFailMinHTLC tests that if we attempt to route an HTLC which is
|
|
// smaller than the advertised minHTLC of an edge, then path finding fails.
|
|
func TestRouteFailMinHTLC(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
// We'll not attempt to route an HTLC of 10 SAT from roasbeef to Son
|
|
// Goku. However, the min HTLC of Son Goku is 1k SAT, as a result, this
|
|
// attempt should fail.
|
|
target := graph.aliasMap["songoku"]
|
|
payAmt := lnwire.MilliSatoshi(10)
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("graph shouldn't be able to support payment: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestRouteFailMaxHTLC tests that if we attempt to route an HTLC which is
|
|
// larger than the advertised max HTLC of an edge, then path finding fails.
|
|
func TestRouteFailMaxHTLC(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph:
|
|
// roasbeef <--> firstHop <--> secondHop <--> target
|
|
// We will be adjusting the max HTLC of the edge between the first and
|
|
// second hops.
|
|
var firstToSecondID uint64 = 1
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("roasbeef", "first", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000001,
|
|
}),
|
|
symmetricTestChannel("first", "second", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000002,
|
|
}, firstToSecondID),
|
|
symmetricTestChannel("second", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
MinHTLC: 1,
|
|
MaxHTLC: 100000003,
|
|
}),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
|
|
defer ctx.cleanup()
|
|
|
|
// First, attempt to send a payment greater than the max HTLC we are
|
|
// about to set, which should succeed.
|
|
target := ctx.keyFromAlias("target")
|
|
payAmt := lnwire.MilliSatoshi(100001)
|
|
_, err := ctx.findPath(target, payAmt)
|
|
if err != nil {
|
|
t.Fatalf("graph should've been able to support payment: %v", err)
|
|
}
|
|
|
|
// Next, update the middle edge policy to only allow payments up to 100k
|
|
// msat.
|
|
graph := ctx.testGraphInstance.graph
|
|
_, midEdge, _, err := graph.FetchChannelEdgesByID(firstToSecondID)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch channel edges by ID: %v", err)
|
|
}
|
|
midEdge.MessageFlags = 1
|
|
midEdge.MaxHTLC = payAmt - 1
|
|
if err := graph.UpdateEdgePolicy(midEdge); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
|
|
// We'll now attempt to route through that edge with a payment above
|
|
// 100k msat, which should fail.
|
|
_, err = ctx.findPath(target, payAmt)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("graph shouldn't be able to support payment: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestRouteFailDisabledEdge tests that if we attempt to route to an edge
|
|
// that's disabled, then that edge is disqualified, and the routing attempt
|
|
// will fail. We also test that this is true only for non-local edges, as we'll
|
|
// ignore the disable flags, with the assumption that the correct bandwidth is
|
|
// found among the bandwidth hints.
|
|
func TestRouteFailDisabledEdge(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
// First, we'll try to route from roasbeef -> sophon. This should
|
|
// succeed without issue, and return a single path via phamnuwen
|
|
target := graph.aliasMap["sophon"]
|
|
payAmt := lnwire.NewMSatFromSatoshis(105000)
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
|
|
// Disable the edge roasbeef->phamnuwen. This should not impact the
|
|
// path finding, as we don't consider the disable flag for local
|
|
// channels (and roasbeef is the source).
|
|
roasToPham := uint64(999991)
|
|
_, e1, e2, err := graph.graph.FetchChannelEdgesByID(roasToPham)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch edge: %v", err)
|
|
}
|
|
e1.ChannelFlags |= lnwire.ChanUpdateDisabled
|
|
if err := graph.graph.UpdateEdgePolicy(e1); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
e2.ChannelFlags |= lnwire.ChanUpdateDisabled
|
|
if err := graph.graph.UpdateEdgePolicy(e2); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
|
|
// Now, we'll modify the edge from phamnuwen -> sophon, to read that
|
|
// it's disabled.
|
|
phamToSophon := uint64(99999)
|
|
_, e, _, err := graph.graph.FetchChannelEdgesByID(phamToSophon)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch edge: %v", err)
|
|
}
|
|
e.ChannelFlags |= lnwire.ChanUpdateDisabled
|
|
if err := graph.graph.UpdateEdgePolicy(e); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
|
|
// If we attempt to route through that edge, we should get a failure as
|
|
// it is no longer eligible.
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("graph shouldn't be able to support payment: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestPathSourceEdgesBandwidth tests that explicitly passing in a set of
|
|
// bandwidth hints is used by the path finding algorithm to consider whether to
|
|
// use a local channel.
|
|
func TestPathSourceEdgesBandwidth(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
graph, err := parseTestGraph(basicGraphFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
defer graph.cleanUp()
|
|
|
|
sourceNode, err := graph.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
// First, we'll try to route from roasbeef -> sophon. This should
|
|
// succeed without issue, and return a path via songoku, as that's the
|
|
// cheapest path.
|
|
target := graph.aliasMap["sophon"]
|
|
payAmt := lnwire.NewMSatFromSatoshis(50000)
|
|
path, err := findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
assertExpectedPath(t, graph.aliasMap, path, "songoku", "sophon")
|
|
|
|
// Now we'll set the bandwidth of the edge roasbeef->songoku and
|
|
// roasbeef->phamnuwen to 0.
|
|
roasToSongoku := uint64(12345)
|
|
roasToPham := uint64(999991)
|
|
bandwidths := map[uint64]lnwire.MilliSatoshi{
|
|
roasToSongoku: 0,
|
|
roasToPham: 0,
|
|
}
|
|
|
|
// Since both these edges has a bandwidth of zero, no path should be
|
|
// found.
|
|
_, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
bandwidthHints: bandwidths,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != errNoPathFound {
|
|
t.Fatalf("graph shouldn't be able to support payment: %v", err)
|
|
}
|
|
|
|
// Set the bandwidth of roasbeef->phamnuwen high enough to carry the
|
|
// payment.
|
|
bandwidths[roasToPham] = 2 * payAmt
|
|
|
|
// Now, if we attempt to route again, we should find the path via
|
|
// phamnuven, as the other source edge won't be considered.
|
|
path, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
bandwidthHints: bandwidths,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
assertExpectedPath(t, graph.aliasMap, path, "phamnuwen", "sophon")
|
|
|
|
// Finally, set the roasbeef->songoku bandwidth, but also set its
|
|
// disable flag.
|
|
bandwidths[roasToSongoku] = 2 * payAmt
|
|
_, e1, e2, err := graph.graph.FetchChannelEdgesByID(roasToSongoku)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch edge: %v", err)
|
|
}
|
|
e1.ChannelFlags |= lnwire.ChanUpdateDisabled
|
|
if err := graph.graph.UpdateEdgePolicy(e1); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
e2.ChannelFlags |= lnwire.ChanUpdateDisabled
|
|
if err := graph.graph.UpdateEdgePolicy(e2); err != nil {
|
|
t.Fatalf("unable to update edge: %v", err)
|
|
}
|
|
|
|
// Since we ignore disable flags for local channels, a path should
|
|
// still be found.
|
|
path, err = findPath(
|
|
&graphParams{
|
|
graph: graph.graph,
|
|
bandwidthHints: bandwidths,
|
|
},
|
|
noRestrictions, testPathFindingConfig,
|
|
sourceNode.PubKeyBytes, target, payAmt,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
assertExpectedPath(t, graph.aliasMap, path, "songoku", "sophon")
|
|
}
|
|
|
|
func TestPathInsufficientCapacityWithFee(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// TODO(roasbeef): encode live graph to json
|
|
|
|
// TODO(roasbeef): need to add a case, or modify the fee ratio for one
|
|
// to ensure that has going forward, but when fees are applied doesn't
|
|
// work
|
|
}
|
|
|
|
func TestPathFindSpecExample(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// All our path finding tests will assume a starting height of 100, so
|
|
// we'll pass that in to ensure that the router uses 100 as the current
|
|
// height.
|
|
const startingHeight = 100
|
|
ctx, cleanUp, err := createTestCtxFromFile(startingHeight, specExampleFilePath)
|
|
if err != nil {
|
|
t.Fatalf("unable to create router: %v", err)
|
|
}
|
|
defer cleanUp()
|
|
|
|
// We'll first exercise the scenario of a direct payment from Bob to
|
|
// Carol, so we set "B" as the source node so path finding starts from
|
|
// Bob.
|
|
bob := ctx.aliases["B"]
|
|
bobKey, err := btcec.ParsePubKey(bob[:], btcec.S256())
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
bobNode, err := ctx.graph.FetchLightningNode(bobKey)
|
|
if err != nil {
|
|
t.Fatalf("unable to find bob: %v", err)
|
|
}
|
|
if err := ctx.graph.SetSourceNode(bobNode); err != nil {
|
|
t.Fatalf("unable to set source node: %v", err)
|
|
}
|
|
|
|
// Query for a route of 4,999,999 mSAT to carol.
|
|
carol := ctx.aliases["C"]
|
|
const amt lnwire.MilliSatoshi = 4999999
|
|
route, err := ctx.router.FindRoute(
|
|
bobNode.PubKeyBytes, carol, amt, noRestrictions, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find route: %v", err)
|
|
}
|
|
|
|
// Now we'll examine the route returned for correctness.
|
|
//
|
|
// It should be sending the exact payment amount as there are no
|
|
// additional hops.
|
|
if route.TotalAmount != amt {
|
|
t.Fatalf("wrong total amount: got %v, expected %v",
|
|
route.TotalAmount, amt)
|
|
}
|
|
if route.Hops[0].AmtToForward != amt {
|
|
t.Fatalf("wrong forward amount: got %v, expected %v",
|
|
route.Hops[0].AmtToForward, amt)
|
|
}
|
|
|
|
fee := route.HopFee(0)
|
|
if fee != 0 {
|
|
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 0)
|
|
}
|
|
|
|
// The CLTV expiry should be the current height plus 9 (the expiry for
|
|
// the B -> C channel.
|
|
if route.TotalTimeLock !=
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta {
|
|
|
|
t.Fatalf("wrong total time lock: got %v, expecting %v",
|
|
route.TotalTimeLock,
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta)
|
|
}
|
|
|
|
// Next, we'll set A as the source node so we can assert that we create
|
|
// the proper route for any queries starting with Alice.
|
|
alice := ctx.aliases["A"]
|
|
aliceKey, err := btcec.ParsePubKey(alice[:], btcec.S256())
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
aliceNode, err := ctx.graph.FetchLightningNode(aliceKey)
|
|
if err != nil {
|
|
t.Fatalf("unable to find alice: %v", err)
|
|
}
|
|
if err := ctx.graph.SetSourceNode(aliceNode); err != nil {
|
|
t.Fatalf("unable to set source node: %v", err)
|
|
}
|
|
ctx.router.selfNode = aliceNode
|
|
source, err := ctx.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve source node: %v", err)
|
|
}
|
|
if source.PubKeyBytes != alice {
|
|
t.Fatalf("source node not set")
|
|
}
|
|
|
|
// We'll now request a route from A -> B -> C.
|
|
route, err = ctx.router.FindRoute(
|
|
source.PubKeyBytes, carol, amt, noRestrictions, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to find routes: %v", err)
|
|
}
|
|
|
|
// The route should be two hops.
|
|
if len(route.Hops) != 2 {
|
|
t.Fatalf("route should be %v hops, is instead %v", 2,
|
|
len(route.Hops))
|
|
}
|
|
|
|
// The total amount should factor in a fee of 10199 and also use a CLTV
|
|
// delta total of 29 (20 + 9),
|
|
expectedAmt := lnwire.MilliSatoshi(5010198)
|
|
if route.TotalAmount != expectedAmt {
|
|
t.Fatalf("wrong amount: got %v, expected %v",
|
|
route.TotalAmount, expectedAmt)
|
|
}
|
|
if route.TotalTimeLock != startingHeight+29 {
|
|
t.Fatalf("wrong total time lock: got %v, expecting %v",
|
|
route.TotalTimeLock, startingHeight+29)
|
|
}
|
|
|
|
// Ensure that the hops of the route are properly crafted.
|
|
//
|
|
// After taking the fee, Bob should be forwarding the remainder which
|
|
// is the exact payment to Bob.
|
|
if route.Hops[0].AmtToForward != amt {
|
|
t.Fatalf("wrong forward amount: got %v, expected %v",
|
|
route.Hops[0].AmtToForward, amt)
|
|
}
|
|
|
|
// We shouldn't pay any fee for the first, hop, but the fee for the
|
|
// second hop posted fee should be exactly:
|
|
|
|
// The fee that we pay for the second hop will be "applied to the first
|
|
// hop, so we should get a fee of exactly:
|
|
//
|
|
// * 200 + 4999999 * 2000 / 1000000 = 10199
|
|
|
|
fee = route.HopFee(0)
|
|
if fee != 10199 {
|
|
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 10199)
|
|
}
|
|
|
|
// While for the final hop, as there's no additional hop afterwards, we
|
|
// pay no fee.
|
|
fee = route.HopFee(1)
|
|
if fee != 0 {
|
|
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 0)
|
|
}
|
|
|
|
// The outgoing CLTV value itself should be the current height plus 30
|
|
// to meet Carol's requirements.
|
|
if route.Hops[0].OutgoingTimeLock !=
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta {
|
|
|
|
t.Fatalf("wrong total time lock: got %v, expecting %v",
|
|
route.Hops[0].OutgoingTimeLock,
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta)
|
|
}
|
|
|
|
// For B -> C, we assert that the final hop also has the proper
|
|
// parameters.
|
|
lastHop := route.Hops[1]
|
|
if lastHop.AmtToForward != amt {
|
|
t.Fatalf("wrong forward amount: got %v, expected %v",
|
|
lastHop.AmtToForward, amt)
|
|
}
|
|
if lastHop.OutgoingTimeLock !=
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta {
|
|
|
|
t.Fatalf("wrong total time lock: got %v, expecting %v",
|
|
lastHop.OutgoingTimeLock,
|
|
startingHeight+zpay32.DefaultFinalCLTVDelta)
|
|
}
|
|
}
|
|
|
|
func assertExpectedPath(t *testing.T, aliasMap map[string]route.Vertex,
|
|
path []*channeldb.ChannelEdgePolicy, nodeAliases ...string) {
|
|
|
|
if len(path) != len(nodeAliases) {
|
|
t.Fatal("number of hops and number of aliases do not match")
|
|
}
|
|
|
|
for i, hop := range path {
|
|
if hop.Node.PubKeyBytes != aliasMap[nodeAliases[i]] {
|
|
t.Fatalf("expected %v to be pos #%v in hop, instead "+
|
|
"%v was", nodeAliases[i], i, hop.Node.Alias)
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestNewRouteFromEmptyHops tests that the NewRouteFromHops function returns an
|
|
// error when the hop list is empty.
|
|
func TestNewRouteFromEmptyHops(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
var source route.Vertex
|
|
_, err := route.NewRouteFromHops(0, 0, source, []*route.Hop{})
|
|
if err != route.ErrNoRouteHopsProvided {
|
|
t.Fatalf("expected empty hops error: instead got: %v", err)
|
|
}
|
|
}
|
|
|
|
// TestRestrictOutgoingChannel asserts that a outgoing channel restriction is
|
|
// obeyed by the path finding algorithm.
|
|
func TestRestrictOutgoingChannel(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with three possible paths from roasbeef to
|
|
// target. The path through channel 2 is the highest cost path.
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("roasbeef", "a", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 1),
|
|
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
}, 4),
|
|
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 2),
|
|
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 3),
|
|
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 800,
|
|
}, 5),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
|
|
defer ctx.cleanup()
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.keyFromAlias("target")
|
|
outgoingChannelID := uint64(2)
|
|
|
|
// Find the best path given the restriction to only use channel 2 as the
|
|
// outgoing channel.
|
|
ctx.restrictParams.OutgoingChannelID = &outgoingChannelID
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
route, err := newRoute(
|
|
paymentAmt, ctx.source, path, startingHeight,
|
|
finalHopCLTV, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create path: %v", err)
|
|
}
|
|
|
|
// Assert that the route starts with channel 2, in line with the
|
|
// specified restriction.
|
|
if route.Hops[0].ChannelID != 2 {
|
|
t.Fatalf("expected route to pass through channel 2, "+
|
|
"but channel %v was selected instead", route.Hops[0].ChannelID)
|
|
}
|
|
}
|
|
|
|
// TestRestrictLastHop asserts that a last hop restriction is obeyed by the path
|
|
// finding algorithm.
|
|
func TestRestrictLastHop(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with three possible paths from roasbeef to
|
|
// target. The path via channel 1 and 2 is the lowest cost path.
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 1),
|
|
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 400,
|
|
}, 2),
|
|
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 3),
|
|
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeRate: 800,
|
|
}, 4),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "source")
|
|
defer ctx.cleanup()
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.keyFromAlias("target")
|
|
lastHop := ctx.keyFromAlias("b")
|
|
|
|
// Find the best path given the restriction to use b as the last hop.
|
|
// This should force pathfinding to not take the lowest cost option.
|
|
ctx.restrictParams.LastHop = &lastHop
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
if path[0].ChannelID != 3 {
|
|
t.Fatalf("expected route to pass through channel 3, "+
|
|
"but channel %v was selected instead",
|
|
path[0].ChannelID)
|
|
}
|
|
}
|
|
|
|
// TestCltvLimit asserts that a cltv limit is obeyed by the path finding
|
|
// algorithm.
|
|
func TestCltvLimit(t *testing.T) {
|
|
t.Run("no limit", func(t *testing.T) { testCltvLimit(t, 2016, 1) })
|
|
t.Run("no path", func(t *testing.T) { testCltvLimit(t, 50, 0) })
|
|
t.Run("force high cost", func(t *testing.T) { testCltvLimit(t, 80, 3) })
|
|
}
|
|
|
|
func testCltvLimit(t *testing.T, limit uint32, expectedChannel uint64) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with three possible paths to the target. The path
|
|
// through a is the lowest cost with a high time lock (144). The path
|
|
// through b has a higher cost but a lower time lock (100). That path
|
|
// through c and d (two hops) has the same case as the path through b,
|
|
// but the total time lock is lower (60).
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("roasbeef", "a", 100000, &testChannelPolicy{}, 1),
|
|
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 10000,
|
|
MinHTLC: 1,
|
|
}),
|
|
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{}, 2),
|
|
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
|
|
Expiry: 100,
|
|
FeeBaseMsat: 20000,
|
|
MinHTLC: 1,
|
|
}),
|
|
symmetricTestChannel("roasbeef", "c", 100000, &testChannelPolicy{}, 3),
|
|
symmetricTestChannel("c", "d", 100000, &testChannelPolicy{
|
|
Expiry: 30,
|
|
FeeBaseMsat: 10000,
|
|
MinHTLC: 1,
|
|
}),
|
|
symmetricTestChannel("d", "target", 100000, &testChannelPolicy{
|
|
Expiry: 30,
|
|
FeeBaseMsat: 10000,
|
|
MinHTLC: 1,
|
|
}),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
|
|
defer ctx.cleanup()
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.keyFromAlias("target")
|
|
|
|
ctx.restrictParams.CltvLimit = limit
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if expectedChannel == 0 {
|
|
// Finish test if we expect no route.
|
|
if err == errNoPathFound {
|
|
return
|
|
}
|
|
t.Fatal("expected no path to be found")
|
|
}
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
route, err := newRoute(
|
|
paymentAmt, ctx.source, path, startingHeight, finalHopCLTV,
|
|
nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create path: %v", err)
|
|
}
|
|
|
|
// Assert that the route starts with the expected channel.
|
|
if route.Hops[0].ChannelID != expectedChannel {
|
|
t.Fatalf("expected route to pass through channel %v, "+
|
|
"but channel %v was selected instead", expectedChannel,
|
|
route.Hops[0].ChannelID)
|
|
}
|
|
}
|
|
|
|
// TestProbabilityRouting asserts that path finding not only takes into account
|
|
// fees but also success probability.
|
|
func TestProbabilityRouting(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
testCases := []struct {
|
|
name string
|
|
p10, p11, p20 float64
|
|
minProbability float64
|
|
expectedChan uint64
|
|
}{
|
|
// Test two variations with probabilities that should multiply
|
|
// to the same total route probability. In both cases the three
|
|
// hop route should be the best route. The three hop route has a
|
|
// probability of 0.5 * 0.8 = 0.4. The fee is 5 (chan 10) + 8
|
|
// (chan 11) = 13. Path finding distance should work out to: 13
|
|
// + 10 (attempt penalty) / 0.4 = 38. The two hop route is 25 +
|
|
// 10 / 0.7 = 39.
|
|
{
|
|
name: "three hop 1",
|
|
p10: 0.8, p11: 0.5, p20: 0.7,
|
|
minProbability: 0.1,
|
|
expectedChan: 10,
|
|
},
|
|
{
|
|
name: "three hop 2",
|
|
p10: 0.5, p11: 0.8, p20: 0.7,
|
|
minProbability: 0.1,
|
|
expectedChan: 10,
|
|
},
|
|
|
|
// If the probability of the two hop route is increased, its
|
|
// distance becomes 25 + 10 / 0.85 = 37. This is less than the
|
|
// three hop route with its distance 38. So with an attempt
|
|
// penalty of 10, the higher fee route is chosen because of the
|
|
// compensation for success probability.
|
|
{
|
|
name: "two hop higher cost",
|
|
p10: 0.5, p11: 0.8, p20: 0.85,
|
|
minProbability: 0.1,
|
|
expectedChan: 20,
|
|
},
|
|
|
|
// If the same probabilities are used with a probability lower bound of
|
|
// 0.5, we expect the three hop route with probability 0.4 to be
|
|
// excluded and the two hop route to be picked.
|
|
{
|
|
name: "probability limit",
|
|
p10: 0.8, p11: 0.5, p20: 0.7,
|
|
minProbability: 0.5,
|
|
expectedChan: 20,
|
|
},
|
|
|
|
// With a probability limit above the probability of both routes, we
|
|
// expect no route to be returned. This expectation is signaled by using
|
|
// expected channel 0.
|
|
{
|
|
name: "probability limit no routes",
|
|
p10: 0.8, p11: 0.5, p20: 0.7,
|
|
minProbability: 0.8,
|
|
expectedChan: 0,
|
|
},
|
|
}
|
|
|
|
for _, tc := range testCases {
|
|
t.Run(tc.name, func(t *testing.T) {
|
|
testProbabilityRouting(
|
|
t, tc.p10, tc.p11, tc.p20,
|
|
tc.minProbability, tc.expectedChan,
|
|
)
|
|
})
|
|
}
|
|
}
|
|
|
|
func testProbabilityRouting(t *testing.T, p10, p11, p20, minProbability float64,
|
|
expectedChan uint64) {
|
|
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with two possible paths to the target: a three
|
|
// hop path (via channels 10 and 11) and a two hop path (via channel
|
|
// 20).
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("roasbeef", "a1", 100000, &testChannelPolicy{}),
|
|
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{}),
|
|
symmetricTestChannel("a1", "a2", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: lnwire.NewMSatFromSatoshis(5),
|
|
MinHTLC: 1,
|
|
}, 10),
|
|
symmetricTestChannel("a2", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: lnwire.NewMSatFromSatoshis(8),
|
|
MinHTLC: 1,
|
|
}, 11),
|
|
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
|
|
Expiry: 100,
|
|
FeeBaseMsat: lnwire.NewMSatFromSatoshis(25),
|
|
MinHTLC: 1,
|
|
}, 20),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
|
|
defer ctx.cleanup()
|
|
|
|
alias := ctx.testGraphInstance.aliasMap
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.testGraphInstance.aliasMap["target"]
|
|
|
|
// Configure a probability source with the test parameters.
|
|
ctx.restrictParams.ProbabilitySource = func(fromNode, toNode route.Vertex,
|
|
amt lnwire.MilliSatoshi) float64 {
|
|
|
|
if amt == 0 {
|
|
t.Fatal("expected non-zero amount")
|
|
}
|
|
|
|
switch {
|
|
case fromNode == alias["a1"] && toNode == alias["a2"]:
|
|
return p10
|
|
case fromNode == alias["a2"] && toNode == alias["target"]:
|
|
return p11
|
|
case fromNode == alias["b"] && toNode == alias["target"]:
|
|
return p20
|
|
default:
|
|
return 1
|
|
}
|
|
}
|
|
|
|
ctx.pathFindingConfig = PathFindingConfig{
|
|
PaymentAttemptPenalty: lnwire.NewMSatFromSatoshis(10),
|
|
MinProbability: minProbability,
|
|
}
|
|
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if expectedChan == 0 {
|
|
if err != errNoPathFound {
|
|
t.Fatalf("expected no path found, but got %v", err)
|
|
}
|
|
return
|
|
}
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Assert that the route passes through the expected channel.
|
|
if path[1].ChannelID != expectedChan {
|
|
t.Fatalf("expected route to pass through channel %v, "+
|
|
"but channel %v was selected instead", expectedChan,
|
|
path[1].ChannelID)
|
|
}
|
|
}
|
|
|
|
// TestNoCycle tries to guide the path finding algorithm into reconstructing an
|
|
// endless route. It asserts that the algorithm is able to handle this properly.
|
|
func TestNoCycle(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Set up a test graph with two paths: source->a->target and
|
|
// source->b->c->target. The fees are setup such that, searching
|
|
// backwards, the algorithm will evaluate the following end of the route
|
|
// first: ->target->c->target. This does not make sense, because if
|
|
// target is reached, there is no need to continue to c. A proper
|
|
// implementation will then go on with alternative routes. It will then
|
|
// consider ->a->target because its cost is lower than the alternative
|
|
// ->b->c->target and finally find source->a->target as the best route.
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 1),
|
|
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
}, 2),
|
|
symmetricTestChannel("b", "c", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 2000,
|
|
}, 3),
|
|
symmetricTestChannel("c", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 0,
|
|
}, 4),
|
|
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 600,
|
|
}, 5),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "source")
|
|
defer ctx.cleanup()
|
|
|
|
const (
|
|
startingHeight = 100
|
|
finalHopCLTV = 1
|
|
)
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.keyFromAlias("target")
|
|
|
|
// Find the best path given the restriction to only use channel 2 as the
|
|
// outgoing channel.
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
route, err := newRoute(
|
|
paymentAmt, ctx.source, path, startingHeight,
|
|
finalHopCLTV, nil,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create path: %v", err)
|
|
}
|
|
|
|
if len(route.Hops) != 2 {
|
|
t.Fatalf("unexpected route")
|
|
}
|
|
if route.Hops[0].ChannelID != 1 {
|
|
t.Fatalf("unexpected first hop")
|
|
}
|
|
if route.Hops[1].ChannelID != 5 {
|
|
t.Fatalf("unexpected second hop")
|
|
}
|
|
}
|
|
|
|
// TestRouteToSelf tests that it is possible to find a route to the self node.
|
|
func TestRouteToSelf(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
testChannels := []*testChannel{
|
|
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 500,
|
|
}, 1),
|
|
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 1000,
|
|
}, 2),
|
|
symmetricTestChannel("a", "b", 100000, &testChannelPolicy{
|
|
Expiry: 144,
|
|
FeeBaseMsat: 1000,
|
|
}, 3),
|
|
}
|
|
|
|
ctx := newPathFindingTestContext(t, testChannels, "source")
|
|
defer ctx.cleanup()
|
|
|
|
paymentAmt := lnwire.NewMSatFromSatoshis(100)
|
|
target := ctx.source
|
|
|
|
// Find the best path to self. We expect this to be source->a->source,
|
|
// because a charges the lowest forwarding fee.
|
|
path, err := ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
ctx.assertPath(path, []uint64{1, 1})
|
|
|
|
outgoingChanID := uint64(1)
|
|
lastHop := ctx.keyFromAlias("b")
|
|
ctx.restrictParams.OutgoingChannelID = &outgoingChanID
|
|
ctx.restrictParams.LastHop = &lastHop
|
|
|
|
// Find the best path to self given that we want to go out via channel 1
|
|
// and return through node b.
|
|
path, err = ctx.findPath(target, paymentAmt)
|
|
if err != nil {
|
|
t.Fatalf("unable to find path: %v", err)
|
|
}
|
|
ctx.assertPath(path, []uint64{1, 3, 2})
|
|
}
|
|
|
|
type pathFindingTestContext struct {
|
|
t *testing.T
|
|
graphParams graphParams
|
|
restrictParams RestrictParams
|
|
pathFindingConfig PathFindingConfig
|
|
testGraphInstance *testGraphInstance
|
|
source route.Vertex
|
|
}
|
|
|
|
func newPathFindingTestContext(t *testing.T, testChannels []*testChannel,
|
|
source string) *pathFindingTestContext {
|
|
|
|
testGraphInstance, err := createTestGraphFromChannels(
|
|
testChannels, source,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create graph: %v", err)
|
|
}
|
|
|
|
sourceNode, err := testGraphInstance.graph.SourceNode()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch source node: %v", err)
|
|
}
|
|
|
|
ctx := &pathFindingTestContext{
|
|
t: t,
|
|
testGraphInstance: testGraphInstance,
|
|
source: route.Vertex(sourceNode.PubKeyBytes),
|
|
pathFindingConfig: *testPathFindingConfig,
|
|
graphParams: graphParams{
|
|
graph: testGraphInstance.graph,
|
|
},
|
|
restrictParams: *noRestrictions,
|
|
}
|
|
|
|
return ctx
|
|
}
|
|
|
|
func (c *pathFindingTestContext) keyFromAlias(alias string) route.Vertex {
|
|
return c.testGraphInstance.aliasMap[alias]
|
|
}
|
|
|
|
func (c *pathFindingTestContext) aliasFromKey(pubKey route.Vertex) string {
|
|
for alias, key := range c.testGraphInstance.aliasMap {
|
|
if key == pubKey {
|
|
return alias
|
|
}
|
|
}
|
|
return ""
|
|
}
|
|
|
|
func (c *pathFindingTestContext) cleanup() {
|
|
c.testGraphInstance.cleanUp()
|
|
}
|
|
|
|
func (c *pathFindingTestContext) findPath(target route.Vertex,
|
|
amt lnwire.MilliSatoshi) ([]*channeldb.ChannelEdgePolicy,
|
|
error) {
|
|
|
|
return findPath(
|
|
&c.graphParams, &c.restrictParams, &c.pathFindingConfig,
|
|
c.source, target, amt,
|
|
)
|
|
}
|
|
|
|
func (c *pathFindingTestContext) assertPath(path []*channeldb.ChannelEdgePolicy, expected []uint64) {
|
|
if len(path) != len(expected) {
|
|
c.t.Fatalf("expected path of length %v, but got %v",
|
|
len(expected), len(path))
|
|
}
|
|
|
|
for i, edge := range path {
|
|
if edge.ChannelID != expected[i] {
|
|
c.t.Fatalf("expected hop %v to be channel %v, "+
|
|
"but got %v", i, expected[i], edge.ChannelID)
|
|
}
|
|
}
|
|
}
|