lnd.xprv/routing/pathfind_test.go
Conner Fromknecht 495ae8ca42
routing: consolidate final hop params for newRoute
This commit creates a wrapper struct, grouping all parameters that
influence the final hop during route construction. This is a preliminary
step for passing in the receiver's invoice feature bits, which will be
used to select an appropriate payment or payload type.
2019-12-18 23:55:08 -08:00

2823 lines
81 KiB
Go

package routing
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"math"
"math/big"
"net"
"os"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/feature"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/zpay32"
)
const (
// basicGraphFilePath is the file path for a basic graph used within
// the tests. The basic graph consists of 5 nodes with 5 channels
// connecting them.
basicGraphFilePath = "testdata/basic_graph.json"
// excessiveHopsGraphFilePath is a file path which stores the JSON dump
// of a graph which was previously triggering an erroneous excessive
// hops error. The error has since been fixed, but a test case
// exercising it is kept around to guard against regressions.
excessiveHopsGraphFilePath = "testdata/excessive_hops.json"
// specExampleFilePath is a file path which stores an example which
// implementations will use in order to ensure that they're calculating
// the payload for each hop in path properly.
specExampleFilePath = "testdata/spec_example.json"
// noFeeLimit is the maximum value of a payment through Lightning. We
// can use this value to signal there is no fee limit since payments
// should never be larger than this.
noFeeLimit = lnwire.MilliSatoshi(math.MaxUint32)
)
var (
noRestrictions = &RestrictParams{
FeeLimit: noFeeLimit,
ProbabilitySource: noProbabilitySource,
CltvLimit: math.MaxUint32,
}
testPathFindingConfig = &PathFindingConfig{}
tlvFeatures = lnwire.NewFeatureVector(
lnwire.NewRawFeatureVector(
lnwire.TLVOnionPayloadOptional,
), lnwire.Features,
)
payAddrFeatures = lnwire.NewFeatureVector(
lnwire.NewRawFeatureVector(
lnwire.PaymentAddrOptional,
), lnwire.Features,
)
tlvPayAddrFeatures = lnwire.NewFeatureVector(
lnwire.NewRawFeatureVector(
lnwire.TLVOnionPayloadOptional,
lnwire.PaymentAddrOptional,
), lnwire.Features,
)
)
var (
testSig = &btcec.Signature{
R: new(big.Int),
S: new(big.Int),
}
_, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10)
_, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10)
testAuthProof = channeldb.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
}
)
// noProbabilitySource is used in testing to return the same probability 1 for
// all edges.
func noProbabilitySource(route.Vertex, route.Vertex, lnwire.MilliSatoshi) float64 {
return 1
}
// testGraph is the struct which corresponds to the JSON format used to encode
// graphs within the files in the testdata directory.
//
// TODO(roasbeef): add test graph auto-generator
type testGraph struct {
Info []string `json:"info"`
Nodes []testNode `json:"nodes"`
Edges []testChan `json:"edges"`
}
// testNode represents a node within the test graph above. We skip certain
// information such as the node's IP address as that information isn't needed
// for our tests.
type testNode struct {
Source bool `json:"source"`
PubKey string `json:"pubkey"`
Alias string `json:"alias"`
}
// testChan represents the JSON version of a payment channel. This struct
// matches the Json that's encoded under the "edges" key within the test graph.
type testChan struct {
Node1 string `json:"node_1"`
Node2 string `json:"node_2"`
ChannelID uint64 `json:"channel_id"`
ChannelPoint string `json:"channel_point"`
ChannelFlags uint8 `json:"channel_flags"`
MessageFlags uint8 `json:"message_flags"`
Expiry uint16 `json:"expiry"`
MinHTLC int64 `json:"min_htlc"`
MaxHTLC int64 `json:"max_htlc"`
FeeBaseMsat int64 `json:"fee_base_msat"`
FeeRate int64 `json:"fee_rate"`
Capacity int64 `json:"capacity"`
}
// makeTestGraph creates a new instance of a channeldb.ChannelGraph for testing
// purposes. A callback which cleans up the created temporary directories is
// also returned and intended to be executed after the test completes.
func makeTestGraph() (*channeldb.ChannelGraph, func(), error) {
// First, create a temporary directory to be used for the duration of
// this test.
tempDirName, err := ioutil.TempDir("", "channeldb")
if err != nil {
return nil, nil, err
}
// Next, create channeldb for the first time.
cdb, err := channeldb.Open(tempDirName)
if err != nil {
return nil, nil, err
}
cleanUp := func() {
cdb.Close()
os.RemoveAll(tempDirName)
}
return cdb.ChannelGraph(), cleanUp, nil
}
// parseTestGraph returns a fully populated ChannelGraph given a path to a JSON
// file which encodes a test graph.
func parseTestGraph(path string) (*testGraphInstance, error) {
graphJSON, err := ioutil.ReadFile(path)
if err != nil {
return nil, err
}
// First unmarshal the JSON graph into an instance of the testGraph
// struct. Using the struct tags created above in the struct, the JSON
// will be properly parsed into the struct above.
var g testGraph
if err := json.Unmarshal(graphJSON, &g); err != nil {
return nil, err
}
// We'll use this fake address for the IP address of all the nodes in
// our tests. This value isn't needed for path finding so it doesn't
// need to be unique.
var testAddrs []net.Addr
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
if err != nil {
return nil, err
}
testAddrs = append(testAddrs, testAddr)
// Next, create a temporary graph database for usage within the test.
graph, cleanUp, err := makeTestGraph()
if err != nil {
return nil, err
}
aliasMap := make(map[string]route.Vertex)
var source *channeldb.LightningNode
// First we insert all the nodes within the graph as vertexes.
for _, node := range g.Nodes {
pubBytes, err := hex.DecodeString(node.PubKey)
if err != nil {
return nil, err
}
dbNode := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: testTime,
Addresses: testAddrs,
Alias: node.Alias,
Features: testFeatures,
}
copy(dbNode.PubKeyBytes[:], pubBytes)
// We require all aliases within the graph to be unique for our
// tests.
if _, ok := aliasMap[node.Alias]; ok {
return nil, errors.New("aliases for nodes " +
"must be unique!")
}
// If the alias is unique, then add the node to the
// alias map for easy lookup.
aliasMap[node.Alias] = dbNode.PubKeyBytes
// If the node is tagged as the source, then we create a
// pointer to is so we can mark the source in the graph
// properly.
if node.Source {
// If we come across a node that's marked as the
// source, and we've already set the source in a prior
// iteration, then the JSON has an error as only ONE
// node can be the source in the graph.
if source != nil {
return nil, errors.New("JSON is invalid " +
"multiple nodes are tagged as the source")
}
source = dbNode
}
// With the node fully parsed, add it as a vertex within the
// graph.
if err := graph.AddLightningNode(dbNode); err != nil {
return nil, err
}
}
if source != nil {
// Set the selected source node
if err := graph.SetSourceNode(source); err != nil {
return nil, err
}
}
// With all the vertexes inserted, we can now insert the edges into the
// test graph.
for _, edge := range g.Edges {
node1Bytes, err := hex.DecodeString(edge.Node1)
if err != nil {
return nil, err
}
node2Bytes, err := hex.DecodeString(edge.Node2)
if err != nil {
return nil, err
}
if bytes.Compare(node1Bytes, node2Bytes) == 1 {
return nil, fmt.Errorf(
"channel %v node order incorrect",
edge.ChannelID,
)
}
fundingTXID := strings.Split(edge.ChannelPoint, ":")[0]
txidBytes, err := chainhash.NewHashFromStr(fundingTXID)
if err != nil {
return nil, err
}
fundingPoint := wire.OutPoint{
Hash: *txidBytes,
Index: 0,
}
// We first insert the existence of the edge between the two
// nodes.
edgeInfo := channeldb.ChannelEdgeInfo{
ChannelID: edge.ChannelID,
AuthProof: &testAuthProof,
ChannelPoint: fundingPoint,
Capacity: btcutil.Amount(edge.Capacity),
}
copy(edgeInfo.NodeKey1Bytes[:], node1Bytes)
copy(edgeInfo.NodeKey2Bytes[:], node2Bytes)
copy(edgeInfo.BitcoinKey1Bytes[:], node1Bytes)
copy(edgeInfo.BitcoinKey2Bytes[:], node2Bytes)
err = graph.AddChannelEdge(&edgeInfo)
if err != nil && err != channeldb.ErrEdgeAlreadyExist {
return nil, err
}
edgePolicy := &channeldb.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: lnwire.ChanUpdateMsgFlags(edge.MessageFlags),
ChannelFlags: lnwire.ChanUpdateChanFlags(edge.ChannelFlags),
ChannelID: edge.ChannelID,
LastUpdate: testTime,
TimeLockDelta: edge.Expiry,
MinHTLC: lnwire.MilliSatoshi(edge.MinHTLC),
MaxHTLC: lnwire.MilliSatoshi(edge.MaxHTLC),
FeeBaseMSat: lnwire.MilliSatoshi(edge.FeeBaseMsat),
FeeProportionalMillionths: lnwire.MilliSatoshi(edge.FeeRate),
}
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, err
}
}
return &testGraphInstance{
graph: graph,
cleanUp: cleanUp,
aliasMap: aliasMap,
}, nil
}
type testChannelPolicy struct {
Expiry uint16
MinHTLC lnwire.MilliSatoshi
MaxHTLC lnwire.MilliSatoshi
FeeBaseMsat lnwire.MilliSatoshi
FeeRate lnwire.MilliSatoshi
LastUpdate time.Time
Disabled bool
Direction bool
Features *lnwire.FeatureVector
}
type testChannelEnd struct {
Alias string
*testChannelPolicy
}
func symmetricTestChannel(alias1, alias2 string, capacity btcutil.Amount,
policy *testChannelPolicy, chanID ...uint64) *testChannel {
// Leaving id zero will result in auto-generation of a channel id during
// graph construction.
var id uint64
if len(chanID) > 0 {
id = chanID[0]
}
policy2 := *policy
policy2.Direction = !policy.Direction
return asymmetricTestChannel(
alias1, alias2, capacity, policy, &policy2, id,
)
}
func asymmetricTestChannel(alias1, alias2 string, capacity btcutil.Amount,
policy1, policy2 *testChannelPolicy, id uint64) *testChannel {
return &testChannel{
Capacity: capacity,
Node1: &testChannelEnd{
Alias: alias1,
testChannelPolicy: policy1,
},
Node2: &testChannelEnd{
Alias: alias2,
testChannelPolicy: policy2,
},
ChannelID: id,
}
}
type testChannel struct {
Node1 *testChannelEnd
Node2 *testChannelEnd
Capacity btcutil.Amount
ChannelID uint64
}
type testGraphInstance struct {
graph *channeldb.ChannelGraph
cleanUp func()
// aliasMap is a map from a node's alias to its public key. This type is
// provided in order to allow easily look up from the human memorable alias
// to an exact node's public key.
aliasMap map[string]route.Vertex
// privKeyMap maps a node alias to its private key. This is used to be
// able to mock a remote node's signing behaviour.
privKeyMap map[string]*btcec.PrivateKey
}
// createTestGraphFromChannels returns a fully populated ChannelGraph based on a set of
// test channels. Additional required information like keys are derived in
// a deterministical way and added to the channel graph. A list of nodes is
// not required and derived from the channel data. The goal is to keep
// instantiating a test channel graph as light weight as possible.
func createTestGraphFromChannels(testChannels []*testChannel, source string) (
*testGraphInstance, error) {
// We'll use this fake address for the IP address of all the nodes in
// our tests. This value isn't needed for path finding so it doesn't
// need to be unique.
var testAddrs []net.Addr
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
if err != nil {
return nil, err
}
testAddrs = append(testAddrs, testAddr)
// Next, create a temporary graph database for usage within the test.
graph, cleanUp, err := makeTestGraph()
if err != nil {
return nil, err
}
aliasMap := make(map[string]route.Vertex)
privKeyMap := make(map[string]*btcec.PrivateKey)
nodeIndex := byte(0)
addNodeWithAlias := func(alias string, features *lnwire.FeatureVector) (
*channeldb.LightningNode, error) {
keyBytes := make([]byte, 32)
keyBytes = []byte{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, nodeIndex + 1,
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(),
keyBytes)
if features == nil {
features = lnwire.EmptyFeatureVector()
}
dbNode := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: testTime,
Addresses: testAddrs,
Alias: alias,
Features: features,
}
copy(dbNode.PubKeyBytes[:], pubKey.SerializeCompressed())
privKeyMap[alias] = privKey
// With the node fully parsed, add it as a vertex within the
// graph.
if err := graph.AddLightningNode(dbNode); err != nil {
return nil, err
}
aliasMap[alias] = dbNode.PubKeyBytes
nodeIndex++
return dbNode, nil
}
// Add the source node.
dbNode, err := addNodeWithAlias(source, lnwire.EmptyFeatureVector())
if err != nil {
return nil, err
}
if err = graph.SetSourceNode(dbNode); err != nil {
return nil, err
}
// Initialize variable that keeps track of the next channel id to assign
// if none is specified.
nextUnassignedChannelID := uint64(100000)
for _, testChannel := range testChannels {
for _, node := range []*testChannelEnd{
testChannel.Node1, testChannel.Node2} {
_, exists := aliasMap[node.Alias]
if !exists {
var features *lnwire.FeatureVector
if node.testChannelPolicy != nil {
features =
node.testChannelPolicy.Features
}
_, err := addNodeWithAlias(
node.Alias, features,
)
if err != nil {
return nil, err
}
}
}
channelID := testChannel.ChannelID
// If no channel id is specified, generate an id.
if channelID == 0 {
channelID = nextUnassignedChannelID
nextUnassignedChannelID++
}
var hash [sha256.Size]byte
hash[len(hash)-1] = byte(channelID)
fundingPoint := &wire.OutPoint{
Hash: chainhash.Hash(hash),
Index: 0,
}
// Sort nodes
node1 := testChannel.Node1
node2 := testChannel.Node2
node1Vertex := aliasMap[node1.Alias]
node2Vertex := aliasMap[node2.Alias]
if bytes.Compare(node1Vertex[:], node2Vertex[:]) == 1 {
node1, node2 = node2, node1
node1Vertex, node2Vertex = node2Vertex, node1Vertex
}
// We first insert the existence of the edge between the two
// nodes.
edgeInfo := channeldb.ChannelEdgeInfo{
ChannelID: channelID,
AuthProof: &testAuthProof,
ChannelPoint: *fundingPoint,
Capacity: testChannel.Capacity,
NodeKey1Bytes: node1Vertex,
BitcoinKey1Bytes: node1Vertex,
NodeKey2Bytes: node2Vertex,
BitcoinKey2Bytes: node2Vertex,
}
err = graph.AddChannelEdge(&edgeInfo)
if err != nil && err != channeldb.ErrEdgeAlreadyExist {
return nil, err
}
if testChannel.Node1.testChannelPolicy != nil {
var msgFlags lnwire.ChanUpdateMsgFlags
if testChannel.Node1.MaxHTLC != 0 {
msgFlags |= lnwire.ChanUpdateOptionMaxHtlc
}
var channelFlags lnwire.ChanUpdateChanFlags
if testChannel.Node1.Disabled {
channelFlags |= lnwire.ChanUpdateDisabled
}
if testChannel.Node1.Direction {
channelFlags |= lnwire.ChanUpdateDirection
}
edgePolicy := &channeldb.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: msgFlags,
ChannelFlags: channelFlags,
ChannelID: channelID,
LastUpdate: node1.LastUpdate,
TimeLockDelta: node1.Expiry,
MinHTLC: node1.MinHTLC,
MaxHTLC: node1.MaxHTLC,
FeeBaseMSat: node1.FeeBaseMsat,
FeeProportionalMillionths: node1.FeeRate,
}
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, err
}
}
if testChannel.Node2.testChannelPolicy != nil {
var msgFlags lnwire.ChanUpdateMsgFlags
if testChannel.Node2.MaxHTLC != 0 {
msgFlags |= lnwire.ChanUpdateOptionMaxHtlc
}
channelFlags := lnwire.ChanUpdateChanFlags(0)
if testChannel.Node2.Disabled {
channelFlags |= lnwire.ChanUpdateDisabled
}
if testChannel.Node2.Direction {
channelFlags |= lnwire.ChanUpdateDirection
}
edgePolicy := &channeldb.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: msgFlags,
ChannelFlags: channelFlags,
ChannelID: channelID,
LastUpdate: node2.LastUpdate,
TimeLockDelta: node2.Expiry,
MinHTLC: node2.MinHTLC,
MaxHTLC: node2.MaxHTLC,
FeeBaseMSat: node2.FeeBaseMsat,
FeeProportionalMillionths: node2.FeeRate,
}
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, err
}
}
channelID++
}
return &testGraphInstance{
graph: graph,
cleanUp: cleanUp,
aliasMap: aliasMap,
privKeyMap: privKeyMap,
}, nil
}
// TestFindLowestFeePath tests that out of two routes with identical total
// time lock values, the route with the lowest total fee should be returned.
// The fee rates are chosen such that the test failed on the previous edge
// weight function where one of the terms was fee squared.
func TestFindLowestFeePath(t *testing.T) {
t.Parallel()
// Set up a test graph with two paths from roasbeef to target. Both
// paths have equal total time locks, but the path through b has lower
// fees (700 compared to 800 for the path through a).
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "first", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}),
symmetricTestChannel("first", "a", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}),
symmetricTestChannel("first", "b", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 100,
MinHTLC: 1,
MaxHTLC: 100000000,
}),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 600,
MinHTLC: 1,
MaxHTLC: 100000000,
}),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
const (
startingHeight = 100
finalHopCLTV = 1
)
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
route, err := newRoute(
ctx.source, path, startingHeight,
finalHopParams{
amt: paymentAmt,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
// Assert that the lowest fee route is returned.
if route.Hops[1].PubKeyBytes != ctx.keyFromAlias("b") {
t.Fatalf("expected route to pass through b, "+
"but got a route through %v",
ctx.aliasFromKey(route.Hops[1].PubKeyBytes))
}
}
func getAliasFromPubKey(pubKey route.Vertex,
aliases map[string]route.Vertex) string {
for alias, key := range aliases {
if key == pubKey {
return alias
}
}
return ""
}
type expectedHop struct {
alias string
fee lnwire.MilliSatoshi
fwdAmount lnwire.MilliSatoshi
timeLock uint32
}
type basicGraphPathFindingTestCase struct {
target string
paymentAmt btcutil.Amount
feeLimit lnwire.MilliSatoshi
expectedTotalAmt lnwire.MilliSatoshi
expectedTotalTimeLock uint32
expectedHops []expectedHop
expectFailureNoPath bool
}
var basicGraphPathFindingTests = []basicGraphPathFindingTestCase{
// Basic route with one intermediate hop.
{target: "sophon", paymentAmt: 100, feeLimit: noFeeLimit,
expectedTotalTimeLock: 102, expectedTotalAmt: 100110,
expectedHops: []expectedHop{
{alias: "songoku", fwdAmount: 100000, fee: 110, timeLock: 101},
{alias: "sophon", fwdAmount: 100000, fee: 0, timeLock: 101},
}},
// Basic direct (one hop) route.
{target: "luoji", paymentAmt: 100, feeLimit: noFeeLimit,
expectedTotalTimeLock: 101, expectedTotalAmt: 100000,
expectedHops: []expectedHop{
{alias: "luoji", fwdAmount: 100000, fee: 0, timeLock: 101},
}},
// Three hop route where fees need to be added in to the forwarding amount.
// The high fee hop phamnewun should be avoided.
{target: "elst", paymentAmt: 50000, feeLimit: noFeeLimit,
expectedTotalTimeLock: 103, expectedTotalAmt: 50050210,
expectedHops: []expectedHop{
{alias: "songoku", fwdAmount: 50000200, fee: 50010, timeLock: 102},
{alias: "sophon", fwdAmount: 50000000, fee: 200, timeLock: 101},
{alias: "elst", fwdAmount: 50000000, fee: 0, timeLock: 101},
}},
// Three hop route where fees need to be added in to the forwarding amount.
// However this time the fwdAmount becomes too large for the roasbeef <->
// songoku channel. Then there is no other option than to choose the
// expensive phamnuwen channel. This test case was failing before
// the route search was executed backwards.
{target: "elst", paymentAmt: 100000, feeLimit: noFeeLimit,
expectedTotalTimeLock: 103, expectedTotalAmt: 110010220,
expectedHops: []expectedHop{
{alias: "phamnuwen", fwdAmount: 100000200, fee: 10010020, timeLock: 102},
{alias: "sophon", fwdAmount: 100000000, fee: 200, timeLock: 101},
{alias: "elst", fwdAmount: 100000000, fee: 0, timeLock: 101},
}},
// Basic route with fee limit.
{target: "sophon", paymentAmt: 100, feeLimit: 50,
expectFailureNoPath: true,
}}
func TestBasicGraphPathFinding(t *testing.T) {
t.Parallel()
testGraphInstance, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer testGraphInstance.cleanUp()
// With the test graph loaded, we'll test some basic path finding using
// the pre-generated graph. Consult the testdata/basic_graph.json file
// to follow along with the assumptions we'll use to test the path
// finding.
for _, testCase := range basicGraphPathFindingTests {
t.Run(testCase.target, func(subT *testing.T) {
testBasicGraphPathFindingCase(subT, testGraphInstance, &testCase)
})
}
}
func testBasicGraphPathFindingCase(t *testing.T, graphInstance *testGraphInstance,
test *basicGraphPathFindingTestCase) {
aliases := graphInstance.aliasMap
expectedHops := test.expectedHops
expectedHopCount := len(expectedHops)
sourceNode, err := graphInstance.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
sourceVertex := route.Vertex(sourceNode.PubKeyBytes)
const (
startingHeight = 100
finalHopCLTV = 1
)
paymentAmt := lnwire.NewMSatFromSatoshis(test.paymentAmt)
target := graphInstance.aliasMap[test.target]
path, err := findPath(
&graphParams{
graph: graphInstance.graph,
},
&RestrictParams{
FeeLimit: test.feeLimit,
ProbabilitySource: noProbabilitySource,
CltvLimit: math.MaxUint32,
},
testPathFindingConfig,
sourceNode.PubKeyBytes, target, paymentAmt,
)
if test.expectFailureNoPath {
if err == nil {
t.Fatal("expected no path to be found")
}
return
}
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
route, err := newRoute(
sourceVertex, path, startingHeight,
finalHopParams{
amt: paymentAmt,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
if len(route.Hops) != len(expectedHops) {
t.Fatalf("route is of incorrect length, expected %v got %v",
expectedHopCount, len(route.Hops))
}
// Check hop nodes
for i := 0; i < len(expectedHops); i++ {
if route.Hops[i].PubKeyBytes != aliases[expectedHops[i].alias] {
t.Fatalf("%v-th hop should be %v, is instead: %v",
i, expectedHops[i],
getAliasFromPubKey(route.Hops[i].PubKeyBytes,
aliases))
}
}
// Next, we'll assert that the "next hop" field in each route payload
// properly points to the channel ID that the HTLC should be forwarded
// along.
sphinxPath, err := route.ToSphinxPath()
if err != nil {
t.Fatalf("unable to make sphinx path: %v", err)
}
if sphinxPath.TrueRouteLength() != expectedHopCount {
t.Fatalf("incorrect number of hop payloads: expected %v, got %v",
expectedHopCount, sphinxPath.TrueRouteLength())
}
// Hops should point to the next hop
for i := 0; i < len(expectedHops)-1; i++ {
var expectedHop [8]byte
binary.BigEndian.PutUint64(expectedHop[:], route.Hops[i+1].ChannelID)
hopData, err := sphinxPath[i].HopPayload.HopData()
if err != nil {
t.Fatalf("unable to make hop data: %v", err)
}
if !bytes.Equal(hopData.NextAddress[:], expectedHop[:]) {
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
expectedHop[:], hopData.NextAddress[:])
}
}
// The final hop should have a next hop value of all zeroes in order
// to indicate it's the exit hop.
var exitHop [8]byte
lastHopIndex := len(expectedHops) - 1
hopData, err := sphinxPath[lastHopIndex].HopPayload.HopData()
if err != nil {
t.Fatalf("unable to create hop data: %v", err)
}
if !bytes.Equal(hopData.NextAddress[:], exitHop[:]) {
t.Fatalf("first hop has incorrect next hop: expected %x, got %x",
exitHop[:], hopData.NextAddress)
}
var expectedTotalFee lnwire.MilliSatoshi
for i := 0; i < expectedHopCount; i++ {
// We'll ensure that the amount to forward, and fees
// computed for each hop are correct.
fee := route.HopFee(i)
if fee != expectedHops[i].fee {
t.Fatalf("fee incorrect for hop %v: expected %v, got %v",
i, expectedHops[i].fee, fee)
}
if route.Hops[i].AmtToForward != expectedHops[i].fwdAmount {
t.Fatalf("forwarding amount for hop %v incorrect: "+
"expected %v, got %v",
i, expectedHops[i].fwdAmount,
route.Hops[i].AmtToForward)
}
// We'll also assert that the outgoing CLTV value for each
// hop was set accordingly.
if route.Hops[i].OutgoingTimeLock != expectedHops[i].timeLock {
t.Fatalf("outgoing time-lock for hop %v is incorrect: "+
"expected %v, got %v", i,
expectedHops[i].timeLock,
route.Hops[i].OutgoingTimeLock)
}
expectedTotalFee += expectedHops[i].fee
}
if route.TotalAmount != test.expectedTotalAmt {
t.Fatalf("total amount incorrect: "+
"expected %v, got %v",
test.expectedTotalAmt, route.TotalAmount)
}
if route.TotalTimeLock != test.expectedTotalTimeLock {
t.Fatalf("expected time lock of %v, instead have %v", 2,
route.TotalTimeLock)
}
}
// TestPathFindingWithAdditionalEdges asserts that we are able to find paths to
// nodes that do not exist in the graph by way of hop hints. We also test that
// the path can support custom TLV records for the receiver under the
// appropriate circumstances.
func TestPathFindingWithAdditionalEdges(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
paymentAmt := lnwire.NewMSatFromSatoshis(100)
// In this test, we'll test that we're able to find paths through
// private channels when providing them as additional edges in our path
// finding algorithm. To do so, we'll create a new node, doge, and
// create a private channel between it and songoku. We'll then attempt
// to find a path from our source node, roasbeef, to doge.
dogePubKeyHex := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
dogePubKeyBytes, err := hex.DecodeString(dogePubKeyHex)
if err != nil {
t.Fatalf("unable to decode public key: %v", err)
}
dogePubKey, err := btcec.ParsePubKey(dogePubKeyBytes, btcec.S256())
if err != nil {
t.Fatalf("unable to parse public key from bytes: %v", err)
}
doge := &channeldb.LightningNode{}
doge.AddPubKey(dogePubKey)
doge.Alias = "doge"
copy(doge.PubKeyBytes[:], dogePubKeyBytes)
graph.aliasMap["doge"] = doge.PubKeyBytes
// Create the channel edge going from songoku to doge and include it in
// our map of additional edges.
songokuToDoge := &channeldb.ChannelEdgePolicy{
Node: doge,
ChannelID: 1337,
FeeBaseMSat: 1,
FeeProportionalMillionths: 1000,
TimeLockDelta: 9,
}
additionalEdges := map[route.Vertex][]*channeldb.ChannelEdgePolicy{
graph.aliasMap["songoku"]: {songokuToDoge},
}
find := func(r *RestrictParams) (
[]*channeldb.ChannelEdgePolicy, error) {
return findPath(
&graphParams{
graph: graph.graph,
additionalEdges: additionalEdges,
},
r, testPathFindingConfig,
sourceNode.PubKeyBytes, doge.PubKeyBytes, paymentAmt,
)
}
// We should now be able to find a path from roasbeef to doge.
path, err := find(noRestrictions)
if err != nil {
t.Fatalf("unable to find private path to doge: %v", err)
}
// The path should represent the following hops:
// roasbeef -> songoku -> doge
assertExpectedPath(t, graph.aliasMap, path, "songoku", "doge")
// Now, set custom records for the final hop. This should fail since no
// dest features are set, and we won't have a node ann to fall back on.
restrictions := *noRestrictions
restrictions.DestCustomRecords = record.CustomSet{70000: []byte{}}
_, err = find(&restrictions)
if err != errNoTlvPayload {
t.Fatalf("path shouldn't have been found: %v", err)
}
// Set empty dest features so we don't try the fallback. We should still
// fail since the tlv feature isn't set.
restrictions.DestFeatures = lnwire.EmptyFeatureVector()
_, err = find(&restrictions)
if err != errNoTlvPayload {
t.Fatalf("path shouldn't have been found: %v", err)
}
// Finally, set the tlv feature in the payload and assert we found the
// same path as before.
restrictions.DestFeatures = tlvFeatures
path, err = find(&restrictions)
if err != nil {
t.Fatalf("path should have been found: %v", err)
}
assertExpectedPath(t, graph.aliasMap, path, "songoku", "doge")
}
// TestNewRoute tests whether the construction of hop payloads by newRoute
// is executed correctly.
func TestNewRoute(t *testing.T) {
var sourceKey [33]byte
sourceVertex := route.Vertex(sourceKey)
const (
startingHeight = 100
finalHopCLTV = 1
)
createHop := func(baseFee lnwire.MilliSatoshi,
feeRate lnwire.MilliSatoshi,
bandwidth lnwire.MilliSatoshi,
timeLockDelta uint16) *channeldb.ChannelEdgePolicy {
return &channeldb.ChannelEdgePolicy{
Node: &channeldb.LightningNode{
Features: lnwire.NewFeatureVector(
nil, nil,
),
},
FeeProportionalMillionths: feeRate,
FeeBaseMSat: baseFee,
TimeLockDelta: timeLockDelta,
}
}
testCases := []struct {
// name identifies the test case in the test output.
name string
// hops is the list of hops (the route) that gets passed into
// the call to newRoute.
hops []*channeldb.ChannelEdgePolicy
// paymentAmount is the amount that is send into the route
// indicated by hops.
paymentAmount lnwire.MilliSatoshi
// expectedFees is a list of fees that every hop is expected
// to charge for forwarding.
expectedFees []lnwire.MilliSatoshi
// expectedTimeLocks is a list of time lock values that every
// hop is expected to specify in its outgoing HTLC. The time
// lock values in this list are relative to the current block
// height.
expectedTimeLocks []uint32
// expectedTotalAmount is the total amount that is expected to
// be returned from newRoute. This amount should include all
// the fees to be paid to intermediate hops.
expectedTotalAmount lnwire.MilliSatoshi
// expectedTotalTimeLock is the time lock that is expected to
// be returned from newRoute. This is the time lock that should
// be specified in the HTLC that is sent by the source node.
// expectedTotalTimeLock is relative to the current block height.
expectedTotalTimeLock uint32
// expectError indicates whether the newRoute call is expected
// to fail or succeed.
expectError bool
// expectedErrorCode indicates the expected error code when
// expectError is true.
expectedErrorCode errorCode
}{
{
// For a single hop payment, no fees are expected to be paid.
name: "single hop",
paymentAmount: 100000,
hops: []*channeldb.ChannelEdgePolicy{
createHop(100, 1000, 1000000, 10),
},
expectedFees: []lnwire.MilliSatoshi{0},
expectedTimeLocks: []uint32{1},
expectedTotalAmount: 100000,
expectedTotalTimeLock: 1,
}, {
// For a two hop payment, only the fee for the first hop
// needs to be paid. The destination hop does not require
// a fee to receive the payment.
name: "two hop",
paymentAmount: 100000,
hops: []*channeldb.ChannelEdgePolicy{
createHop(0, 1000, 1000000, 10),
createHop(30, 1000, 1000000, 5),
},
expectedFees: []lnwire.MilliSatoshi{130, 0},
expectedTimeLocks: []uint32{1, 1},
expectedTotalAmount: 100130,
expectedTotalTimeLock: 6,
}, {
// A three hop payment where the first and second hop
// will both charge 1 msat. The fee for the first hop
// is actually slightly higher than 1, because the amount
// to forward also includes the fee for the second hop. This
// gets rounded down to 1.
name: "three hop",
paymentAmount: 100000,
hops: []*channeldb.ChannelEdgePolicy{
createHop(0, 10, 1000000, 10),
createHop(0, 10, 1000000, 5),
createHop(0, 10, 1000000, 3),
},
expectedFees: []lnwire.MilliSatoshi{1, 1, 0},
expectedTotalAmount: 100002,
expectedTimeLocks: []uint32{4, 1, 1},
expectedTotalTimeLock: 9,
}, {
// A three hop payment where the fee of the first hop
// is slightly higher (11) than the fee at the second hop,
// because of the increase amount to forward.
name: "three hop with fee carry over",
paymentAmount: 100000,
hops: []*channeldb.ChannelEdgePolicy{
createHop(0, 10000, 1000000, 10),
createHop(0, 10000, 1000000, 5),
createHop(0, 10000, 1000000, 3),
},
expectedFees: []lnwire.MilliSatoshi{1010, 1000, 0},
expectedTotalAmount: 102010,
expectedTimeLocks: []uint32{4, 1, 1},
expectedTotalTimeLock: 9,
}, {
// A three hop payment where the fee policies of the first and
// second hop are just high enough to show the fee carry over
// effect.
name: "three hop with minimal fees for carry over",
paymentAmount: 100000,
hops: []*channeldb.ChannelEdgePolicy{
createHop(0, 10000, 1000000, 10),
// First hop charges 0.1% so the second hop fee
// should show up in the first hop fee as 1 msat
// extra.
createHop(0, 1000, 1000000, 5),
// Second hop charges a fixed 1000 msat.
createHop(1000, 0, 1000000, 3),
},
expectedFees: []lnwire.MilliSatoshi{101, 1000, 0},
expectedTotalAmount: 101101,
expectedTimeLocks: []uint32{4, 1, 1},
expectedTotalTimeLock: 9,
}}
for _, testCase := range testCases {
assertRoute := func(t *testing.T, route *route.Route) {
if route.TotalAmount != testCase.expectedTotalAmount {
t.Errorf("Expected total amount is be %v"+
", but got %v instead",
testCase.expectedTotalAmount,
route.TotalAmount)
}
for i := 0; i < len(testCase.expectedFees); i++ {
fee := route.HopFee(i)
if testCase.expectedFees[i] != fee {
t.Errorf("Expected fee for hop %v to "+
"be %v, but got %v instead",
i, testCase.expectedFees[i],
fee)
}
}
expectedTimeLockHeight := startingHeight +
testCase.expectedTotalTimeLock
if route.TotalTimeLock != expectedTimeLockHeight {
t.Errorf("Expected total time lock to be %v"+
", but got %v instead",
expectedTimeLockHeight,
route.TotalTimeLock)
}
for i := 0; i < len(testCase.expectedTimeLocks); i++ {
expectedTimeLockHeight := startingHeight +
testCase.expectedTimeLocks[i]
if expectedTimeLockHeight !=
route.Hops[i].OutgoingTimeLock {
t.Errorf("Expected time lock for hop "+
"%v to be %v, but got %v instead",
i, expectedTimeLockHeight,
route.Hops[i].OutgoingTimeLock)
}
}
}
t.Run(testCase.name, func(t *testing.T) {
route, err := newRoute(
sourceVertex, testCase.hops, startingHeight,
finalHopParams{
amt: testCase.paymentAmount,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if testCase.expectError {
expectedCode := testCase.expectedErrorCode
if err == nil || !IsError(err, expectedCode) {
t.Fatalf("expected newRoute to fail "+
"with error code %v but got "+
"%v instead",
expectedCode, err)
}
} else {
if err != nil {
t.Errorf("unable to create path: %v", err)
return
}
assertRoute(t, route)
}
})
}
}
func TestNewRoutePathTooLong(t *testing.T) {
t.Skip()
// Ensure that potential paths which are over the maximum hop-limit are
// rejected.
graph, err := parseTestGraph(excessiveHopsGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
paymentAmt := lnwire.NewMSatFromSatoshis(100)
// We start by confirming that routing a payment 20 hops away is
// possible. Alice should be able to find a valid route to ursula.
target := graph.aliasMap["ursula"]
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, paymentAmt,
)
if err != nil {
t.Fatalf("path should have been found")
}
// Vincent is 21 hops away from Alice, and thus no valid route should be
// presented to Alice.
target = graph.aliasMap["vincent"]
path, err := findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, paymentAmt,
)
if err == nil {
t.Fatalf("should not have been able to find path, supposed to be "+
"greater than 20 hops, found route with %v hops",
len(path))
}
}
func TestPathNotAvailable(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// With the test graph loaded, we'll test that queries for target that
// are either unreachable within the graph, or unknown result in an
// error.
unknownNodeStr := "03dd46ff29a6941b4a2607525b043ec9b020b3f318a1bf281536fd7011ec59c882"
unknownNodeBytes, err := hex.DecodeString(unknownNodeStr)
if err != nil {
t.Fatalf("unable to parse bytes: %v", err)
}
var unknownNode route.Vertex
copy(unknownNode[:], unknownNodeBytes)
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, unknownNode, 100,
)
if err != errNoPathFound {
t.Fatalf("path shouldn't have been found: %v", err)
}
}
// TestDestTLVGraphFallback asserts that we properly detect when we can send TLV
// records to a receiver, and also that we fallback to the receiver's node
// announcement if we don't have an invoice features.
func TestDestTLVGraphFallback(t *testing.T) {
t.Parallel()
testChannels := []*testChannel{
asymmetricTestChannel("roasbeef", "luoji", 100000,
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}, 0),
asymmetricTestChannel("roasbeef", "satoshi", 100000,
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
Features: tlvFeatures,
}, 0),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
sourceNode, err := ctx.graphParams.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
find := func(r *RestrictParams,
target route.Vertex) ([]*channeldb.ChannelEdgePolicy, error) {
return findPath(
&graphParams{
graph: ctx.graphParams.graph,
},
r, testPathFindingConfig,
sourceNode.PubKeyBytes, target, 100,
)
}
// Luoji's node ann has an empty feature vector.
luoji := ctx.testGraphInstance.aliasMap["luoji"]
// Satoshi's node ann supports TLV.
satoshi := ctx.testGraphInstance.aliasMap["satoshi"]
restrictions := *noRestrictions
// Add custom records w/o any dest features.
restrictions.DestCustomRecords = record.CustomSet{70000: []byte{}}
// Path to luoji should fail because his node ann features are empty.
_, err = find(&restrictions, luoji)
if err != errNoTlvPayload {
t.Fatalf("path shouldn't have been found: %v", err)
}
// However, path to satoshi should succeed via the fallback because his
// node ann features have the TLV bit.
path, err := find(&restrictions, satoshi)
if err != nil {
t.Fatalf("path should have been found: %v", err)
}
assertExpectedPath(t, ctx.testGraphInstance.aliasMap, path, "satoshi")
// Add empty destination features. This should cause both paths to fail,
// since this override anything in the graph.
restrictions.DestFeatures = lnwire.EmptyFeatureVector()
_, err = find(&restrictions, luoji)
if err != errNoTlvPayload {
t.Fatalf("path shouldn't have been found: %v", err)
}
_, err = find(&restrictions, satoshi)
if err != errNoTlvPayload {
t.Fatalf("path shouldn't have been found: %v", err)
}
// Finally, set the TLV dest feature. We should succeed in finding a
// path to luoji.
restrictions.DestFeatures = tlvFeatures
path, err = find(&restrictions, luoji)
if err != nil {
t.Fatalf("path should have been found: %v", err)
}
assertExpectedPath(t, ctx.testGraphInstance.aliasMap, path, "luoji")
}
// TestMissingFeatureDep asserts that we fail path finding when the
// destination's features are broken, in that the feature vector doesn't signal
// all transitive dependencies.
func TestMissingFeatureDep(t *testing.T) {
t.Parallel()
testChannels := []*testChannel{
asymmetricTestChannel("roasbeef", "conner", 100000,
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
},
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
Features: payAddrFeatures,
}, 0,
),
asymmetricTestChannel("conner", "joost", 100000,
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
Features: payAddrFeatures,
},
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
}, 0,
),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
sourceNode, err := ctx.graphParams.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
find := func(r *RestrictParams,
target route.Vertex) ([]*channeldb.ChannelEdgePolicy, error) {
return findPath(
&graphParams{
graph: ctx.graphParams.graph,
},
r, testPathFindingConfig,
sourceNode.PubKeyBytes, target, 100,
)
}
// Conner's node in the graph has a broken feature vector, since it
// signals payment addresses without signaling tlv onions. Pathfinding
// should fail since we validate transitive feature dependencies for the
// final node.
conner := ctx.testGraphInstance.aliasMap["conner"]
restrictions := *noRestrictions
_, err = find(&restrictions, conner)
if err != feature.NewErrMissingFeatureDep(
lnwire.TLVOnionPayloadOptional,
) {
t.Fatalf("path shouldn't have been found: %v", err)
}
// Now, set the TLV and payment addresses features to override the
// broken features found in the graph. We should succeed in finding a
// path to conner.
restrictions.DestFeatures = tlvPayAddrFeatures
path, err := find(&restrictions, conner)
if err != nil {
t.Fatalf("path should have been found: %v", err)
}
assertExpectedPath(t, ctx.testGraphInstance.aliasMap, path, "conner")
// Finally, try to find a route to joost through conner. The
// destination features are set properly from the previous assertions,
// but conner's feature vector in the graph is still broken. We expect
// errNoPathFound and not the missing feature dep err above since
// intermediate hops are simply skipped if they have invalid feature
// vectors, leaving no possible route to joost.
joost := ctx.testGraphInstance.aliasMap["joost"]
_, err = find(&restrictions, joost)
if err != errNoPathFound {
t.Fatalf("path shouldn't have been found: %v", err)
}
}
// TestDestPaymentAddr asserts that we properly detect when we can send a
// payment address to a receiver, and also that we fallback to the receiver's
// node announcement if we don't have an invoice features.
func TestDestPaymentAddr(t *testing.T) {
t.Parallel()
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "luoji", 100000,
&testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000000,
},
),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
sourceNode, err := ctx.graphParams.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
find := func(r *RestrictParams,
target route.Vertex) ([]*channeldb.ChannelEdgePolicy, error) {
return findPath(
&graphParams{
graph: ctx.graphParams.graph,
},
r, testPathFindingConfig,
sourceNode.PubKeyBytes, target, 100,
)
}
luoji := ctx.testGraphInstance.aliasMap["luoji"]
restrictions := *noRestrictions
// Add payment address w/o any invoice features.
restrictions.PaymentAddr = &[32]byte{1}
// Add empty destination features. This should cause us to fail, since
// this overrides anything in the graph.
restrictions.DestFeatures = lnwire.EmptyFeatureVector()
_, err = find(&restrictions, luoji)
if err != errNoPaymentAddr {
t.Fatalf("path shouldn't have been found: %v", err)
}
// Now, set the TLV and payment address features for the destination. We
// should succeed in finding a path to luoji.
restrictions.DestFeatures = tlvPayAddrFeatures
path, err := find(&restrictions, luoji)
if err != nil {
t.Fatalf("path should have been found: %v", err)
}
assertExpectedPath(t, ctx.testGraphInstance.aliasMap, path, "luoji")
}
func TestPathInsufficientCapacity(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// Next, test that attempting to find a path in which the current
// channel graph cannot support due to insufficient capacity triggers
// an error.
// To test his we'll attempt to make a payment of 1 BTC, or 100 million
// satoshis. The largest channel in the basic graph is of size 100k
// satoshis, so we shouldn't be able to find a path to sophon even
// though we have a 2-hop link.
target := graph.aliasMap["sophon"]
payAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != errNoPathFound {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestRouteFailMinHTLC tests that if we attempt to route an HTLC which is
// smaller than the advertised minHTLC of an edge, then path finding fails.
func TestRouteFailMinHTLC(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// We'll not attempt to route an HTLC of 10 SAT from roasbeef to Son
// Goku. However, the min HTLC of Son Goku is 1k SAT, as a result, this
// attempt should fail.
target := graph.aliasMap["songoku"]
payAmt := lnwire.MilliSatoshi(10)
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != errNoPathFound {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestRouteFailMaxHTLC tests that if we attempt to route an HTLC which is
// larger than the advertised max HTLC of an edge, then path finding fails.
func TestRouteFailMaxHTLC(t *testing.T) {
t.Parallel()
// Set up a test graph:
// roasbeef <--> firstHop <--> secondHop <--> target
// We will be adjusting the max HTLC of the edge between the first and
// second hops.
var firstToSecondID uint64 = 1
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "first", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000001,
}),
symmetricTestChannel("first", "second", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000002,
}, firstToSecondID),
symmetricTestChannel("second", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
MinHTLC: 1,
MaxHTLC: 100000003,
}),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
// First, attempt to send a payment greater than the max HTLC we are
// about to set, which should succeed.
target := ctx.keyFromAlias("target")
payAmt := lnwire.MilliSatoshi(100001)
_, err := ctx.findPath(target, payAmt)
if err != nil {
t.Fatalf("graph should've been able to support payment: %v", err)
}
// Next, update the middle edge policy to only allow payments up to 100k
// msat.
graph := ctx.testGraphInstance.graph
_, midEdge, _, err := graph.FetchChannelEdgesByID(firstToSecondID)
if err != nil {
t.Fatalf("unable to fetch channel edges by ID: %v", err)
}
midEdge.MessageFlags = 1
midEdge.MaxHTLC = payAmt - 1
if err := graph.UpdateEdgePolicy(midEdge); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// We'll now attempt to route through that edge with a payment above
// 100k msat, which should fail.
_, err = ctx.findPath(target, payAmt)
if err != errNoPathFound {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestRouteFailDisabledEdge tests that if we attempt to route to an edge
// that's disabled, then that edge is disqualified, and the routing attempt
// will fail. We also test that this is true only for non-local edges, as we'll
// ignore the disable flags, with the assumption that the correct bandwidth is
// found among the bandwidth hints.
func TestRouteFailDisabledEdge(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// First, we'll try to route from roasbeef -> sophon. This should
// succeed without issue, and return a single path via phamnuwen
target := graph.aliasMap["sophon"]
payAmt := lnwire.NewMSatFromSatoshis(105000)
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
// Disable the edge roasbeef->phamnuwen. This should not impact the
// path finding, as we don't consider the disable flag for local
// channels (and roasbeef is the source).
roasToPham := uint64(999991)
_, e1, e2, err := graph.graph.FetchChannelEdgesByID(roasToPham)
if err != nil {
t.Fatalf("unable to fetch edge: %v", err)
}
e1.ChannelFlags |= lnwire.ChanUpdateDisabled
if err := graph.graph.UpdateEdgePolicy(e1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
e2.ChannelFlags |= lnwire.ChanUpdateDisabled
if err := graph.graph.UpdateEdgePolicy(e2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
// Now, we'll modify the edge from phamnuwen -> sophon, to read that
// it's disabled.
phamToSophon := uint64(99999)
_, e, _, err := graph.graph.FetchChannelEdgesByID(phamToSophon)
if err != nil {
t.Fatalf("unable to fetch edge: %v", err)
}
e.ChannelFlags |= lnwire.ChanUpdateDisabled
if err := graph.graph.UpdateEdgePolicy(e); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// If we attempt to route through that edge, we should get a failure as
// it is no longer eligible.
_, err = findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != errNoPathFound {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
}
// TestPathSourceEdgesBandwidth tests that explicitly passing in a set of
// bandwidth hints is used by the path finding algorithm to consider whether to
// use a local channel.
func TestPathSourceEdgesBandwidth(t *testing.T) {
t.Parallel()
graph, err := parseTestGraph(basicGraphFilePath)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
defer graph.cleanUp()
sourceNode, err := graph.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
// First, we'll try to route from roasbeef -> sophon. This should
// succeed without issue, and return a path via songoku, as that's the
// cheapest path.
target := graph.aliasMap["sophon"]
payAmt := lnwire.NewMSatFromSatoshis(50000)
path, err := findPath(
&graphParams{
graph: graph.graph,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
assertExpectedPath(t, graph.aliasMap, path, "songoku", "sophon")
// Now we'll set the bandwidth of the edge roasbeef->songoku and
// roasbeef->phamnuwen to 0.
roasToSongoku := uint64(12345)
roasToPham := uint64(999991)
bandwidths := map[uint64]lnwire.MilliSatoshi{
roasToSongoku: 0,
roasToPham: 0,
}
// Since both these edges has a bandwidth of zero, no path should be
// found.
_, err = findPath(
&graphParams{
graph: graph.graph,
bandwidthHints: bandwidths,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != errNoPathFound {
t.Fatalf("graph shouldn't be able to support payment: %v", err)
}
// Set the bandwidth of roasbeef->phamnuwen high enough to carry the
// payment.
bandwidths[roasToPham] = 2 * payAmt
// Now, if we attempt to route again, we should find the path via
// phamnuven, as the other source edge won't be considered.
path, err = findPath(
&graphParams{
graph: graph.graph,
bandwidthHints: bandwidths,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
assertExpectedPath(t, graph.aliasMap, path, "phamnuwen", "sophon")
// Finally, set the roasbeef->songoku bandwidth, but also set its
// disable flag.
bandwidths[roasToSongoku] = 2 * payAmt
_, e1, e2, err := graph.graph.FetchChannelEdgesByID(roasToSongoku)
if err != nil {
t.Fatalf("unable to fetch edge: %v", err)
}
e1.ChannelFlags |= lnwire.ChanUpdateDisabled
if err := graph.graph.UpdateEdgePolicy(e1); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
e2.ChannelFlags |= lnwire.ChanUpdateDisabled
if err := graph.graph.UpdateEdgePolicy(e2); err != nil {
t.Fatalf("unable to update edge: %v", err)
}
// Since we ignore disable flags for local channels, a path should
// still be found.
path, err = findPath(
&graphParams{
graph: graph.graph,
bandwidthHints: bandwidths,
},
noRestrictions, testPathFindingConfig,
sourceNode.PubKeyBytes, target, payAmt,
)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
assertExpectedPath(t, graph.aliasMap, path, "songoku", "sophon")
}
func TestPathInsufficientCapacityWithFee(t *testing.T) {
t.Parallel()
// TODO(roasbeef): encode live graph to json
// TODO(roasbeef): need to add a case, or modify the fee ratio for one
// to ensure that has going forward, but when fees are applied doesn't
// work
}
func TestPathFindSpecExample(t *testing.T) {
t.Parallel()
// All our path finding tests will assume a starting height of 100, so
// we'll pass that in to ensure that the router uses 100 as the current
// height.
const startingHeight = 100
ctx, cleanUp, err := createTestCtxFromFile(startingHeight, specExampleFilePath)
if err != nil {
t.Fatalf("unable to create router: %v", err)
}
defer cleanUp()
// We'll first exercise the scenario of a direct payment from Bob to
// Carol, so we set "B" as the source node so path finding starts from
// Bob.
bob := ctx.aliases["B"]
bobKey, err := btcec.ParsePubKey(bob[:], btcec.S256())
if err != nil {
t.Fatal(err)
}
bobNode, err := ctx.graph.FetchLightningNode(bobKey)
if err != nil {
t.Fatalf("unable to find bob: %v", err)
}
if err := ctx.graph.SetSourceNode(bobNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
// Query for a route of 4,999,999 mSAT to carol.
carol := ctx.aliases["C"]
const amt lnwire.MilliSatoshi = 4999999
route, err := ctx.router.FindRoute(
bobNode.PubKeyBytes, carol, amt, noRestrictions, nil,
)
if err != nil {
t.Fatalf("unable to find route: %v", err)
}
// Now we'll examine the route returned for correctness.
//
// It should be sending the exact payment amount as there are no
// additional hops.
if route.TotalAmount != amt {
t.Fatalf("wrong total amount: got %v, expected %v",
route.TotalAmount, amt)
}
if route.Hops[0].AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
route.Hops[0].AmtToForward, amt)
}
fee := route.HopFee(0)
if fee != 0 {
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 0)
}
// The CLTV expiry should be the current height plus 9 (the expiry for
// the B -> C channel.
if route.TotalTimeLock !=
startingHeight+zpay32.DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
route.TotalTimeLock,
startingHeight+zpay32.DefaultFinalCLTVDelta)
}
// Next, we'll set A as the source node so we can assert that we create
// the proper route for any queries starting with Alice.
alice := ctx.aliases["A"]
aliceKey, err := btcec.ParsePubKey(alice[:], btcec.S256())
if err != nil {
t.Fatal(err)
}
aliceNode, err := ctx.graph.FetchLightningNode(aliceKey)
if err != nil {
t.Fatalf("unable to find alice: %v", err)
}
if err := ctx.graph.SetSourceNode(aliceNode); err != nil {
t.Fatalf("unable to set source node: %v", err)
}
ctx.router.selfNode = aliceNode
source, err := ctx.graph.SourceNode()
if err != nil {
t.Fatalf("unable to retrieve source node: %v", err)
}
if source.PubKeyBytes != alice {
t.Fatalf("source node not set")
}
// We'll now request a route from A -> B -> C.
route, err = ctx.router.FindRoute(
source.PubKeyBytes, carol, amt, noRestrictions, nil,
)
if err != nil {
t.Fatalf("unable to find routes: %v", err)
}
// The route should be two hops.
if len(route.Hops) != 2 {
t.Fatalf("route should be %v hops, is instead %v", 2,
len(route.Hops))
}
// The total amount should factor in a fee of 10199 and also use a CLTV
// delta total of 29 (20 + 9),
expectedAmt := lnwire.MilliSatoshi(5010198)
if route.TotalAmount != expectedAmt {
t.Fatalf("wrong amount: got %v, expected %v",
route.TotalAmount, expectedAmt)
}
if route.TotalTimeLock != startingHeight+29 {
t.Fatalf("wrong total time lock: got %v, expecting %v",
route.TotalTimeLock, startingHeight+29)
}
// Ensure that the hops of the route are properly crafted.
//
// After taking the fee, Bob should be forwarding the remainder which
// is the exact payment to Bob.
if route.Hops[0].AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
route.Hops[0].AmtToForward, amt)
}
// We shouldn't pay any fee for the first, hop, but the fee for the
// second hop posted fee should be exactly:
// The fee that we pay for the second hop will be "applied to the first
// hop, so we should get a fee of exactly:
//
// * 200 + 4999999 * 2000 / 1000000 = 10199
fee = route.HopFee(0)
if fee != 10199 {
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 10199)
}
// While for the final hop, as there's no additional hop afterwards, we
// pay no fee.
fee = route.HopFee(1)
if fee != 0 {
t.Fatalf("wrong hop fee: got %v, expected %v", fee, 0)
}
// The outgoing CLTV value itself should be the current height plus 30
// to meet Carol's requirements.
if route.Hops[0].OutgoingTimeLock !=
startingHeight+zpay32.DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
route.Hops[0].OutgoingTimeLock,
startingHeight+zpay32.DefaultFinalCLTVDelta)
}
// For B -> C, we assert that the final hop also has the proper
// parameters.
lastHop := route.Hops[1]
if lastHop.AmtToForward != amt {
t.Fatalf("wrong forward amount: got %v, expected %v",
lastHop.AmtToForward, amt)
}
if lastHop.OutgoingTimeLock !=
startingHeight+zpay32.DefaultFinalCLTVDelta {
t.Fatalf("wrong total time lock: got %v, expecting %v",
lastHop.OutgoingTimeLock,
startingHeight+zpay32.DefaultFinalCLTVDelta)
}
}
func assertExpectedPath(t *testing.T, aliasMap map[string]route.Vertex,
path []*channeldb.ChannelEdgePolicy, nodeAliases ...string) {
if len(path) != len(nodeAliases) {
t.Fatal("number of hops and number of aliases do not match")
}
for i, hop := range path {
if hop.Node.PubKeyBytes != aliasMap[nodeAliases[i]] {
t.Fatalf("expected %v to be pos #%v in hop, instead "+
"%v was", nodeAliases[i], i, hop.Node.Alias)
}
}
}
// TestNewRouteFromEmptyHops tests that the NewRouteFromHops function returns an
// error when the hop list is empty.
func TestNewRouteFromEmptyHops(t *testing.T) {
t.Parallel()
var source route.Vertex
_, err := route.NewRouteFromHops(0, 0, source, []*route.Hop{})
if err != route.ErrNoRouteHopsProvided {
t.Fatalf("expected empty hops error: instead got: %v", err)
}
}
// TestRestrictOutgoingChannel asserts that a outgoing channel restriction is
// obeyed by the path finding algorithm.
func TestRestrictOutgoingChannel(t *testing.T) {
t.Parallel()
// Set up a test graph with three possible paths from roasbeef to
// target. The path through channel 2 is the highest cost path.
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "a", 100000, &testChannelPolicy{
Expiry: 144,
}, 1),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
}, 4),
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{
Expiry: 144,
}, 2),
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{
Expiry: 144,
}, 3),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 800,
}, 5),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
const (
startingHeight = 100
finalHopCLTV = 1
)
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
outgoingChannelID := uint64(2)
// Find the best path given the restriction to only use channel 2 as the
// outgoing channel.
ctx.restrictParams.OutgoingChannelID = &outgoingChannelID
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
route, err := newRoute(
ctx.source, path, startingHeight,
finalHopParams{
amt: paymentAmt,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
// Assert that the route starts with channel 2, in line with the
// specified restriction.
if route.Hops[0].ChannelID != 2 {
t.Fatalf("expected route to pass through channel 2, "+
"but channel %v was selected instead", route.Hops[0].ChannelID)
}
}
// TestRestrictLastHop asserts that a last hop restriction is obeyed by the path
// finding algorithm.
func TestRestrictLastHop(t *testing.T) {
t.Parallel()
// Set up a test graph with three possible paths from roasbeef to
// target. The path via channel 1 and 2 is the lowest cost path.
testChannels := []*testChannel{
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
Expiry: 144,
}, 1),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 400,
}, 2),
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
Expiry: 144,
}, 3),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeRate: 800,
}, 4),
}
ctx := newPathFindingTestContext(t, testChannels, "source")
defer ctx.cleanup()
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
lastHop := ctx.keyFromAlias("b")
// Find the best path given the restriction to use b as the last hop.
// This should force pathfinding to not take the lowest cost option.
ctx.restrictParams.LastHop = &lastHop
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
if path[0].ChannelID != 3 {
t.Fatalf("expected route to pass through channel 3, "+
"but channel %v was selected instead",
path[0].ChannelID)
}
}
// TestCltvLimit asserts that a cltv limit is obeyed by the path finding
// algorithm.
func TestCltvLimit(t *testing.T) {
t.Run("no limit", func(t *testing.T) { testCltvLimit(t, 2016, 1) })
t.Run("no path", func(t *testing.T) { testCltvLimit(t, 50, 0) })
t.Run("force high cost", func(t *testing.T) { testCltvLimit(t, 80, 3) })
}
func testCltvLimit(t *testing.T, limit uint32, expectedChannel uint64) {
t.Parallel()
// Set up a test graph with three possible paths to the target. The path
// through a is the lowest cost with a high time lock (144). The path
// through b has a higher cost but a lower time lock (100). That path
// through c and d (two hops) has the same case as the path through b,
// but the total time lock is lower (60).
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "a", 100000, &testChannelPolicy{}, 1),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 10000,
MinHTLC: 1,
}),
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{}, 2),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 100,
FeeBaseMsat: 20000,
MinHTLC: 1,
}),
symmetricTestChannel("roasbeef", "c", 100000, &testChannelPolicy{}, 3),
symmetricTestChannel("c", "d", 100000, &testChannelPolicy{
Expiry: 30,
FeeBaseMsat: 10000,
MinHTLC: 1,
}),
symmetricTestChannel("d", "target", 100000, &testChannelPolicy{
Expiry: 30,
FeeBaseMsat: 10000,
MinHTLC: 1,
}),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
ctx.restrictParams.CltvLimit = limit
path, err := ctx.findPath(target, paymentAmt)
if expectedChannel == 0 {
// Finish test if we expect no route.
if err == errNoPathFound {
return
}
t.Fatal("expected no path to be found")
}
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
const (
startingHeight = 100
finalHopCLTV = 1
)
route, err := newRoute(
ctx.source, path, startingHeight,
finalHopParams{
amt: paymentAmt,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
// Assert that the route starts with the expected channel.
if route.Hops[0].ChannelID != expectedChannel {
t.Fatalf("expected route to pass through channel %v, "+
"but channel %v was selected instead", expectedChannel,
route.Hops[0].ChannelID)
}
}
// TestProbabilityRouting asserts that path finding not only takes into account
// fees but also success probability.
func TestProbabilityRouting(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
p10, p11, p20 float64
minProbability float64
expectedChan uint64
}{
// Test two variations with probabilities that should multiply
// to the same total route probability. In both cases the three
// hop route should be the best route. The three hop route has a
// probability of 0.5 * 0.8 = 0.4. The fee is 5 (chan 10) + 8
// (chan 11) = 13. Path finding distance should work out to: 13
// + 10 (attempt penalty) / 0.4 = 38. The two hop route is 25 +
// 10 / 0.7 = 39.
{
name: "three hop 1",
p10: 0.8, p11: 0.5, p20: 0.7,
minProbability: 0.1,
expectedChan: 10,
},
{
name: "three hop 2",
p10: 0.5, p11: 0.8, p20: 0.7,
minProbability: 0.1,
expectedChan: 10,
},
// If the probability of the two hop route is increased, its
// distance becomes 25 + 10 / 0.85 = 37. This is less than the
// three hop route with its distance 38. So with an attempt
// penalty of 10, the higher fee route is chosen because of the
// compensation for success probability.
{
name: "two hop higher cost",
p10: 0.5, p11: 0.8, p20: 0.85,
minProbability: 0.1,
expectedChan: 20,
},
// If the same probabilities are used with a probability lower bound of
// 0.5, we expect the three hop route with probability 0.4 to be
// excluded and the two hop route to be picked.
{
name: "probability limit",
p10: 0.8, p11: 0.5, p20: 0.7,
minProbability: 0.5,
expectedChan: 20,
},
// With a probability limit above the probability of both routes, we
// expect no route to be returned. This expectation is signaled by using
// expected channel 0.
{
name: "probability limit no routes",
p10: 0.8, p11: 0.5, p20: 0.7,
minProbability: 0.8,
expectedChan: 0,
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
testProbabilityRouting(
t, tc.p10, tc.p11, tc.p20,
tc.minProbability, tc.expectedChan,
)
})
}
}
func testProbabilityRouting(t *testing.T, p10, p11, p20, minProbability float64,
expectedChan uint64) {
t.Parallel()
// Set up a test graph with two possible paths to the target: a three
// hop path (via channels 10 and 11) and a two hop path (via channel
// 20).
testChannels := []*testChannel{
symmetricTestChannel("roasbeef", "a1", 100000, &testChannelPolicy{}),
symmetricTestChannel("roasbeef", "b", 100000, &testChannelPolicy{}),
symmetricTestChannel("a1", "a2", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: lnwire.NewMSatFromSatoshis(5),
MinHTLC: 1,
}, 10),
symmetricTestChannel("a2", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: lnwire.NewMSatFromSatoshis(8),
MinHTLC: 1,
}, 11),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 100,
FeeBaseMsat: lnwire.NewMSatFromSatoshis(25),
MinHTLC: 1,
}, 20),
}
ctx := newPathFindingTestContext(t, testChannels, "roasbeef")
defer ctx.cleanup()
alias := ctx.testGraphInstance.aliasMap
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.testGraphInstance.aliasMap["target"]
// Configure a probability source with the test parameters.
ctx.restrictParams.ProbabilitySource = func(fromNode, toNode route.Vertex,
amt lnwire.MilliSatoshi) float64 {
if amt == 0 {
t.Fatal("expected non-zero amount")
}
switch {
case fromNode == alias["a1"] && toNode == alias["a2"]:
return p10
case fromNode == alias["a2"] && toNode == alias["target"]:
return p11
case fromNode == alias["b"] && toNode == alias["target"]:
return p20
default:
return 1
}
}
ctx.pathFindingConfig = PathFindingConfig{
PaymentAttemptPenalty: lnwire.NewMSatFromSatoshis(10),
MinProbability: minProbability,
}
path, err := ctx.findPath(target, paymentAmt)
if expectedChan == 0 {
if err != errNoPathFound {
t.Fatalf("expected no path found, but got %v", err)
}
return
}
if err != nil {
t.Fatal(err)
}
// Assert that the route passes through the expected channel.
if path[1].ChannelID != expectedChan {
t.Fatalf("expected route to pass through channel %v, "+
"but channel %v was selected instead", expectedChan,
path[1].ChannelID)
}
}
// TestEqualCostRouteSelection asserts that route probability will be used as a
// tie breaker in case the path finding probabilities are equal.
func TestEqualCostRouteSelection(t *testing.T) {
t.Parallel()
// Set up a test graph with two possible paths to the target: via a and
// via b. The routing fees and probabilities are chosen such that the
// algorithm will first explore target->a->source (backwards search).
// This route has fee 6 and a penality of 4 for the 25% success
// probability. The algorithm will then proceed with evaluating
// target->b->source, which has a fee of 8 and a penalty of 2 for the
// 50% success probability. Both routes have the same path finding cost
// of 10. It is expected that in that case, the highest probability
// route (through b) is chosen.
testChannels := []*testChannel{
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{}),
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{}),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: lnwire.NewMSatFromSatoshis(6),
MinHTLC: 1,
}, 1),
symmetricTestChannel("b", "target", 100000, &testChannelPolicy{
Expiry: 100,
FeeBaseMsat: lnwire.NewMSatFromSatoshis(8),
MinHTLC: 1,
}, 2),
}
ctx := newPathFindingTestContext(t, testChannels, "source")
defer ctx.cleanup()
alias := ctx.testGraphInstance.aliasMap
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.testGraphInstance.aliasMap["target"]
ctx.restrictParams.ProbabilitySource = func(fromNode, toNode route.Vertex,
amt lnwire.MilliSatoshi) float64 {
switch {
case fromNode == alias["source"] && toNode == alias["a"]:
return 0.25
case fromNode == alias["source"] && toNode == alias["b"]:
return 0.5
default:
return 1
}
}
ctx.pathFindingConfig = PathFindingConfig{
PaymentAttemptPenalty: lnwire.NewMSatFromSatoshis(1),
}
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatal(err)
}
if path[1].ChannelID != 2 {
t.Fatalf("expected route to pass through channel %v, "+
"but channel %v was selected instead", 2,
path[1].ChannelID)
}
}
// TestNoCycle tries to guide the path finding algorithm into reconstructing an
// endless route. It asserts that the algorithm is able to handle this properly.
func TestNoCycle(t *testing.T) {
t.Parallel()
// Set up a test graph with two paths: source->a->target and
// source->b->c->target. The fees are setup such that, searching
// backwards, the algorithm will evaluate the following end of the route
// first: ->target->c->target. This does not make sense, because if
// target is reached, there is no need to continue to c. A proper
// implementation will then go on with alternative routes. It will then
// consider ->a->target because its cost is lower than the alternative
// ->b->c->target and finally find source->a->target as the best route.
testChannels := []*testChannel{
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
Expiry: 144,
}, 1),
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
Expiry: 144,
}, 2),
symmetricTestChannel("b", "c", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 2000,
}, 3),
symmetricTestChannel("c", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 0,
}, 4),
symmetricTestChannel("a", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 600,
}, 5),
}
ctx := newPathFindingTestContext(t, testChannels, "source")
defer ctx.cleanup()
const (
startingHeight = 100
finalHopCLTV = 1
)
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
// Find the best path given the restriction to only use channel 2 as the
// outgoing channel.
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
route, err := newRoute(
ctx.source, path, startingHeight,
finalHopParams{
amt: paymentAmt,
cltvDelta: finalHopCLTV,
records: nil,
},
)
if err != nil {
t.Fatalf("unable to create path: %v", err)
}
if len(route.Hops) != 2 {
t.Fatalf("unexpected route")
}
if route.Hops[0].ChannelID != 1 {
t.Fatalf("unexpected first hop")
}
if route.Hops[1].ChannelID != 5 {
t.Fatalf("unexpected second hop")
}
}
// TestRouteToSelf tests that it is possible to find a route to the self node.
func TestRouteToSelf(t *testing.T) {
t.Parallel()
testChannels := []*testChannel{
symmetricTestChannel("source", "a", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 500,
}, 1),
symmetricTestChannel("source", "b", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 1000,
}, 2),
symmetricTestChannel("a", "b", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 1000,
}, 3),
}
ctx := newPathFindingTestContext(t, testChannels, "source")
defer ctx.cleanup()
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.source
// Find the best path to self. We expect this to be source->a->source,
// because a charges the lowest forwarding fee.
path, err := ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
ctx.assertPath(path, []uint64{1, 1})
outgoingChanID := uint64(1)
lastHop := ctx.keyFromAlias("b")
ctx.restrictParams.OutgoingChannelID = &outgoingChanID
ctx.restrictParams.LastHop = &lastHop
// Find the best path to self given that we want to go out via channel 1
// and return through node b.
path, err = ctx.findPath(target, paymentAmt)
if err != nil {
t.Fatalf("unable to find path: %v", err)
}
ctx.assertPath(path, []uint64{1, 3, 2})
}
// TestInsufficientBalance tests that a dedicated error is returned for
// insufficient local balance.
func TestInsufficientBalance(t *testing.T) {
t.Parallel()
testChannels := []*testChannel{
symmetricTestChannel("source", "target", 100000, &testChannelPolicy{
Expiry: 144,
FeeBaseMsat: 500,
}, 1),
}
ctx := newPathFindingTestContext(t, testChannels, "source")
defer ctx.cleanup()
paymentAmt := lnwire.NewMSatFromSatoshis(100)
target := ctx.keyFromAlias("target")
ctx.graphParams.bandwidthHints = map[uint64]lnwire.MilliSatoshi{
1: lnwire.NewMSatFromSatoshis(50),
}
// Find the best path to self. We expect this to be source->a->source,
// because a charges the lowest forwarding fee.
_, err := ctx.findPath(target, paymentAmt)
if err != errInsufficientBalance {
t.Fatalf("expected insufficient balance error, but got: %v",
err)
}
}
type pathFindingTestContext struct {
t *testing.T
graphParams graphParams
restrictParams RestrictParams
pathFindingConfig PathFindingConfig
testGraphInstance *testGraphInstance
source route.Vertex
}
func newPathFindingTestContext(t *testing.T, testChannels []*testChannel,
source string) *pathFindingTestContext {
testGraphInstance, err := createTestGraphFromChannels(
testChannels, source,
)
if err != nil {
t.Fatalf("unable to create graph: %v", err)
}
sourceNode, err := testGraphInstance.graph.SourceNode()
if err != nil {
t.Fatalf("unable to fetch source node: %v", err)
}
ctx := &pathFindingTestContext{
t: t,
testGraphInstance: testGraphInstance,
source: route.Vertex(sourceNode.PubKeyBytes),
pathFindingConfig: *testPathFindingConfig,
graphParams: graphParams{
graph: testGraphInstance.graph,
},
restrictParams: *noRestrictions,
}
return ctx
}
func (c *pathFindingTestContext) keyFromAlias(alias string) route.Vertex {
return c.testGraphInstance.aliasMap[alias]
}
func (c *pathFindingTestContext) aliasFromKey(pubKey route.Vertex) string {
for alias, key := range c.testGraphInstance.aliasMap {
if key == pubKey {
return alias
}
}
return ""
}
func (c *pathFindingTestContext) cleanup() {
c.testGraphInstance.cleanUp()
}
func (c *pathFindingTestContext) findPath(target route.Vertex,
amt lnwire.MilliSatoshi) ([]*channeldb.ChannelEdgePolicy,
error) {
return findPath(
&c.graphParams, &c.restrictParams, &c.pathFindingConfig,
c.source, target, amt,
)
}
func (c *pathFindingTestContext) assertPath(path []*channeldb.ChannelEdgePolicy, expected []uint64) {
if len(path) != len(expected) {
c.t.Fatalf("expected path of length %v, but got %v",
len(expected), len(path))
}
for i, edge := range path {
if edge.ChannelID != expected[i] {
c.t.Fatalf("expected hop %v to be channel %v, "+
"but got %v", i, expected[i], edge.ChannelID)
}
}
}