lnd.xprv/chainntnfs/interface.go
Olaoluwa Osuntokun 0bd5c6790d
chainntfns: specify that implementations must support multiple clients
This commit updates the documentation for the ChainNotifier interface
to specify that all implementation MUST be able to support dispatching
the same notification to multiple clients.
2016-11-27 19:16:06 -08:00

187 lines
7.0 KiB
Go

package chainntnfs
import (
"fmt"
"sync"
"github.com/roasbeef/btcd/wire"
)
// ChainNotifier represents a trusted source to receive notifications concerning
// targeted events on the Bitcoin blockchain. The interface specification is
// intentionally general in order to support a wide array of chain notification
// implementations such as: btcd's websockets notifications, Bitcoin Core's
// ZeroMQ notifications, various Bitcoin API services, Electrum servers, etc.
//
// Concrete implementations of ChainNotifier should be able to support multiple
// concurrent client requests, as well as multiple concurrent notification events.
// TODO(roasbeef): all events should have a Cancel() method to free up the
// resource
type ChainNotifier interface {
// RegisterConfirmationsNtfn registers an intent to be notified once
// txid reaches numConfs confirmations. The returned ConfirmationEvent
// should properly notify the client once the specified number of
// confirmations has been reached for the txid, as well as if the
// original tx gets re-org'd out of the mainchain.
//
// NOTE: Dispatching notifications to multiple clients subscribed to
// the same (txid, numConfs) tuple MUST be supported.
RegisterConfirmationsNtfn(txid *wire.ShaHash, numConfs uint32) (*ConfirmationEvent, error)
// RegisterSpendNtfn registers an intent to be notified once the target
// outpoint is succesfully spent within a confirmed transaction. The
// returned SpendEvent will receive a send on the 'Spend' transaction
// once a transaction spending the input is detected on the blockchain.
//
// NOTE: This notifications should be triggered once the transaction is
// *seen* on the network, not when it has received a single confirmation.
//
// NOTE: Dispatching notifications to multiple clients subscribed to a
// spend of the same outpoint MUST be supported.
RegisterSpendNtfn(outpoint *wire.OutPoint) (*SpendEvent, error)
// RegisterBlockEpochNtfn registers an intent to be notified of each
// new block connected to the tip of the main chain. The returned
// BlockEpochEvent struct contains a channel which will be sent upon
// for each new block discovered.
RegisterBlockEpochNtfn() (*BlockEpochEvent, error)
// Start the ChainNotifier. Once started, the implementation should be
// ready, and able to receive notification registrations from clients.
Start() error
// Stops the concrete ChainNotifier. Once stopped, the ChainNotifier
// should disallow any future requests from potential clients.
// Additionally, all pending client notifications will be cancelled
// by closing the related channels on the *Event's.
Stop() error
}
// TODO(roasbeef): all chans should be receive only.
// ConfirmationEvent encapsulates a confirmation notification. With this struct,
// callers can be notified of: the instance the target txid reaches the targeted
// number of confirmations, and also in the event that the original txid becomes
// disconnected from the blockchain as a result of a re-org.
//
// Once the txid reaches the specified number of confirmations, the 'Confirmed'
// channel will be sent upon fufulling the notification.
//
// If the event that the original transaction becomes re-org'd out of the main
// chain, the 'NegativeConf' will be sent upon with a value representing the
// depth of the re-org.
type ConfirmationEvent struct {
Confirmed chan int32 // MUST be buffered.
// TODO(roasbeef): all goroutines on ln channel updates should also
// have a struct chan that's closed if funding gets re-org out. Need
// to sync, to request another confirmation event ntfn, then re-open
// channel after confs.
NegativeConf chan int32 // MUST be buffered.
}
// SpendDetail contains details pertaining to a spent output. This struct itself
// is the spentness notification. It includes the original outpoint which triggered
// the notification, the hash of the transaction spending the output, the
// spending transaction itself, and finally the input index which spent the
// target output.
type SpendDetail struct {
SpentOutPoint *wire.OutPoint
SpenderTxHash *wire.ShaHash
SpendingTx *wire.MsgTx
SpenderInputIndex uint32
SpendingHeight int32
}
// SpendEvent encapsulates a spentness notification. Its only field 'Spend' will
// be sent upon once the target output passed into RegisterSpendNtfn has been
// spent on the blockchain.
type SpendEvent struct {
Spend chan *SpendDetail // MUST be buffered.
}
// BlockEpoch represents meta-data concerning each new block connected to the
// main chain.
type BlockEpoch struct {
Height int32
Hash *wire.ShaHash
}
// BlockEpochEvent encapsulates an on-going stream of block epoch
// notifications. Its only field 'Epoochs' will be sent upon for each new block
// connected to the main-chain.
type BlockEpochEvent struct {
Epochs chan *BlockEpoch // MUST be buffered.
}
// NotifierDriver represents a "driver" for a particular interface. A driver is
// identified by a globally unique string identifier along with a 'New()'
// method which is responsible for initializing a particular ChainNotifier
// concrete implementation.
type NotifierDriver struct {
// NotifierType is a string which uniquely identifies the ChainNotifier
// that this driver, drives.
NotifierType string
// New creates a new instance of a concrete ChainNotifier
// implementation given a variadic set up arguments. The function takes
// a varidaic number of interface parameters in order to provide
// initialization flexibility, thereby accommodating several potential
// ChainNotifier implementations.
New func(args ...interface{}) (ChainNotifier, error)
}
var (
notifiers = make(map[string]*NotifierDriver)
registerMtx sync.Mutex
)
// RegisteredNotifiers returns a slice of all currently registered notifiers.
//
// NOTE: This function is safe for concurrent access.
func RegisteredNotifiers() []*NotifierDriver {
registerMtx.Lock()
defer registerMtx.Unlock()
drivers := make([]*NotifierDriver, 0, len(notifiers))
for _, driver := range notifiers {
drivers = append(drivers, driver)
}
return drivers
}
// RegisterNotifier registers a NotifierDriver which is capable of driving a
// concrete ChainNotifier interface. In the case that this driver has already
// been registered, an error is returned.
//
// NOTE: This function is safe for concurrent access.
func RegisterNotifier(driver *NotifierDriver) error {
registerMtx.Lock()
defer registerMtx.Unlock()
if _, ok := notifiers[driver.NotifierType]; ok {
return fmt.Errorf("notifier already registered")
}
notifiers[driver.NotifierType] = driver
return nil
}
// SupportedNotifiers returns a slice of strings that represent the database
// drivers that have been registered and are therefore supported.
//
// NOTE: This function is safe for concurrent access.
func SupportedNotifiers() []string {
registerMtx.Lock()
defer registerMtx.Unlock()
supportedNotifiers := make([]string, 0, len(notifiers))
for driverName := range notifiers {
supportedNotifiers = append(supportedNotifiers, driverName)
}
return supportedNotifiers
}