4592f87033
chainfees: create new chainfees package extracting fees from lnwallet
3016 lines
89 KiB
Go
3016 lines
89 KiB
Go
package lnwallet_test
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/sha256"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"math/rand"
|
|
"net"
|
|
"os"
|
|
"os/exec"
|
|
"path/filepath"
|
|
"reflect"
|
|
"runtime"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/btcjson"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/integration/rpctest"
|
|
"github.com/btcsuite/btcd/mempool"
|
|
"github.com/btcsuite/btcd/rpcclient"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/btcsuite/btcwallet/chain"
|
|
"github.com/btcsuite/btcwallet/walletdb"
|
|
_ "github.com/btcsuite/btcwallet/walletdb/bdb"
|
|
"github.com/coreos/bbolt"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightninglabs/neutrino"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/keychain"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwallet/btcwallet"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
)
|
|
|
|
var (
|
|
bobsPrivKey = []byte{
|
|
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
|
|
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
|
|
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
|
|
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
|
|
}
|
|
|
|
// Use a hard-coded HD seed.
|
|
testHdSeed = chainhash.Hash{
|
|
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
|
|
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
|
|
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
|
|
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
|
|
}
|
|
|
|
aliceHDSeed = chainhash.Hash{
|
|
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
|
|
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
|
|
0x4f, 0x2f, 0x6f, 0x25, 0x18, 0xa3, 0xef, 0xb9,
|
|
0x64, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
|
|
}
|
|
bobHDSeed = chainhash.Hash{
|
|
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
|
|
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
|
|
0x4f, 0x2f, 0x6f, 0x25, 0x98, 0xa3, 0xef, 0xb9,
|
|
0x69, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
|
|
}
|
|
|
|
netParams = &chaincfg.RegressionNetParams
|
|
chainHash = netParams.GenesisHash
|
|
|
|
_, alicePub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:])
|
|
_, bobPub = btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey)
|
|
|
|
// The number of confirmations required to consider any created channel
|
|
// open.
|
|
numReqConfs uint16 = 1
|
|
|
|
csvDelay uint16 = 4
|
|
|
|
bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000")
|
|
aliceAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.3:9000")
|
|
)
|
|
|
|
// assertProperBalance asserts than the total value of the unspent outputs
|
|
// within the wallet are *exactly* amount. If unable to retrieve the current
|
|
// balance, or the assertion fails, the test will halt with a fatal error.
|
|
func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet,
|
|
numConfirms int32, amount float64) {
|
|
|
|
balance, err := lw.ConfirmedBalance(numConfirms)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for balance: %v", err)
|
|
}
|
|
if balance.ToBTC() != amount {
|
|
t.Fatalf("wallet credits not properly loaded, should have 40BTC, "+
|
|
"instead have %v", balance)
|
|
}
|
|
}
|
|
|
|
func assertReservationDeleted(res *lnwallet.ChannelReservation, t *testing.T) {
|
|
if err := res.Cancel(); err == nil {
|
|
t.Fatalf("reservation wasn't deleted from wallet")
|
|
}
|
|
}
|
|
|
|
// mineAndAssertTxInBlock asserts that a transaction is included within the next
|
|
// block mined.
|
|
func mineAndAssertTxInBlock(t *testing.T, miner *rpctest.Harness,
|
|
txid chainhash.Hash) {
|
|
|
|
t.Helper()
|
|
|
|
// First, we'll wait for the transaction to arrive in the mempool.
|
|
if err := waitForMempoolTx(miner, &txid); err != nil {
|
|
t.Fatalf("unable to find %v in the mempool: %v", txid, err)
|
|
}
|
|
|
|
// We'll mined a block to confirm it.
|
|
blockHashes, err := miner.Node.Generate(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate new block: %v", err)
|
|
}
|
|
|
|
// Finally, we'll check it was actually mined in this block.
|
|
block, err := miner.Node.GetBlock(blockHashes[0])
|
|
if err != nil {
|
|
t.Fatalf("unable to get block %v: %v", blockHashes[0], err)
|
|
}
|
|
if len(block.Transactions) != 2 {
|
|
t.Fatalf("expected 2 transactions in block, found %d",
|
|
len(block.Transactions))
|
|
}
|
|
txHash := block.Transactions[1].TxHash()
|
|
if txHash != txid {
|
|
t.Fatalf("expected transaction %v to be mined, found %v", txid,
|
|
txHash)
|
|
}
|
|
}
|
|
|
|
// newPkScript generates a new public key script of the given address type.
|
|
func newPkScript(t *testing.T, w *lnwallet.LightningWallet,
|
|
addrType lnwallet.AddressType) []byte {
|
|
|
|
t.Helper()
|
|
|
|
addr, err := w.NewAddress(addrType, false)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new address: %v", err)
|
|
}
|
|
pkScript, err := txscript.PayToAddrScript(addr)
|
|
if err != nil {
|
|
t.Fatalf("unable to create output script: %v", err)
|
|
}
|
|
|
|
return pkScript
|
|
}
|
|
|
|
// sendCoins is a helper function that encompasses all the things needed for two
|
|
// parties to send on-chain funds to each other.
|
|
func sendCoins(t *testing.T, miner *rpctest.Harness,
|
|
sender, receiver *lnwallet.LightningWallet, output *wire.TxOut,
|
|
feeRate chainfee.SatPerKWeight) *wire.MsgTx { //nolint:unparam
|
|
|
|
t.Helper()
|
|
|
|
tx, err := sender.SendOutputs([]*wire.TxOut{output}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to send transaction: %v", err)
|
|
}
|
|
|
|
mineAndAssertTxInBlock(t, miner, tx.TxHash())
|
|
|
|
if err := waitForWalletSync(miner, sender); err != nil {
|
|
t.Fatalf("unable to sync alice: %v", err)
|
|
}
|
|
if err := waitForWalletSync(miner, receiver); err != nil {
|
|
t.Fatalf("unable to sync bob: %v", err)
|
|
}
|
|
|
|
return tx
|
|
}
|
|
|
|
// assertTxInWallet asserts that a transaction exists in the wallet with the
|
|
// expected confirmation status.
|
|
func assertTxInWallet(t *testing.T, w *lnwallet.LightningWallet,
|
|
txHash chainhash.Hash, confirmed bool) {
|
|
|
|
t.Helper()
|
|
|
|
// If the backend is Neutrino, then we can't determine unconfirmed
|
|
// transactions since it's not aware of the mempool.
|
|
if !confirmed && w.BackEnd() == "neutrino" {
|
|
return
|
|
}
|
|
|
|
// We'll fetch all of our transaction and go through each one until
|
|
// finding the expected transaction with its expected confirmation
|
|
// status.
|
|
txs, err := w.ListTransactionDetails()
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve transactions: %v", err)
|
|
}
|
|
for _, tx := range txs {
|
|
if tx.Hash != txHash {
|
|
continue
|
|
}
|
|
if tx.NumConfirmations <= 0 && confirmed {
|
|
t.Fatalf("expected transaction %v to be confirmed",
|
|
txHash)
|
|
}
|
|
if tx.NumConfirmations > 0 && !confirmed {
|
|
t.Fatalf("expected transaction %v to be unconfirmed",
|
|
txHash)
|
|
}
|
|
|
|
// We've found the transaction and it matches the desired
|
|
// confirmation status, so we can exit.
|
|
return
|
|
}
|
|
|
|
t.Fatalf("transaction %v not found", txHash)
|
|
}
|
|
|
|
func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet,
|
|
numOutputs int, btcPerOutput float64) error {
|
|
|
|
// For initial neutrino connection, wait a second.
|
|
// TODO(aakselrod): Eliminate the need for this.
|
|
switch w.BackEnd() {
|
|
case "neutrino":
|
|
time.Sleep(time.Second)
|
|
}
|
|
// Using the mining node, spend from a coinbase output numOutputs to
|
|
// give us btcPerOutput with each output.
|
|
satoshiPerOutput, err := btcutil.NewAmount(btcPerOutput)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to create amt: %v", err)
|
|
}
|
|
expectedBalance, err := w.ConfirmedBalance(1)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
expectedBalance += btcutil.Amount(int64(satoshiPerOutput) * int64(numOutputs))
|
|
addrs := make([]btcutil.Address, 0, numOutputs)
|
|
for i := 0; i < numOutputs; i++ {
|
|
// Grab a fresh address from the wallet to house this output.
|
|
walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
script, err := txscript.PayToAddrScript(walletAddr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
addrs = append(addrs, walletAddr)
|
|
|
|
output := &wire.TxOut{
|
|
Value: int64(satoshiPerOutput),
|
|
PkScript: script,
|
|
}
|
|
if _, err := miner.SendOutputs([]*wire.TxOut{output}, 2500); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// TODO(roasbeef): shouldn't hardcode 10, use config param that dictates
|
|
// how many confs we wait before opening a channel.
|
|
// Generate 10 blocks with the mining node, this should mine all
|
|
// numOutputs transactions created above. We generate 10 blocks here
|
|
// in order to give all the outputs a "sufficient" number of confirmations.
|
|
if _, err := miner.Node.Generate(10); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Wait until the wallet has finished syncing up to the main chain.
|
|
ticker := time.NewTicker(100 * time.Millisecond)
|
|
timeout := time.After(30 * time.Second)
|
|
|
|
for range ticker.C {
|
|
balance, err := w.ConfirmedBalance(1)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if balance == expectedBalance {
|
|
break
|
|
}
|
|
select {
|
|
case <-timeout:
|
|
synced, _, err := w.IsSynced()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return fmt.Errorf("timed out after 30 seconds "+
|
|
"waiting for balance %v, current balance %v, "+
|
|
"synced: %t", expectedBalance, balance, synced)
|
|
default:
|
|
}
|
|
}
|
|
ticker.Stop()
|
|
|
|
return nil
|
|
}
|
|
|
|
// createTestWallet creates a test LightningWallet will a total of 20BTC
|
|
// available for funding channels.
|
|
func createTestWallet(tempTestDir string, miningNode *rpctest.Harness,
|
|
netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier,
|
|
wc lnwallet.WalletController, keyRing keychain.SecretKeyRing,
|
|
signer input.Signer, bio lnwallet.BlockChainIO) (*lnwallet.LightningWallet, error) {
|
|
|
|
dbDir := filepath.Join(tempTestDir, "cdb")
|
|
cdb, err := channeldb.Open(dbDir)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cfg := lnwallet.Config{
|
|
Database: cdb,
|
|
Notifier: notifier,
|
|
SecretKeyRing: keyRing,
|
|
WalletController: wc,
|
|
Signer: signer,
|
|
ChainIO: bio,
|
|
FeeEstimator: chainfee.NewStaticEstimator(2500, 0),
|
|
DefaultConstraints: channeldb.ChannelConstraints{
|
|
DustLimit: 500,
|
|
MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100,
|
|
ChanReserve: 100,
|
|
MinHTLC: 400,
|
|
MaxAcceptedHtlcs: 900,
|
|
},
|
|
NetParams: *netParams,
|
|
}
|
|
|
|
wallet, err := lnwallet.NewLightningWallet(cfg)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if err := wallet.Startup(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Load our test wallet with 20 outputs each holding 4BTC.
|
|
if err := loadTestCredits(miningNode, wallet, 20, 4); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return wallet, nil
|
|
}
|
|
|
|
func testDualFundingReservationWorkflow(miner *rpctest.Harness,
|
|
alice, bob *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
fundingAmount, err := btcutil.NewAmount(5)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
|
|
// In this scenario, we'll test a dual funder reservation, with each
|
|
// side putting in 10 BTC.
|
|
|
|
// Alice initiates a channel funded with 5 BTC for each side, so 10 BTC
|
|
// total. She also generates 2 BTC in change.
|
|
feePerKw, err := alice.Cfg.FeeEstimator.EstimateFeePerKW(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
aliceReq := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: fundingAmount,
|
|
RemoteFundingAmt: fundingAmount,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
}
|
|
aliceChanReservation, err := alice.InitChannelReservation(aliceReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to initialize funding reservation: %v", err)
|
|
}
|
|
aliceChanReservation.SetNumConfsRequired(numReqConfs)
|
|
channelConstraints := &channeldb.ChannelConstraints{
|
|
DustLimit: lnwallet.DefaultDustLimit(),
|
|
ChanReserve: fundingAmount / 100,
|
|
MaxPendingAmount: lnwire.NewMSatFromSatoshis(fundingAmount),
|
|
MinHTLC: 1,
|
|
MaxAcceptedHtlcs: input.MaxHTLCNumber / 2,
|
|
CsvDelay: csvDelay,
|
|
}
|
|
err = aliceChanReservation.CommitConstraints(channelConstraints)
|
|
if err != nil {
|
|
t.Fatalf("unable to verify constraints: %v", err)
|
|
}
|
|
|
|
// The channel reservation should now be populated with a multi-sig key
|
|
// from our HD chain, a change output with 3 BTC, and 2 outputs
|
|
// selected of 4 BTC each. Additionally, the rest of the items needed
|
|
// to fulfill a funding contribution should also have been filled in.
|
|
aliceContribution := aliceChanReservation.OurContribution()
|
|
if len(aliceContribution.Inputs) != 2 {
|
|
t.Fatalf("outputs for funding tx not properly selected, have %v "+
|
|
"outputs should have 2", len(aliceContribution.Inputs))
|
|
}
|
|
assertContributionInitPopulated(t, aliceContribution)
|
|
|
|
// Bob does the same, generating his own contribution. He then also
|
|
// receives' Alice's contribution, and consumes that so we can continue
|
|
// the funding process.
|
|
bobReq := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: alicePub,
|
|
NodeAddr: aliceAddr,
|
|
LocalFundingAmt: fundingAmount,
|
|
RemoteFundingAmt: fundingAmount,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
}
|
|
bobChanReservation, err := bob.InitChannelReservation(bobReq)
|
|
if err != nil {
|
|
t.Fatalf("bob unable to init channel reservation: %v", err)
|
|
}
|
|
err = bobChanReservation.CommitConstraints(channelConstraints)
|
|
if err != nil {
|
|
t.Fatalf("unable to verify constraints: %v", err)
|
|
}
|
|
bobChanReservation.SetNumConfsRequired(numReqConfs)
|
|
|
|
assertContributionInitPopulated(t, bobChanReservation.OurContribution())
|
|
|
|
err = bobChanReservation.ProcessContribution(aliceContribution)
|
|
if err != nil {
|
|
t.Fatalf("bob unable to process alice's contribution: %v", err)
|
|
}
|
|
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
|
|
|
|
bobContribution := bobChanReservation.OurContribution()
|
|
|
|
// Bob then sends over his contribution, which will be consumed by
|
|
// Alice. After this phase, Alice should have all the necessary
|
|
// material required to craft the funding transaction and commitment
|
|
// transactions.
|
|
err = aliceChanReservation.ProcessContribution(bobContribution)
|
|
if err != nil {
|
|
t.Fatalf("alice unable to process bob's contribution: %v", err)
|
|
}
|
|
assertContributionInitPopulated(t, aliceChanReservation.TheirContribution())
|
|
|
|
// At this point, all Alice's signatures should be fully populated.
|
|
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
|
|
if aliceFundingSigs == nil {
|
|
t.Fatalf("alice's funding signatures not populated")
|
|
}
|
|
if aliceCommitSig == nil {
|
|
t.Fatalf("alice's commit signatures not populated")
|
|
}
|
|
|
|
// Additionally, Bob's signatures should also be fully populated.
|
|
bobFundingSigs, bobCommitSig := bobChanReservation.OurSignatures()
|
|
if bobFundingSigs == nil {
|
|
t.Fatalf("bob's funding signatures not populated")
|
|
}
|
|
if bobCommitSig == nil {
|
|
t.Fatalf("bob's commit signatures not populated")
|
|
}
|
|
|
|
// To conclude, we'll consume first Alice's signatures with Bob, and
|
|
// then the other way around.
|
|
_, err = aliceChanReservation.CompleteReservation(
|
|
bobFundingSigs, bobCommitSig,
|
|
)
|
|
if err != nil {
|
|
for _, in := range aliceChanReservation.FinalFundingTx().TxIn {
|
|
fmt.Println(in.PreviousOutPoint.String())
|
|
}
|
|
t.Fatalf("unable to consume alice's sigs: %v", err)
|
|
}
|
|
_, err = bobChanReservation.CompleteReservation(
|
|
aliceFundingSigs, aliceCommitSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to consume bob's sigs: %v", err)
|
|
}
|
|
|
|
// At this point, the funding tx should have been populated.
|
|
fundingTx := aliceChanReservation.FinalFundingTx()
|
|
if fundingTx == nil {
|
|
t.Fatalf("funding transaction never created!")
|
|
}
|
|
|
|
// The resulting active channel state should have been persisted to the
|
|
// DB.
|
|
fundingSha := fundingTx.TxHash()
|
|
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve channel from DB: %v", err)
|
|
}
|
|
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
|
|
t.Fatalf("channel state not properly saved")
|
|
}
|
|
if !aliceChannels[0].ChanType.IsDualFunder() {
|
|
t.Fatalf("channel not detected as dual funder")
|
|
}
|
|
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve channel from DB: %v", err)
|
|
}
|
|
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
|
|
t.Fatalf("channel state not properly saved")
|
|
}
|
|
if !bobChannels[0].ChanType.IsDualFunder() {
|
|
t.Fatalf("channel not detected as dual funder")
|
|
}
|
|
|
|
// Let Alice publish the funding transaction.
|
|
if err := alice.PublishTransaction(fundingTx); err != nil {
|
|
t.Fatalf("unable to publish funding tx: %v", err)
|
|
}
|
|
|
|
// Mine a single block, the funding transaction should be included
|
|
// within this block.
|
|
err = waitForMempoolTx(miner, &fundingSha)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
blockHashes, err := miner.Node.Generate(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
block, err := miner.Node.GetBlock(blockHashes[0])
|
|
if err != nil {
|
|
t.Fatalf("unable to find block: %v", err)
|
|
}
|
|
if len(block.Transactions) != 2 {
|
|
t.Fatalf("funding transaction wasn't mined: %v", err)
|
|
}
|
|
blockTx := block.Transactions[1]
|
|
if blockTx.TxHash() != fundingSha {
|
|
t.Fatalf("incorrect transaction was mined")
|
|
}
|
|
|
|
assertReservationDeleted(aliceChanReservation, t)
|
|
assertReservationDeleted(bobChanReservation, t)
|
|
|
|
// Wait for wallets to catch up to prevent issues in subsequent tests.
|
|
err = waitForWalletSync(miner, alice)
|
|
if err != nil {
|
|
t.Fatalf("unable to sync alice: %v", err)
|
|
}
|
|
err = waitForWalletSync(miner, bob)
|
|
if err != nil {
|
|
t.Fatalf("unable to sync bob: %v", err)
|
|
}
|
|
}
|
|
|
|
func testFundingTransactionLockedOutputs(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// Create a single channel asking for 16 BTC total.
|
|
fundingAmount, err := btcutil.NewAmount(8)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
feePerKw, err := alice.Cfg.FeeEstimator.EstimateFeePerKW(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
req := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: fundingAmount,
|
|
RemoteFundingAmt: 0,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
}
|
|
if _, err := alice.InitChannelReservation(req); err != nil {
|
|
t.Fatalf("unable to initialize funding reservation 1: %v", err)
|
|
}
|
|
|
|
// Now attempt to reserve funds for another channel, this time
|
|
// requesting 900 BTC. We only have around 64BTC worth of outpoints
|
|
// that aren't locked, so this should fail.
|
|
amt, err := btcutil.NewAmount(900)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
failedReq := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: amt,
|
|
RemoteFundingAmt: 0,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
}
|
|
failedReservation, err := alice.InitChannelReservation(failedReq)
|
|
if err == nil {
|
|
t.Fatalf("not error returned, should fail on coin selection")
|
|
}
|
|
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
|
|
t.Fatalf("error not coinselect error: %v", err)
|
|
}
|
|
if failedReservation != nil {
|
|
t.Fatalf("reservation should be nil")
|
|
}
|
|
}
|
|
|
|
func testFundingCancellationNotEnoughFunds(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
feePerKw, err := alice.Cfg.FeeEstimator.EstimateFeePerKW(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
|
|
// Create a reservation for 44 BTC.
|
|
fundingAmount, err := btcutil.NewAmount(44)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
req := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: fundingAmount,
|
|
RemoteFundingAmt: 0,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
}
|
|
chanReservation, err := alice.InitChannelReservation(req)
|
|
if err != nil {
|
|
t.Fatalf("unable to initialize funding reservation: %v", err)
|
|
}
|
|
|
|
// Attempt to create another channel with 44 BTC, this should fail.
|
|
_, err = alice.InitChannelReservation(req)
|
|
if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok {
|
|
t.Fatalf("coin selection succeeded should have insufficient funds: %v",
|
|
err)
|
|
}
|
|
|
|
// Now cancel that old reservation.
|
|
if err := chanReservation.Cancel(); err != nil {
|
|
t.Fatalf("unable to cancel reservation: %v", err)
|
|
}
|
|
|
|
// Those outpoints should no longer be locked.
|
|
lockedOutPoints := alice.LockedOutpoints()
|
|
if len(lockedOutPoints) != 0 {
|
|
t.Fatalf("outpoints still locked")
|
|
}
|
|
|
|
// Reservation ID should no longer be tracked.
|
|
numReservations := alice.ActiveReservations()
|
|
if len(alice.ActiveReservations()) != 0 {
|
|
t.Fatalf("should have 0 reservations, instead have %v",
|
|
numReservations)
|
|
}
|
|
|
|
// TODO(roasbeef): create method like Balance that ignores locked
|
|
// outpoints, will let us fail early/fast instead of querying and
|
|
// attempting coin selection.
|
|
|
|
// Request to fund a new channel should now succeed.
|
|
if _, err := alice.InitChannelReservation(req); err != nil {
|
|
t.Fatalf("unable to initialize funding reservation: %v", err)
|
|
}
|
|
}
|
|
|
|
func testCancelNonExistentReservation(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
feePerKw, err := alice.Cfg.FeeEstimator.EstimateFeePerKW(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
|
|
// Create our own reservation, give it some ID.
|
|
res, err := lnwallet.NewChannelReservation(
|
|
10000, 10000, feePerKw, alice, 22, 10, &testHdSeed,
|
|
lnwire.FFAnnounceChannel, true,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create res: %v", err)
|
|
}
|
|
|
|
// Attempt to cancel this reservation. This should fail, we know
|
|
// nothing of it.
|
|
if err := res.Cancel(); err == nil {
|
|
t.Fatalf("canceled non-existent reservation")
|
|
}
|
|
}
|
|
|
|
func testReservationInitiatorBalanceBelowDustCancel(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// We'll attempt to create a new reservation with an extremely high
|
|
// commitment fee rate. This should push our balance into the negative
|
|
// and result in a failure to create the reservation.
|
|
const numBTC = 4
|
|
fundingAmount, err := btcutil.NewAmount(numBTC)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
|
|
feePerKw := chainfee.SatPerKWeight(
|
|
numBTC * numBTC * btcutil.SatoshiPerBitcoin,
|
|
)
|
|
req := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: fundingAmount,
|
|
RemoteFundingAmt: 0,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: 1000,
|
|
PushMSat: 0,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
Tweakless: true,
|
|
}
|
|
_, err = alice.InitChannelReservation(req)
|
|
switch {
|
|
case err == nil:
|
|
t.Fatalf("initialization should have failed due to " +
|
|
"insufficient local amount")
|
|
|
|
case !strings.Contains(err.Error(), "Funder balance too small"):
|
|
t.Fatalf("incorrect error: %v", err)
|
|
}
|
|
}
|
|
|
|
func assertContributionInitPopulated(t *testing.T, c *lnwallet.ChannelContribution) {
|
|
_, _, line, _ := runtime.Caller(1)
|
|
|
|
if c.FirstCommitmentPoint == nil {
|
|
t.Fatalf("line #%v: commitment point not fond", line)
|
|
}
|
|
|
|
if c.CsvDelay == 0 {
|
|
t.Fatalf("line #%v: csv delay not set", line)
|
|
}
|
|
|
|
if c.MultiSigKey.PubKey == nil {
|
|
t.Fatalf("line #%v: multi-sig key not set", line)
|
|
}
|
|
if c.RevocationBasePoint.PubKey == nil {
|
|
t.Fatalf("line #%v: revocation key not set", line)
|
|
}
|
|
if c.PaymentBasePoint.PubKey == nil {
|
|
t.Fatalf("line #%v: payment key not set", line)
|
|
}
|
|
if c.DelayBasePoint.PubKey == nil {
|
|
t.Fatalf("line #%v: delay key not set", line)
|
|
}
|
|
|
|
if c.DustLimit == 0 {
|
|
t.Fatalf("line #%v: dust limit not set", line)
|
|
}
|
|
if c.MaxPendingAmount == 0 {
|
|
t.Fatalf("line #%v: max pending amt not set", line)
|
|
}
|
|
if c.ChanReserve == 0 {
|
|
t.Fatalf("line #%v: chan reserve not set", line)
|
|
}
|
|
if c.MinHTLC == 0 {
|
|
t.Fatalf("line #%v: min htlc not set", line)
|
|
}
|
|
if c.MaxAcceptedHtlcs == 0 {
|
|
t.Fatalf("line #%v: max accepted htlc's not set", line)
|
|
}
|
|
}
|
|
|
|
func testSingleFunderReservationWorkflow(miner *rpctest.Harness,
|
|
alice, bob *lnwallet.LightningWallet, t *testing.T, tweakless bool) {
|
|
|
|
// For this scenario, Alice will be the channel initiator while bob
|
|
// will act as the responder to the workflow.
|
|
|
|
// First, Alice will Initialize a reservation for a channel with 4 BTC
|
|
// funded solely by us. We'll also initially push 1 BTC of the channel
|
|
// towards Bob's side.
|
|
fundingAmt, err := btcutil.NewAmount(4)
|
|
if err != nil {
|
|
t.Fatalf("unable to create amt: %v", err)
|
|
}
|
|
pushAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin)
|
|
feePerKw, err := alice.Cfg.FeeEstimator.EstimateFeePerKW(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query fee estimator: %v", err)
|
|
}
|
|
aliceReq := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: bobPub,
|
|
NodeAddr: bobAddr,
|
|
LocalFundingAmt: fundingAmt,
|
|
RemoteFundingAmt: 0,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: pushAmt,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
Tweakless: tweakless,
|
|
}
|
|
aliceChanReservation, err := alice.InitChannelReservation(aliceReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to init channel reservation: %v", err)
|
|
}
|
|
aliceChanReservation.SetNumConfsRequired(numReqConfs)
|
|
channelConstraints := &channeldb.ChannelConstraints{
|
|
DustLimit: lnwallet.DefaultDustLimit(),
|
|
ChanReserve: fundingAmt / 100,
|
|
MaxPendingAmount: lnwire.NewMSatFromSatoshis(fundingAmt),
|
|
MinHTLC: 1,
|
|
MaxAcceptedHtlcs: input.MaxHTLCNumber / 2,
|
|
CsvDelay: csvDelay,
|
|
}
|
|
err = aliceChanReservation.CommitConstraints(channelConstraints)
|
|
if err != nil {
|
|
t.Fatalf("unable to verify constraints: %v", err)
|
|
}
|
|
|
|
// Verify all contribution fields have been set properly.
|
|
aliceContribution := aliceChanReservation.OurContribution()
|
|
if len(aliceContribution.Inputs) < 1 {
|
|
t.Fatalf("outputs for funding tx not properly selected, have %v "+
|
|
"outputs should at least 1", len(aliceContribution.Inputs))
|
|
}
|
|
if len(aliceContribution.ChangeOutputs) != 1 {
|
|
t.Fatalf("coin selection failed, should have one change outputs, "+
|
|
"instead have: %v", len(aliceContribution.ChangeOutputs))
|
|
}
|
|
assertContributionInitPopulated(t, aliceContribution)
|
|
|
|
// Next, Bob receives the initial request, generates a corresponding
|
|
// reservation initiation, then consume Alice's contribution.
|
|
bobReq := &lnwallet.InitFundingReserveMsg{
|
|
ChainHash: chainHash,
|
|
NodeID: alicePub,
|
|
NodeAddr: aliceAddr,
|
|
LocalFundingAmt: 0,
|
|
RemoteFundingAmt: fundingAmt,
|
|
CommitFeePerKw: feePerKw,
|
|
FundingFeePerKw: feePerKw,
|
|
PushMSat: pushAmt,
|
|
Flags: lnwire.FFAnnounceChannel,
|
|
Tweakless: tweakless,
|
|
}
|
|
bobChanReservation, err := bob.InitChannelReservation(bobReq)
|
|
if err != nil {
|
|
t.Fatalf("unable to create bob reservation: %v", err)
|
|
}
|
|
err = bobChanReservation.CommitConstraints(channelConstraints)
|
|
if err != nil {
|
|
t.Fatalf("unable to verify constraints: %v", err)
|
|
}
|
|
bobChanReservation.SetNumConfsRequired(numReqConfs)
|
|
|
|
// We'll ensure that Bob's contribution also gets generated properly.
|
|
bobContribution := bobChanReservation.OurContribution()
|
|
assertContributionInitPopulated(t, bobContribution)
|
|
|
|
// With his contribution generated, he can now process Alice's
|
|
// contribution.
|
|
err = bobChanReservation.ProcessSingleContribution(aliceContribution)
|
|
if err != nil {
|
|
t.Fatalf("bob unable to process alice's contribution: %v", err)
|
|
}
|
|
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
|
|
|
|
// Bob will next send over his contribution to Alice, we simulate this
|
|
// by having Alice immediately process his contribution.
|
|
err = aliceChanReservation.ProcessContribution(bobContribution)
|
|
if err != nil {
|
|
t.Fatalf("alice unable to process bob's contribution")
|
|
}
|
|
assertContributionInitPopulated(t, bobChanReservation.TheirContribution())
|
|
|
|
// At this point, Alice should have generated all the signatures
|
|
// required for the funding transaction, as well as Alice's commitment
|
|
// signature to bob.
|
|
aliceRemoteContribution := aliceChanReservation.TheirContribution()
|
|
aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures()
|
|
if aliceFundingSigs == nil {
|
|
t.Fatalf("funding sigs not found")
|
|
}
|
|
if aliceCommitSig == nil {
|
|
t.Fatalf("commitment sig not found")
|
|
}
|
|
|
|
// Additionally, the funding tx and the funding outpoint should have
|
|
// been populated.
|
|
if aliceChanReservation.FinalFundingTx() == nil {
|
|
t.Fatalf("funding transaction never created!")
|
|
}
|
|
if aliceChanReservation.FundingOutpoint() == nil {
|
|
t.Fatalf("funding outpoint never created!")
|
|
}
|
|
|
|
// Their funds should also be filled in.
|
|
if len(aliceRemoteContribution.Inputs) != 0 {
|
|
t.Fatalf("bob shouldn't have any inputs, instead has %v",
|
|
len(aliceRemoteContribution.Inputs))
|
|
}
|
|
if len(aliceRemoteContribution.ChangeOutputs) != 0 {
|
|
t.Fatalf("bob shouldn't have any change outputs, instead "+
|
|
"has %v",
|
|
aliceRemoteContribution.ChangeOutputs[0].Value)
|
|
}
|
|
|
|
// Next, Alice will send over her signature for Bob's commitment
|
|
// transaction, as well as the funding outpoint.
|
|
fundingPoint := aliceChanReservation.FundingOutpoint()
|
|
_, err = bobChanReservation.CompleteReservationSingle(
|
|
fundingPoint, aliceCommitSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("bob unable to consume single reservation: %v", err)
|
|
}
|
|
|
|
// Finally, we'll conclude the reservation process by sending over
|
|
// Bob's commitment signature, which is the final thing Alice needs to
|
|
// be able to safely broadcast the funding transaction.
|
|
_, bobCommitSig := bobChanReservation.OurSignatures()
|
|
if bobCommitSig == nil {
|
|
t.Fatalf("bob failed to generate commitment signature: %v", err)
|
|
}
|
|
_, err = aliceChanReservation.CompleteReservation(
|
|
nil, bobCommitSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("alice unable to complete reservation: %v", err)
|
|
}
|
|
|
|
// The resulting active channel state should have been persisted to the
|
|
// DB for both Alice and Bob.
|
|
fundingTx := aliceChanReservation.FinalFundingTx()
|
|
fundingSha := fundingTx.TxHash()
|
|
aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve channel from DB: %v", err)
|
|
}
|
|
if len(aliceChannels) != 1 {
|
|
t.Fatalf("alice didn't save channel state: %v", err)
|
|
}
|
|
if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
|
|
t.Fatalf("channel state not properly saved: %v vs %v",
|
|
hex.EncodeToString(aliceChannels[0].FundingOutpoint.Hash[:]),
|
|
hex.EncodeToString(fundingSha[:]))
|
|
}
|
|
if !aliceChannels[0].IsInitiator {
|
|
t.Fatalf("alice not detected as channel initiator")
|
|
}
|
|
if !aliceChannels[0].ChanType.IsSingleFunder() {
|
|
t.Fatalf("channel type is incorrect, expected %v instead got %v",
|
|
channeldb.SingleFunderBit, aliceChannels[0].ChanType)
|
|
}
|
|
|
|
bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve channel from DB: %v", err)
|
|
}
|
|
if len(bobChannels) != 1 {
|
|
t.Fatalf("bob didn't save channel state: %v", err)
|
|
}
|
|
if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) {
|
|
t.Fatalf("channel state not properly saved: %v vs %v",
|
|
hex.EncodeToString(bobChannels[0].FundingOutpoint.Hash[:]),
|
|
hex.EncodeToString(fundingSha[:]))
|
|
}
|
|
if bobChannels[0].IsInitiator {
|
|
t.Fatalf("bob not detected as channel responder")
|
|
}
|
|
if !bobChannels[0].ChanType.IsSingleFunder() {
|
|
t.Fatalf("channel type is incorrect, expected %v instead got %v",
|
|
channeldb.SingleFunderBit, bobChannels[0].ChanType)
|
|
}
|
|
|
|
// Let Alice publish the funding transaction.
|
|
if err := alice.PublishTransaction(fundingTx); err != nil {
|
|
t.Fatalf("unable to publish funding tx: %v", err)
|
|
}
|
|
|
|
// Mine a single block, the funding transaction should be included
|
|
// within this block.
|
|
err = waitForMempoolTx(miner, &fundingSha)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
blockHashes, err := miner.Node.Generate(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
block, err := miner.Node.GetBlock(blockHashes[0])
|
|
if err != nil {
|
|
t.Fatalf("unable to find block: %v", err)
|
|
}
|
|
if len(block.Transactions) != 2 {
|
|
t.Fatalf("funding transaction wasn't mined: %d",
|
|
len(block.Transactions))
|
|
}
|
|
blockTx := block.Transactions[1]
|
|
if blockTx.TxHash() != fundingSha {
|
|
t.Fatalf("incorrect transaction was mined")
|
|
}
|
|
|
|
assertReservationDeleted(aliceChanReservation, t)
|
|
assertReservationDeleted(bobChanReservation, t)
|
|
}
|
|
|
|
func testListTransactionDetails(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// Create 5 new outputs spendable by the wallet.
|
|
const numTxns = 5
|
|
const outputAmt = btcutil.SatoshiPerBitcoin
|
|
txids := make(map[chainhash.Hash]struct{})
|
|
for i := 0; i < numTxns; i++ {
|
|
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new address: %v", err)
|
|
}
|
|
script, err := txscript.PayToAddrScript(addr)
|
|
if err != nil {
|
|
t.Fatalf("unable to create output script: %v", err)
|
|
}
|
|
|
|
output := &wire.TxOut{
|
|
Value: outputAmt,
|
|
PkScript: script,
|
|
}
|
|
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to send coinbase: %v", err)
|
|
}
|
|
txids[*txid] = struct{}{}
|
|
}
|
|
|
|
// Generate 10 blocks to mine all the transactions created above.
|
|
const numBlocksMined = 10
|
|
blocks, err := miner.Node.Generate(numBlocksMined)
|
|
if err != nil {
|
|
t.Fatalf("unable to mine blocks: %v", err)
|
|
}
|
|
|
|
// Next, fetch all the current transaction details.
|
|
err = waitForWalletSync(miner, alice)
|
|
if err != nil {
|
|
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
|
|
}
|
|
txDetails, err := alice.ListTransactionDetails()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch tx details: %v", err)
|
|
}
|
|
|
|
// This is a mapping from:
|
|
// blockHash -> transactionHash -> transactionOutputs
|
|
blockTxOuts := make(map[chainhash.Hash]map[chainhash.Hash][]*wire.TxOut)
|
|
|
|
// Each of the transactions created above should be found with the
|
|
// proper details populated.
|
|
for _, txDetail := range txDetails {
|
|
if _, ok := txids[txDetail.Hash]; !ok {
|
|
continue
|
|
}
|
|
|
|
if txDetail.NumConfirmations != numBlocksMined {
|
|
t.Fatalf("num confs incorrect, got %v expected %v",
|
|
txDetail.NumConfirmations, numBlocksMined)
|
|
}
|
|
if txDetail.Value != outputAmt {
|
|
t.Fatalf("tx value incorrect, got %v expected %v",
|
|
txDetail.Value, outputAmt)
|
|
}
|
|
|
|
if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) {
|
|
t.Fatalf("block hash mismatch, got %v expected %v",
|
|
txDetail.BlockHash, blocks[0])
|
|
}
|
|
|
|
// This fetches the transactions in a block so that we can compare the
|
|
// txouts stored in the mined transaction against the ones in the transaction
|
|
// details
|
|
if _, ok := blockTxOuts[*txDetail.BlockHash]; !ok {
|
|
fetchedBlock, err := alice.Cfg.ChainIO.GetBlock(txDetail.BlockHash)
|
|
if err != nil {
|
|
t.Fatalf("err fetching block: %s", err)
|
|
}
|
|
|
|
transactions :=
|
|
make(map[chainhash.Hash][]*wire.TxOut, len(fetchedBlock.Transactions))
|
|
for _, tx := range fetchedBlock.Transactions {
|
|
transactions[tx.TxHash()] = tx.TxOut
|
|
}
|
|
|
|
blockTxOuts[fetchedBlock.BlockHash()] = transactions
|
|
}
|
|
|
|
if txOuts, ok := blockTxOuts[*txDetail.BlockHash][txDetail.Hash]; !ok {
|
|
t.Fatalf("tx (%v) not found in block (%v)",
|
|
txDetail.Hash, txDetail.BlockHash)
|
|
} else {
|
|
var destinationAddresses []btcutil.Address
|
|
|
|
for _, txOut := range txOuts {
|
|
_, addrs, _, err :=
|
|
txscript.ExtractPkScriptAddrs(txOut.PkScript, &alice.Cfg.NetParams)
|
|
if err != nil {
|
|
t.Fatalf("err extract script addresses: %s", err)
|
|
}
|
|
destinationAddresses = append(destinationAddresses, addrs...)
|
|
}
|
|
|
|
if !reflect.DeepEqual(txDetail.DestAddresses, destinationAddresses) {
|
|
t.Fatalf("destination addresses mismatch, got %v expected %v",
|
|
txDetail.DestAddresses, destinationAddresses)
|
|
}
|
|
}
|
|
|
|
delete(txids, txDetail.Hash)
|
|
}
|
|
if len(txids) != 0 {
|
|
t.Fatalf("all transactions not found in details: left=%v, "+
|
|
"returned_set=%v", spew.Sdump(txids),
|
|
spew.Sdump(txDetails))
|
|
}
|
|
|
|
// Next create a transaction paying to an output which isn't under the
|
|
// wallet's control.
|
|
minerAddr, err := miner.NewAddress()
|
|
if err != nil {
|
|
t.Fatalf("unable to generate address: %v", err)
|
|
}
|
|
outputScript, err := txscript.PayToAddrScript(minerAddr)
|
|
if err != nil {
|
|
t.Fatalf("unable to make output script: %v", err)
|
|
}
|
|
burnOutput := wire.NewTxOut(outputAmt, outputScript)
|
|
burnTX, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create burn tx: %v", err)
|
|
}
|
|
burnTXID := burnTX.TxHash()
|
|
err = waitForMempoolTx(miner, &burnTXID)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
// Before we mine the next block, we'll ensure that the above
|
|
// transaction shows up in the set of unconfirmed transactions returned
|
|
// by ListTransactionDetails.
|
|
err = waitForWalletSync(miner, alice)
|
|
if err != nil {
|
|
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
|
|
}
|
|
|
|
// We should be able to find the transaction above in the set of
|
|
// returned transactions, and it should have a confirmation of -1,
|
|
// indicating that it's not yet mined.
|
|
txDetails, err = alice.ListTransactionDetails()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch tx details: %v", err)
|
|
}
|
|
var mempoolTxFound bool
|
|
for _, txDetail := range txDetails {
|
|
if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
|
|
continue
|
|
}
|
|
|
|
// Now that we've found the transaction, ensure that it has a
|
|
// negative number of confirmations to indicate that it's
|
|
// unconfirmed.
|
|
mempoolTxFound = true
|
|
if txDetail.NumConfirmations != 0 {
|
|
t.Fatalf("num confs incorrect, got %v expected %v",
|
|
txDetail.NumConfirmations, 0)
|
|
}
|
|
|
|
// We test that each txDetail has destination addresses. This ensures
|
|
// that even when we have 0 confirmation transactions, the destination
|
|
// addresses are returned.
|
|
var match bool
|
|
for _, addr := range txDetail.DestAddresses {
|
|
if addr.String() == minerAddr.String() {
|
|
match = true
|
|
break
|
|
}
|
|
}
|
|
if !match {
|
|
t.Fatalf("minerAddr: %v should have been a dest addr", minerAddr)
|
|
}
|
|
}
|
|
if !mempoolTxFound {
|
|
t.Fatalf("unable to find mempool tx in tx details!")
|
|
}
|
|
|
|
burnBlock, err := miner.Node.Generate(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to mine block: %v", err)
|
|
}
|
|
|
|
// Fetch the transaction details again, the new transaction should be
|
|
// shown as debiting from the wallet's balance.
|
|
err = waitForWalletSync(miner, alice)
|
|
if err != nil {
|
|
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
|
|
}
|
|
txDetails, err = alice.ListTransactionDetails()
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch tx details: %v", err)
|
|
}
|
|
var burnTxFound bool
|
|
for _, txDetail := range txDetails {
|
|
if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) {
|
|
continue
|
|
}
|
|
|
|
burnTxFound = true
|
|
if txDetail.NumConfirmations != 1 {
|
|
t.Fatalf("num confs incorrect, got %v expected %v",
|
|
txDetail.NumConfirmations, 1)
|
|
}
|
|
|
|
// We assert that the value is greater than the amount we
|
|
// attempted to send, as the wallet should have paid some amount
|
|
// of network fees.
|
|
if txDetail.Value >= -outputAmt {
|
|
fmt.Println(spew.Sdump(txDetail))
|
|
t.Fatalf("tx value incorrect, got %v expected %v",
|
|
int64(txDetail.Value), -int64(outputAmt))
|
|
}
|
|
if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) {
|
|
t.Fatalf("block hash mismatch, got %v expected %v",
|
|
txDetail.BlockHash, burnBlock[0])
|
|
}
|
|
}
|
|
if !burnTxFound {
|
|
t.Fatal("tx burning btc not found")
|
|
}
|
|
}
|
|
|
|
func testTransactionSubscriptions(miner *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// First, check to see if this wallet meets the TransactionNotifier
|
|
// interface, if not then we'll skip this test for this particular
|
|
// implementation of the WalletController.
|
|
txClient, err := alice.SubscribeTransactions()
|
|
if err != nil {
|
|
t.Skipf("unable to generate tx subscription: %v", err)
|
|
}
|
|
defer txClient.Cancel()
|
|
|
|
const (
|
|
outputAmt = btcutil.SatoshiPerBitcoin
|
|
numTxns = 3
|
|
)
|
|
errCh1 := make(chan error, 1)
|
|
switch alice.BackEnd() {
|
|
case "neutrino":
|
|
// Neutrino doesn't listen for unconfirmed transactions.
|
|
default:
|
|
go func() {
|
|
for i := 0; i < numTxns; i++ {
|
|
txDetail := <-txClient.UnconfirmedTransactions()
|
|
if txDetail.NumConfirmations != 0 {
|
|
errCh1 <- fmt.Errorf("incorrect number of confs, "+
|
|
"expected %v got %v", 0,
|
|
txDetail.NumConfirmations)
|
|
return
|
|
}
|
|
if txDetail.Value != outputAmt {
|
|
errCh1 <- fmt.Errorf("incorrect output amt, "+
|
|
"expected %v got %v", outputAmt,
|
|
txDetail.Value)
|
|
return
|
|
}
|
|
if txDetail.BlockHash != nil {
|
|
errCh1 <- fmt.Errorf("block hash should be nil, "+
|
|
"is instead %v",
|
|
txDetail.BlockHash)
|
|
return
|
|
}
|
|
}
|
|
errCh1 <- nil
|
|
}()
|
|
}
|
|
|
|
// Next, fetch a fresh address from the wallet, create 3 new outputs
|
|
// with the pkScript.
|
|
for i := 0; i < numTxns; i++ {
|
|
addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false)
|
|
if err != nil {
|
|
t.Fatalf("unable to create new address: %v", err)
|
|
}
|
|
script, err := txscript.PayToAddrScript(addr)
|
|
if err != nil {
|
|
t.Fatalf("unable to create output script: %v", err)
|
|
}
|
|
|
|
output := &wire.TxOut{
|
|
Value: outputAmt,
|
|
PkScript: script,
|
|
}
|
|
txid, err := miner.SendOutputs([]*wire.TxOut{output}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to send coinbase: %v", err)
|
|
}
|
|
err = waitForMempoolTx(miner, txid)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
}
|
|
|
|
switch alice.BackEnd() {
|
|
case "neutrino":
|
|
// Neutrino doesn't listen for on unconfirmed transactions.
|
|
default:
|
|
// We should receive a notification for all three transactions
|
|
// generated above.
|
|
select {
|
|
case <-time.After(time.Second * 10):
|
|
t.Fatalf("transactions not received after 10 seconds")
|
|
case err := <-errCh1:
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
}
|
|
|
|
errCh2 := make(chan error, 1)
|
|
go func() {
|
|
for i := 0; i < numTxns; i++ {
|
|
txDetail := <-txClient.ConfirmedTransactions()
|
|
if txDetail.NumConfirmations != 1 {
|
|
errCh2 <- fmt.Errorf("incorrect number of confs for %s, expected %v got %v",
|
|
txDetail.Hash, 1, txDetail.NumConfirmations)
|
|
return
|
|
}
|
|
if txDetail.Value != outputAmt {
|
|
errCh2 <- fmt.Errorf("incorrect output amt, expected %v got %v in txid %s",
|
|
outputAmt, txDetail.Value, txDetail.Hash)
|
|
return
|
|
}
|
|
}
|
|
errCh2 <- nil
|
|
}()
|
|
|
|
// Next mine a single block, all the transactions generated above
|
|
// should be included.
|
|
if _, err := miner.Node.Generate(1); err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
|
|
// We should receive a notification for all three transactions
|
|
// since they should be mined in the next block.
|
|
select {
|
|
case <-time.After(time.Second * 5):
|
|
t.Fatalf("transactions not received after 5 seconds")
|
|
case err := <-errCh2:
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
// We'll also ensure that the client is able to send our new
|
|
// notifications when we _create_ transactions ourselves that spend our
|
|
// own outputs.
|
|
b := txscript.NewScriptBuilder()
|
|
b.AddOp(txscript.OP_0)
|
|
outputScript, err := b.Script()
|
|
if err != nil {
|
|
t.Fatalf("unable to make output script: %v", err)
|
|
}
|
|
burnOutput := wire.NewTxOut(outputAmt, outputScript)
|
|
tx, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create burn tx: %v", err)
|
|
}
|
|
txid := tx.TxHash()
|
|
err = waitForMempoolTx(miner, &txid)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
// Before we mine the next block, we'll ensure that the above
|
|
// transaction shows up in the set of unconfirmed transactions returned
|
|
// by ListTransactionDetails.
|
|
err = waitForWalletSync(miner, alice)
|
|
if err != nil {
|
|
t.Fatalf("Couldn't sync Alice's wallet: %v", err)
|
|
}
|
|
|
|
// As we just sent the transaction and it was landed in the mempool, we
|
|
// should get a notification for a new unconfirmed transactions
|
|
select {
|
|
case <-time.After(time.Second * 10):
|
|
t.Fatalf("transactions not received after 10 seconds")
|
|
case unConfTx := <-txClient.UnconfirmedTransactions():
|
|
if unConfTx.Hash != txid {
|
|
t.Fatalf("wrong txn notified: expected %v got %v",
|
|
txid, unConfTx.Hash)
|
|
}
|
|
}
|
|
}
|
|
|
|
// scriptFromKey creates a P2WKH script from the given pubkey.
|
|
func scriptFromKey(pubkey *btcec.PublicKey) ([]byte, error) {
|
|
pubkeyHash := btcutil.Hash160(pubkey.SerializeCompressed())
|
|
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(
|
|
pubkeyHash, &chaincfg.RegressionNetParams,
|
|
)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to create addr: %v", err)
|
|
}
|
|
keyScript, err := txscript.PayToAddrScript(keyAddr)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to generate script: %v", err)
|
|
}
|
|
|
|
return keyScript, nil
|
|
}
|
|
|
|
// mineAndAssert mines a block and ensures the passed TX is part of that block.
|
|
func mineAndAssert(r *rpctest.Harness, tx *wire.MsgTx) error {
|
|
txid := tx.TxHash()
|
|
err := waitForMempoolTx(r, &txid)
|
|
if err != nil {
|
|
return fmt.Errorf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
blockHashes, err := r.Node.Generate(1)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to generate block: %v", err)
|
|
}
|
|
|
|
block, err := r.Node.GetBlock(blockHashes[0])
|
|
if err != nil {
|
|
return fmt.Errorf("unable to find block: %v", err)
|
|
}
|
|
|
|
if len(block.Transactions) != 2 {
|
|
return fmt.Errorf("expected 2 txs in block, got %d",
|
|
len(block.Transactions))
|
|
}
|
|
|
|
blockTx := block.Transactions[1]
|
|
if blockTx.TxHash() != tx.TxHash() {
|
|
return fmt.Errorf("incorrect transaction was mined")
|
|
}
|
|
|
|
// Sleep for a second before returning, to make sure the block has
|
|
// propagated.
|
|
time.Sleep(1 * time.Second)
|
|
return nil
|
|
}
|
|
|
|
// txFromOutput takes a tx paying to fromPubKey, and creates a new tx that
|
|
// spends the output from this tx, to an address derived from payToPubKey.
|
|
func txFromOutput(tx *wire.MsgTx, signer input.Signer, fromPubKey,
|
|
payToPubKey *btcec.PublicKey, txFee btcutil.Amount,
|
|
rbf bool) (*wire.MsgTx, error) {
|
|
|
|
// Generate the script we want to spend from.
|
|
keyScript, err := scriptFromKey(fromPubKey)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to generate script: %v", err)
|
|
}
|
|
|
|
// We assume the output was paid to the keyScript made earlier.
|
|
var outputIndex uint32
|
|
if len(tx.TxOut) == 1 || bytes.Equal(tx.TxOut[0].PkScript, keyScript) {
|
|
outputIndex = 0
|
|
} else {
|
|
outputIndex = 1
|
|
}
|
|
outputValue := tx.TxOut[outputIndex].Value
|
|
|
|
// With the index located, we can create a transaction spending the
|
|
// referenced output.
|
|
tx1 := wire.NewMsgTx(2)
|
|
|
|
// If we want to create a tx that signals replacement, set its
|
|
// sequence number to the max one that signals replacement.
|
|
// Otherwise we just use the standard max sequence.
|
|
sequence := wire.MaxTxInSequenceNum
|
|
if rbf {
|
|
sequence = mempool.MaxRBFSequence
|
|
}
|
|
|
|
tx1.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: tx.TxHash(),
|
|
Index: outputIndex,
|
|
},
|
|
Sequence: sequence,
|
|
})
|
|
|
|
// Create a script to pay to.
|
|
payToScript, err := scriptFromKey(payToPubKey)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to generate script: %v", err)
|
|
}
|
|
tx1.AddTxOut(&wire.TxOut{
|
|
Value: outputValue - int64(txFee),
|
|
PkScript: payToScript,
|
|
})
|
|
|
|
// Now we can populate the sign descriptor which we'll use to generate
|
|
// the signature.
|
|
signDesc := &input.SignDescriptor{
|
|
KeyDesc: keychain.KeyDescriptor{
|
|
PubKey: fromPubKey,
|
|
},
|
|
WitnessScript: keyScript,
|
|
Output: tx.TxOut[outputIndex],
|
|
HashType: txscript.SigHashAll,
|
|
SigHashes: txscript.NewTxSigHashes(tx1),
|
|
InputIndex: 0, // Has only one input.
|
|
}
|
|
|
|
// With the descriptor created, we use it to generate a signature, then
|
|
// manually create a valid witness stack we'll use for signing.
|
|
spendSig, err := signer.SignOutputRaw(tx1, signDesc)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to generate signature: %v", err)
|
|
}
|
|
witness := make([][]byte, 2)
|
|
witness[0] = append(spendSig, byte(txscript.SigHashAll))
|
|
witness[1] = fromPubKey.SerializeCompressed()
|
|
tx1.TxIn[0].Witness = witness
|
|
|
|
// Finally, attempt to validate the completed transaction. This should
|
|
// succeed if the wallet was able to properly generate the proper
|
|
// private key.
|
|
vm, err := txscript.NewEngine(
|
|
keyScript, tx1, 0, txscript.StandardVerifyFlags, nil,
|
|
nil, outputValue,
|
|
)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to create engine: %v", err)
|
|
}
|
|
if err := vm.Execute(); err != nil {
|
|
return nil, fmt.Errorf("spend is invalid: %v", err)
|
|
}
|
|
|
|
return tx1, nil
|
|
}
|
|
|
|
// newTx sends coins from Alice's wallet, mines this transaction, and creates a
|
|
// new, unconfirmed tx that spends this output to pubKey.
|
|
func newTx(t *testing.T, r *rpctest.Harness, pubKey *btcec.PublicKey,
|
|
alice *lnwallet.LightningWallet, rbf bool) *wire.MsgTx {
|
|
t.Helper()
|
|
|
|
keyScript, err := scriptFromKey(pubKey)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate script: %v", err)
|
|
}
|
|
|
|
// Instruct the wallet to fund the output with a newly created
|
|
// transaction.
|
|
newOutput := &wire.TxOut{
|
|
Value: btcutil.SatoshiPerBitcoin,
|
|
PkScript: keyScript,
|
|
}
|
|
tx, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create output: %v", err)
|
|
}
|
|
|
|
// Query for the transaction generated above so we can located the
|
|
// index of our output.
|
|
if err := mineAndAssert(r, tx); err != nil {
|
|
t.Fatalf("unable to mine tx: %v", err)
|
|
}
|
|
|
|
// Create a new unconfirmed tx that spends this output.
|
|
txFee := btcutil.Amount(0.1 * btcutil.SatoshiPerBitcoin)
|
|
tx1, err := txFromOutput(
|
|
tx, alice.Cfg.Signer, pubKey, pubKey, txFee, rbf,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
return tx1
|
|
}
|
|
|
|
// testPublishTransaction checks that PublishTransaction returns the expected
|
|
// error types in case the transaction being published conflicts with the
|
|
// current mempool or chain.
|
|
func testPublishTransaction(r *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// Generate a pubkey, and pay-to-addr script.
|
|
keyDesc, err := alice.DeriveNextKey(keychain.KeyFamilyMultiSig)
|
|
if err != nil {
|
|
t.Fatalf("unable to obtain public key: %v", err)
|
|
}
|
|
|
|
// We will first check that publishing a transaction already in the
|
|
// mempool does NOT return an error. Create the tx.
|
|
tx1 := newTx(t, r, keyDesc.PubKey, alice, false)
|
|
|
|
// Publish the transaction.
|
|
if err := alice.PublishTransaction(tx1); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
txid1 := tx1.TxHash()
|
|
err = waitForMempoolTx(r, &txid1)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
// Publish the exact same transaction again. This should not return an
|
|
// error, even though the transaction is already in the mempool.
|
|
if err := alice.PublishTransaction(tx1); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
// Mine the transaction.
|
|
if _, err := r.Node.Generate(1); err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
|
|
// We'll now test that we don't get an error if we try to publish a
|
|
// transaction that is already mined.
|
|
//
|
|
// Create a new transaction. We must do this to properly test the
|
|
// reject messages from our peers. They might only send us a reject
|
|
// message for a given tx once, so we create a new to make sure it is
|
|
// not just immediately rejected.
|
|
tx2 := newTx(t, r, keyDesc.PubKey, alice, false)
|
|
|
|
// Publish this tx.
|
|
if err := alice.PublishTransaction(tx2); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
// Mine the transaction.
|
|
if err := mineAndAssert(r, tx2); err != nil {
|
|
t.Fatalf("unable to mine tx: %v", err)
|
|
}
|
|
|
|
// Publish the transaction again. It is already mined, and we don't
|
|
// expect this to return an error.
|
|
if err := alice.PublishTransaction(tx2); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
// We'll do the next mempool check on both RBF and non-RBF enabled
|
|
// transactions.
|
|
var (
|
|
txFee = btcutil.Amount(0.05 * btcutil.SatoshiPerBitcoin)
|
|
tx3, tx3Spend *wire.MsgTx
|
|
)
|
|
|
|
for _, rbf := range []bool{false, true} {
|
|
// Now we'll try to double spend an output with a different
|
|
// transaction. Create a new tx and publish it. This is the
|
|
// output we'll try to double spend.
|
|
tx3 = newTx(t, r, keyDesc.PubKey, alice, false)
|
|
if err := alice.PublishTransaction(tx3); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
// Mine the transaction.
|
|
if err := mineAndAssert(r, tx3); err != nil {
|
|
t.Fatalf("unable to mine tx: %v", err)
|
|
}
|
|
|
|
// Now we create a transaction that spends the output from the
|
|
// tx just mined.
|
|
tx4, err := txFromOutput(
|
|
tx3, alice.Cfg.Signer, keyDesc.PubKey,
|
|
keyDesc.PubKey, txFee, rbf,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// This should be accepted into the mempool.
|
|
if err := alice.PublishTransaction(tx4); err != nil {
|
|
t.Fatalf("unable to publish: %v", err)
|
|
}
|
|
|
|
// Keep track of the last successfully published tx to spend
|
|
// tx3.
|
|
tx3Spend = tx4
|
|
|
|
txid4 := tx4.TxHash()
|
|
err = waitForMempoolTx(r, &txid4)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
// Create a new key we'll pay to, to ensure we create a unique
|
|
// transaction.
|
|
keyDesc2, err := alice.DeriveNextKey(
|
|
keychain.KeyFamilyMultiSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to obtain public key: %v", err)
|
|
}
|
|
|
|
// Create a new transaction that spends the output from tx3,
|
|
// and that pays to a different address. We expect this to be
|
|
// rejected because it is a double spend.
|
|
tx5, err := txFromOutput(
|
|
tx3, alice.Cfg.Signer, keyDesc.PubKey,
|
|
keyDesc2.PubKey, txFee, rbf,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
err = alice.PublishTransaction(tx5)
|
|
if err != lnwallet.ErrDoubleSpend {
|
|
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
|
|
}
|
|
|
|
// Create another transaction that spends the same output, but
|
|
// has a higher fee. We expect also this tx to be rejected for
|
|
// non-RBF enabled transactions, while it should succeed
|
|
// otherwise.
|
|
pubKey3, err := alice.DeriveNextKey(keychain.KeyFamilyMultiSig)
|
|
if err != nil {
|
|
t.Fatalf("unable to obtain public key: %v", err)
|
|
}
|
|
tx6, err := txFromOutput(
|
|
tx3, alice.Cfg.Signer, keyDesc.PubKey,
|
|
pubKey3.PubKey, 2*txFee, rbf,
|
|
)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Expect rejection in non-RBF case.
|
|
expErr := lnwallet.ErrDoubleSpend
|
|
if rbf {
|
|
// Expect success in rbf case.
|
|
expErr = nil
|
|
tx3Spend = tx6
|
|
}
|
|
err = alice.PublishTransaction(tx6)
|
|
if err != expErr {
|
|
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
|
|
}
|
|
|
|
// Mine the tx spending tx3.
|
|
if err := mineAndAssert(r, tx3Spend); err != nil {
|
|
t.Fatalf("unable to mine tx: %v", err)
|
|
}
|
|
}
|
|
|
|
// At last we try to spend an output already spent by a confirmed
|
|
// transaction.
|
|
// TODO(halseth): we currently skip this test for neutrino, as the
|
|
// backing btcd node will consider the tx being an orphan, and will
|
|
// accept it. Should look into if this is the behavior also for
|
|
// bitcoind, and update test accordingly.
|
|
if alice.BackEnd() != "neutrino" {
|
|
// Create another tx spending tx3.
|
|
pubKey4, err := alice.DeriveNextKey(
|
|
keychain.KeyFamilyMultiSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to obtain public key: %v", err)
|
|
}
|
|
tx7, err := txFromOutput(
|
|
tx3, alice.Cfg.Signer, keyDesc.PubKey,
|
|
pubKey4.PubKey, txFee, false,
|
|
)
|
|
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
|
|
// Expect rejection.
|
|
err = alice.PublishTransaction(tx7)
|
|
if err != lnwallet.ErrDoubleSpend {
|
|
t.Fatalf("expected ErrDoubleSpend, got: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func testSignOutputUsingTweaks(r *rpctest.Harness,
|
|
alice, _ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// We'd like to test the ability of the wallet's Signer implementation
|
|
// to be able to sign with a private key derived from tweaking the
|
|
// specific public key. This scenario exercises the case when the
|
|
// wallet needs to sign for a sweep of a revoked output, or just claim
|
|
// any output that pays to a tweaked key.
|
|
|
|
// First, generate a new public key under the control of the wallet,
|
|
// then generate a revocation key using it.
|
|
pubKey, err := alice.DeriveNextKey(
|
|
keychain.KeyFamilyMultiSig,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to obtain public key: %v", err)
|
|
}
|
|
|
|
// As we'd like to test both single tweak, and double tweak spends,
|
|
// we'll generate a commitment pre-image, then derive a revocation key
|
|
// and single tweak from that.
|
|
commitPreimage := bytes.Repeat([]byte{2}, 32)
|
|
commitSecret, commitPoint := btcec.PrivKeyFromBytes(btcec.S256(),
|
|
commitPreimage)
|
|
|
|
revocationKey := input.DeriveRevocationPubkey(pubKey.PubKey, commitPoint)
|
|
commitTweak := input.SingleTweakBytes(commitPoint, pubKey.PubKey)
|
|
|
|
tweakedPub := input.TweakPubKey(pubKey.PubKey, commitPoint)
|
|
|
|
// As we'd like to test both single and double tweaks, we'll repeat
|
|
// the same set up twice. The first will use a regular single tweak,
|
|
// and the second will use a double tweak.
|
|
baseKey := pubKey
|
|
for i := 0; i < 2; i++ {
|
|
var tweakedKey *btcec.PublicKey
|
|
if i == 0 {
|
|
tweakedKey = tweakedPub
|
|
} else {
|
|
tweakedKey = revocationKey
|
|
}
|
|
|
|
// Using the given key for the current iteration, we'll
|
|
// generate a regular p2wkh from that.
|
|
pubkeyHash := btcutil.Hash160(tweakedKey.SerializeCompressed())
|
|
keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash,
|
|
&chaincfg.RegressionNetParams)
|
|
if err != nil {
|
|
t.Fatalf("unable to create addr: %v", err)
|
|
}
|
|
keyScript, err := txscript.PayToAddrScript(keyAddr)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate script: %v", err)
|
|
}
|
|
|
|
// With the script fully assembled, instruct the wallet to fund
|
|
// the output with a newly created transaction.
|
|
newOutput := &wire.TxOut{
|
|
Value: btcutil.SatoshiPerBitcoin,
|
|
PkScript: keyScript,
|
|
}
|
|
tx, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to create output: %v", err)
|
|
}
|
|
txid := tx.TxHash()
|
|
// Query for the transaction generated above so we can located
|
|
// the index of our output.
|
|
err = waitForMempoolTx(r, &txid)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
var outputIndex uint32
|
|
if bytes.Equal(tx.TxOut[0].PkScript, keyScript) {
|
|
outputIndex = 0
|
|
} else {
|
|
outputIndex = 1
|
|
}
|
|
|
|
// With the index located, we can create a transaction spending
|
|
// the referenced output.
|
|
sweepTx := wire.NewMsgTx(2)
|
|
sweepTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: txid,
|
|
Index: outputIndex,
|
|
},
|
|
})
|
|
sweepTx.AddTxOut(&wire.TxOut{
|
|
Value: 1000,
|
|
PkScript: keyScript,
|
|
})
|
|
|
|
// Now we can populate the sign descriptor which we'll use to
|
|
// generate the signature. Within the descriptor we set the
|
|
// private tweak value as the key in the script is derived
|
|
// based on this tweak value and the key we originally
|
|
// generated above.
|
|
signDesc := &input.SignDescriptor{
|
|
KeyDesc: keychain.KeyDescriptor{
|
|
PubKey: baseKey.PubKey,
|
|
},
|
|
WitnessScript: keyScript,
|
|
Output: newOutput,
|
|
HashType: txscript.SigHashAll,
|
|
SigHashes: txscript.NewTxSigHashes(sweepTx),
|
|
InputIndex: 0,
|
|
}
|
|
|
|
// If this is the first, loop, we'll use the generated single
|
|
// tweak, otherwise, we'll use the double tweak.
|
|
if i == 0 {
|
|
signDesc.SingleTweak = commitTweak
|
|
} else {
|
|
signDesc.DoubleTweak = commitSecret
|
|
}
|
|
|
|
// With the descriptor created, we use it to generate a
|
|
// signature, then manually create a valid witness stack we'll
|
|
// use for signing.
|
|
spendSig, err := alice.Cfg.Signer.SignOutputRaw(sweepTx, signDesc)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate signature: %v", err)
|
|
}
|
|
witness := make([][]byte, 2)
|
|
witness[0] = append(spendSig, byte(txscript.SigHashAll))
|
|
witness[1] = tweakedKey.SerializeCompressed()
|
|
sweepTx.TxIn[0].Witness = witness
|
|
|
|
// Finally, attempt to validate the completed transaction. This
|
|
// should succeed if the wallet was able to properly generate
|
|
// the proper private key.
|
|
vm, err := txscript.NewEngine(keyScript,
|
|
sweepTx, 0, txscript.StandardVerifyFlags, nil,
|
|
nil, int64(btcutil.SatoshiPerBitcoin))
|
|
if err != nil {
|
|
t.Fatalf("unable to create engine: %v", err)
|
|
}
|
|
if err := vm.Execute(); err != nil {
|
|
t.Fatalf("spend #%v is invalid: %v", i, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
func testReorgWalletBalance(r *rpctest.Harness, w *lnwallet.LightningWallet,
|
|
_ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// We first mine a few blocks to ensure any transactions still in the
|
|
// mempool confirm, and then get the original balance, before a
|
|
// reorganization that doesn't invalidate any existing transactions or
|
|
// create any new non-coinbase transactions. We'll then check if it's
|
|
// the same after the empty reorg.
|
|
_, err := r.Node.Generate(5)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate blocks on passed node: %v", err)
|
|
}
|
|
|
|
// Give wallet time to catch up.
|
|
err = waitForWalletSync(r, w)
|
|
if err != nil {
|
|
t.Fatalf("unable to sync wallet: %v", err)
|
|
}
|
|
|
|
// Send some money from the miner to the wallet
|
|
err = loadTestCredits(r, w, 20, 4)
|
|
if err != nil {
|
|
t.Fatalf("unable to send money to lnwallet: %v", err)
|
|
}
|
|
|
|
// Send some money from the wallet back to the miner.
|
|
// Grab a fresh address from the miner to house this output.
|
|
minerAddr, err := r.NewAddress()
|
|
if err != nil {
|
|
t.Fatalf("unable to generate address for miner: %v", err)
|
|
}
|
|
script, err := txscript.PayToAddrScript(minerAddr)
|
|
if err != nil {
|
|
t.Fatalf("unable to create pay to addr script: %v", err)
|
|
}
|
|
output := &wire.TxOut{
|
|
Value: 1e8,
|
|
PkScript: script,
|
|
}
|
|
tx, err := w.SendOutputs([]*wire.TxOut{output}, 2500)
|
|
if err != nil {
|
|
t.Fatalf("unable to send outputs: %v", err)
|
|
}
|
|
txid := tx.TxHash()
|
|
err = waitForMempoolTx(r, &txid)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
_, err = r.Node.Generate(50)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate blocks on passed node: %v", err)
|
|
}
|
|
|
|
// Give wallet time to catch up.
|
|
err = waitForWalletSync(r, w)
|
|
if err != nil {
|
|
t.Fatalf("unable to sync wallet: %v", err)
|
|
}
|
|
|
|
// Get the original balance.
|
|
origBalance, err := w.ConfirmedBalance(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for balance: %v", err)
|
|
}
|
|
|
|
// Now we cause a reorganization as follows.
|
|
// Step 1: create a new miner and start it.
|
|
r2, err := rpctest.New(r.ActiveNet, nil, []string{"--txindex"})
|
|
if err != nil {
|
|
t.Fatalf("unable to create mining node: %v", err)
|
|
}
|
|
err = r2.SetUp(false, 0)
|
|
if err != nil {
|
|
t.Fatalf("unable to set up mining node: %v", err)
|
|
}
|
|
defer r2.TearDown()
|
|
newBalance, err := w.ConfirmedBalance(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for balance: %v", err)
|
|
}
|
|
if origBalance != newBalance {
|
|
t.Fatalf("wallet balance incorrect, should have %v, "+
|
|
"instead have %v", origBalance, newBalance)
|
|
}
|
|
|
|
// Step 2: connect the miner to the passed miner and wait for
|
|
// synchronization.
|
|
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
|
|
if err != nil {
|
|
t.Fatalf("unable to connect mining nodes together: %v", err)
|
|
}
|
|
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks)
|
|
if err != nil {
|
|
t.Fatalf("unable to synchronize mining nodes: %v", err)
|
|
}
|
|
|
|
// Step 3: Do a set of reorgs by disconnecting the two miners, mining
|
|
// one block on the passed miner and two on the created miner,
|
|
// connecting them, and waiting for them to sync.
|
|
for i := 0; i < 5; i++ {
|
|
// Wait for disconnection
|
|
timeout := time.After(30 * time.Second)
|
|
stillConnected := true
|
|
var peers []btcjson.GetPeerInfoResult
|
|
for stillConnected {
|
|
// Allow for timeout
|
|
time.Sleep(100 * time.Millisecond)
|
|
select {
|
|
case <-timeout:
|
|
t.Fatalf("timeout waiting for miner disconnect")
|
|
default:
|
|
}
|
|
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANRemove)
|
|
if err != nil {
|
|
t.Fatalf("unable to disconnect mining nodes: %v",
|
|
err)
|
|
}
|
|
peers, err = r2.Node.GetPeerInfo()
|
|
if err != nil {
|
|
t.Fatalf("unable to get peer info: %v", err)
|
|
}
|
|
stillConnected = false
|
|
for _, peer := range peers {
|
|
if peer.Addr == r.P2PAddress() {
|
|
stillConnected = true
|
|
break
|
|
}
|
|
}
|
|
}
|
|
_, err = r.Node.Generate(2)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate blocks on passed node: %v",
|
|
err)
|
|
}
|
|
_, err = r2.Node.Generate(3)
|
|
if err != nil {
|
|
t.Fatalf("unable to generate blocks on created node: %v",
|
|
err)
|
|
}
|
|
|
|
// Step 5: Reconnect the miners and wait for them to synchronize.
|
|
err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd)
|
|
if err != nil {
|
|
switch err := err.(type) {
|
|
case *btcjson.RPCError:
|
|
if err.Code != -8 {
|
|
t.Fatalf("unable to connect mining "+
|
|
"nodes together: %v", err)
|
|
}
|
|
default:
|
|
t.Fatalf("unable to connect mining nodes "+
|
|
"together: %v", err)
|
|
}
|
|
}
|
|
err = rpctest.JoinNodes([]*rpctest.Harness{r2, r},
|
|
rpctest.Blocks)
|
|
if err != nil {
|
|
t.Fatalf("unable to synchronize mining nodes: %v", err)
|
|
}
|
|
|
|
// Give wallet time to catch up.
|
|
err = waitForWalletSync(r, w)
|
|
if err != nil {
|
|
t.Fatalf("unable to sync wallet: %v", err)
|
|
}
|
|
}
|
|
|
|
// Now we check that the wallet balance stays the same.
|
|
newBalance, err = w.ConfirmedBalance(1)
|
|
if err != nil {
|
|
t.Fatalf("unable to query for balance: %v", err)
|
|
}
|
|
if origBalance != newBalance {
|
|
t.Fatalf("wallet balance incorrect, should have %v, "+
|
|
"instead have %v", origBalance, newBalance)
|
|
}
|
|
}
|
|
|
|
// testChangeOutputSpendConfirmation ensures that when we attempt to spend a
|
|
// change output created by the wallet, the wallet receives its confirmation
|
|
// once included in the chain.
|
|
func testChangeOutputSpendConfirmation(r *rpctest.Harness,
|
|
alice, bob *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// In order to test that we see the confirmation of a transaction that
|
|
// spends an output created by SendOutputs, we'll start by emptying
|
|
// Alice's wallet so that no other UTXOs can be picked. To do so, we'll
|
|
// generate an address for Bob, who will receive all the coins.
|
|
// Assuming a balance of 80 BTC and a transaction fee of 2500 sat/kw,
|
|
// we'll craft the following transaction so that Alice doesn't have any
|
|
// UTXOs left.
|
|
aliceBalance, err := alice.ConfirmedBalance(0)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve alice's balance: %v", err)
|
|
}
|
|
bobPkScript := newPkScript(t, bob, lnwallet.WitnessPubKey)
|
|
|
|
// We'll use a transaction fee of 13020 satoshis, which will allow us to
|
|
// sweep all of Alice's balance in one transaction containing 1 input
|
|
// and 1 output.
|
|
//
|
|
// TODO(wilmer): replace this once SendOutputs easily supports sending
|
|
// all funds in one transaction.
|
|
txFeeRate := chainfee.SatPerKWeight(2500)
|
|
txFee := btcutil.Amount(14380)
|
|
output := &wire.TxOut{
|
|
Value: int64(aliceBalance - txFee),
|
|
PkScript: bobPkScript,
|
|
}
|
|
tx := sendCoins(t, r, alice, bob, output, txFeeRate)
|
|
txHash := tx.TxHash()
|
|
assertTxInWallet(t, alice, txHash, true)
|
|
assertTxInWallet(t, bob, txHash, true)
|
|
|
|
// With the transaction sent and confirmed, Alice's balance should now
|
|
// be 0.
|
|
aliceBalance, err = alice.ConfirmedBalance(0)
|
|
if err != nil {
|
|
t.Fatalf("unable to retrieve alice's balance: %v", err)
|
|
}
|
|
if aliceBalance != 0 {
|
|
t.Fatalf("expected alice's balance to be 0 BTC, found %v",
|
|
aliceBalance)
|
|
}
|
|
|
|
// Now, we'll send an output back to Alice from Bob of 1 BTC.
|
|
alicePkScript := newPkScript(t, alice, lnwallet.WitnessPubKey)
|
|
output = &wire.TxOut{
|
|
Value: btcutil.SatoshiPerBitcoin,
|
|
PkScript: alicePkScript,
|
|
}
|
|
tx = sendCoins(t, r, bob, alice, output, txFeeRate)
|
|
txHash = tx.TxHash()
|
|
assertTxInWallet(t, alice, txHash, true)
|
|
assertTxInWallet(t, bob, txHash, true)
|
|
|
|
// Alice now has an available output to spend, but it was not a change
|
|
// output, which is what the test expects. Therefore, we'll generate one
|
|
// by sending Bob back some coins.
|
|
output = &wire.TxOut{
|
|
Value: btcutil.SatoshiPerBitcent,
|
|
PkScript: bobPkScript,
|
|
}
|
|
tx = sendCoins(t, r, alice, bob, output, txFeeRate)
|
|
txHash = tx.TxHash()
|
|
assertTxInWallet(t, alice, txHash, true)
|
|
assertTxInWallet(t, bob, txHash, true)
|
|
|
|
// Then, we'll spend the change output and ensure we see its
|
|
// confirmation come in.
|
|
tx = sendCoins(t, r, alice, bob, output, txFeeRate)
|
|
txHash = tx.TxHash()
|
|
assertTxInWallet(t, alice, txHash, true)
|
|
assertTxInWallet(t, bob, txHash, true)
|
|
|
|
// Finally, we'll replenish Alice's wallet with some more coins to
|
|
// ensure she has enough for any following test cases.
|
|
if err := loadTestCredits(r, alice, 20, 4); err != nil {
|
|
t.Fatalf("unable to replenish alice's wallet: %v", err)
|
|
}
|
|
}
|
|
|
|
// testLastUnusedAddr tests that the LastUnusedAddress returns the address if
|
|
// it isn't used, and also that once the address becomes used, then it's
|
|
// properly rotated.
|
|
func testLastUnusedAddr(miner *rpctest.Harness,
|
|
alice, bob *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
if _, err := miner.Node.Generate(1); err != nil {
|
|
t.Fatalf("unable to generate block: %v", err)
|
|
}
|
|
|
|
// We'll repeat this test for each address type to ensure they're all
|
|
// rotated properly.
|
|
addrTypes := []lnwallet.AddressType{
|
|
lnwallet.WitnessPubKey, lnwallet.NestedWitnessPubKey,
|
|
}
|
|
for _, addrType := range addrTypes {
|
|
addr1, err := alice.LastUnusedAddress(addrType)
|
|
if err != nil {
|
|
t.Fatalf("unable to get addr: %v", err)
|
|
}
|
|
addr2, err := alice.LastUnusedAddress(addrType)
|
|
if err != nil {
|
|
t.Fatalf("unable to get addr: %v", err)
|
|
}
|
|
|
|
// If we generate two addresses back to back, then we should
|
|
// get the same addr, as none of them have been used yet.
|
|
if addr1.String() != addr2.String() {
|
|
t.Fatalf("addresses changed w/o use: %v vs %v", addr1, addr2)
|
|
}
|
|
|
|
// Next, we'll have Bob pay to Alice's new address. This should
|
|
// trigger address rotation at the backend wallet.
|
|
addrScript, err := txscript.PayToAddrScript(addr1)
|
|
if err != nil {
|
|
t.Fatalf("unable to convert addr to script: %v", err)
|
|
}
|
|
feeRate := chainfee.SatPerKWeight(2500)
|
|
output := &wire.TxOut{
|
|
Value: 1000000,
|
|
PkScript: addrScript,
|
|
}
|
|
sendCoins(t, miner, bob, alice, output, feeRate)
|
|
|
|
// If we make a new address, then it should be brand new, as
|
|
// the prior address has been used.
|
|
addr3, err := alice.LastUnusedAddress(addrType)
|
|
if err != nil {
|
|
t.Fatalf("unable to get addr: %v", err)
|
|
}
|
|
if addr1.String() == addr3.String() {
|
|
t.Fatalf("address should have changed but didn't")
|
|
}
|
|
}
|
|
}
|
|
|
|
// testCreateSimpleTx checks that a call to CreateSimpleTx will return a
|
|
// transaction that is equal to the one that is being created by SendOutputs in
|
|
// a subsequent call.
|
|
func testCreateSimpleTx(r *rpctest.Harness, w *lnwallet.LightningWallet,
|
|
_ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// Send some money from the miner to the wallet
|
|
err := loadTestCredits(r, w, 20, 4)
|
|
if err != nil {
|
|
t.Fatalf("unable to send money to lnwallet: %v", err)
|
|
}
|
|
|
|
// The test cases we will run through for all backends.
|
|
testCases := []struct {
|
|
outVals []int64
|
|
feeRate chainfee.SatPerKWeight
|
|
valid bool
|
|
}{
|
|
{
|
|
outVals: []int64{},
|
|
feeRate: 2500,
|
|
valid: false, // No outputs.
|
|
},
|
|
|
|
{
|
|
outVals: []int64{200},
|
|
feeRate: 2500,
|
|
valid: false, // Dust output.
|
|
},
|
|
|
|
{
|
|
outVals: []int64{1e8},
|
|
feeRate: 2500,
|
|
valid: true,
|
|
},
|
|
{
|
|
outVals: []int64{1e8, 2e8, 1e8, 2e7, 3e5},
|
|
feeRate: 2500,
|
|
valid: true,
|
|
},
|
|
{
|
|
outVals: []int64{1e8, 2e8, 1e8, 2e7, 3e5},
|
|
feeRate: 12500,
|
|
valid: true,
|
|
},
|
|
{
|
|
outVals: []int64{1e8, 2e8, 1e8, 2e7, 3e5},
|
|
feeRate: 50000,
|
|
valid: true,
|
|
},
|
|
{
|
|
outVals: []int64{1e8, 2e8, 1e8, 2e7, 3e5, 1e8, 2e8,
|
|
1e8, 2e7, 3e5},
|
|
feeRate: 44250,
|
|
valid: true,
|
|
},
|
|
}
|
|
|
|
for i, test := range testCases {
|
|
feeRate := test.feeRate
|
|
|
|
// Grab some fresh addresses from the miner that we will send
|
|
// to.
|
|
outputs := make([]*wire.TxOut, len(test.outVals))
|
|
for i, outVal := range test.outVals {
|
|
minerAddr, err := r.NewAddress()
|
|
if err != nil {
|
|
t.Fatalf("unable to generate address for "+
|
|
"miner: %v", err)
|
|
}
|
|
script, err := txscript.PayToAddrScript(minerAddr)
|
|
if err != nil {
|
|
t.Fatalf("unable to create pay to addr "+
|
|
"script: %v", err)
|
|
}
|
|
output := &wire.TxOut{
|
|
Value: outVal,
|
|
PkScript: script,
|
|
}
|
|
|
|
outputs[i] = output
|
|
}
|
|
|
|
// Now try creating a tx spending to these outputs.
|
|
createTx, createErr := w.CreateSimpleTx(
|
|
outputs, feeRate, true,
|
|
)
|
|
switch {
|
|
case test.valid && createErr != nil:
|
|
fmt.Println(spew.Sdump(createTx.Tx))
|
|
t.Fatalf("got unexpected error when creating tx: %v",
|
|
createErr)
|
|
|
|
case !test.valid && createErr == nil:
|
|
t.Fatalf("test #%v should have failed on tx "+
|
|
"creation", i)
|
|
}
|
|
|
|
// Also send to these outputs. This should result in a tx
|
|
// _very_ similar to the one we just created being sent. The
|
|
// only difference is that the dry run tx is not signed, and
|
|
// that the change output position might be different.
|
|
tx, sendErr := w.SendOutputs(outputs, feeRate)
|
|
switch {
|
|
case test.valid && sendErr != nil:
|
|
t.Fatalf("got unexpected error when sending tx: %v",
|
|
sendErr)
|
|
|
|
case !test.valid && sendErr == nil:
|
|
t.Fatalf("test #%v should fail for tx sending", i)
|
|
}
|
|
|
|
// We expected either both to not fail, or both to fail with
|
|
// the same error.
|
|
if createErr != sendErr {
|
|
t.Fatalf("error creating tx (%v) different "+
|
|
"from error sending outputs (%v)",
|
|
createErr, sendErr)
|
|
}
|
|
|
|
// If we expected the creation to fail, then this test is over.
|
|
if !test.valid {
|
|
continue
|
|
}
|
|
|
|
txid := tx.TxHash()
|
|
err = waitForMempoolTx(r, &txid)
|
|
if err != nil {
|
|
t.Fatalf("tx not relayed to miner: %v", err)
|
|
}
|
|
|
|
// Helper method to check that the two txs are similar.
|
|
assertSimilarTx := func(a, b *wire.MsgTx) error {
|
|
if a.Version != b.Version {
|
|
return fmt.Errorf("different versions: "+
|
|
"%v vs %v", a.Version, b.Version)
|
|
}
|
|
if a.LockTime != b.LockTime {
|
|
return fmt.Errorf("different locktimes: "+
|
|
"%v vs %v", a.LockTime, b.LockTime)
|
|
}
|
|
if len(a.TxIn) != len(b.TxIn) {
|
|
return fmt.Errorf("different number of "+
|
|
"inputs: %v vs %v", len(a.TxIn),
|
|
len(b.TxIn))
|
|
}
|
|
if len(a.TxOut) != len(b.TxOut) {
|
|
return fmt.Errorf("different number of "+
|
|
"outputs: %v vs %v", len(a.TxOut),
|
|
len(b.TxOut))
|
|
}
|
|
|
|
// They should be spending the same inputs.
|
|
for i := range a.TxIn {
|
|
prevA := a.TxIn[i].PreviousOutPoint
|
|
prevB := b.TxIn[i].PreviousOutPoint
|
|
if prevA != prevB {
|
|
return fmt.Errorf("different inputs: "+
|
|
"%v vs %v", spew.Sdump(prevA),
|
|
spew.Sdump(prevB))
|
|
}
|
|
}
|
|
|
|
// They should have the same outputs. Since the change
|
|
// output position gets randomized, they are not
|
|
// guaranteed to be in the same order.
|
|
for _, outA := range a.TxOut {
|
|
found := false
|
|
for _, outB := range b.TxOut {
|
|
if reflect.DeepEqual(outA, outB) {
|
|
found = true
|
|
break
|
|
}
|
|
}
|
|
if !found {
|
|
return fmt.Errorf("did not find "+
|
|
"output %v", spew.Sdump(outA))
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Assert that our "template tx" was similar to the one that
|
|
// ended up being sent.
|
|
if err := assertSimilarTx(createTx.Tx, tx); err != nil {
|
|
t.Fatalf("transactions not similar: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// testSignOutputCreateAccount tests that we're able to properly sign for an
|
|
// output if the target account hasn't yet been created on disk. In this case,
|
|
// we'll create the account, then sign.
|
|
func testSignOutputCreateAccount(r *rpctest.Harness, w *lnwallet.LightningWallet,
|
|
_ *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
// First, we'll create a sign desc that references a non-default key
|
|
// family. Under the hood, key families are actually accounts, so this
|
|
// should force create of the account so we can sign with it.
|
|
fakeTx := wire.NewMsgTx(2)
|
|
fakeTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: wire.OutPoint{
|
|
Hash: chainhash.Hash{},
|
|
Index: 0,
|
|
},
|
|
})
|
|
signDesc := &input.SignDescriptor{
|
|
KeyDesc: keychain.KeyDescriptor{
|
|
KeyLocator: keychain.KeyLocator{
|
|
Family: 99,
|
|
Index: 1,
|
|
},
|
|
},
|
|
WitnessScript: []byte{},
|
|
Output: &wire.TxOut{
|
|
Value: 1000,
|
|
},
|
|
HashType: txscript.SigHashAll,
|
|
SigHashes: txscript.NewTxSigHashes(fakeTx),
|
|
InputIndex: 0,
|
|
}
|
|
|
|
// We'll now sign and expect this to succeed, as even though the
|
|
// account doesn't exist atm, it should be created in order to process
|
|
// the inbound signing request.
|
|
_, err := w.Cfg.Signer.SignOutputRaw(fakeTx, signDesc)
|
|
if err != nil {
|
|
t.Fatalf("unable to sign for output with non-existent "+
|
|
"account: %v", err)
|
|
}
|
|
}
|
|
|
|
type walletTestCase struct {
|
|
name string
|
|
test func(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet,
|
|
test *testing.T)
|
|
}
|
|
|
|
var walletTests = []walletTestCase{
|
|
{
|
|
// TODO(wilmer): this test should remain first until the wallet
|
|
// can properly craft a transaction that spends all of its
|
|
// on-chain funds.
|
|
name: "change output spend confirmation",
|
|
test: testChangeOutputSpendConfirmation,
|
|
},
|
|
{
|
|
name: "insane fee reject",
|
|
test: testReservationInitiatorBalanceBelowDustCancel,
|
|
},
|
|
{
|
|
name: "single funding workflow",
|
|
test: func(miner *rpctest.Harness, alice,
|
|
bob *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
testSingleFunderReservationWorkflow(
|
|
miner, alice, bob, t, false,
|
|
)
|
|
},
|
|
},
|
|
{
|
|
name: "single funding workflow tweakless",
|
|
test: func(miner *rpctest.Harness, alice,
|
|
bob *lnwallet.LightningWallet, t *testing.T) {
|
|
|
|
testSingleFunderReservationWorkflow(
|
|
miner, alice, bob, t, true,
|
|
)
|
|
},
|
|
},
|
|
{
|
|
name: "dual funder workflow",
|
|
test: testDualFundingReservationWorkflow,
|
|
},
|
|
{
|
|
name: "output locking",
|
|
test: testFundingTransactionLockedOutputs,
|
|
},
|
|
{
|
|
name: "reservation insufficient funds",
|
|
test: testFundingCancellationNotEnoughFunds,
|
|
},
|
|
{
|
|
name: "transaction subscriptions",
|
|
test: testTransactionSubscriptions,
|
|
},
|
|
{
|
|
name: "transaction details",
|
|
test: testListTransactionDetails,
|
|
},
|
|
{
|
|
name: "publish transaction",
|
|
test: testPublishTransaction,
|
|
},
|
|
{
|
|
name: "signed with tweaked pubkeys",
|
|
test: testSignOutputUsingTweaks,
|
|
},
|
|
{
|
|
name: "test cancel non-existent reservation",
|
|
test: testCancelNonExistentReservation,
|
|
},
|
|
{
|
|
name: "last unused addr",
|
|
test: testLastUnusedAddr,
|
|
},
|
|
{
|
|
name: "reorg wallet balance",
|
|
test: testReorgWalletBalance,
|
|
},
|
|
{
|
|
name: "create simple tx",
|
|
test: testCreateSimpleTx,
|
|
},
|
|
{
|
|
name: "test sign create account",
|
|
test: testSignOutputCreateAccount,
|
|
},
|
|
}
|
|
|
|
func clearWalletStates(a, b *lnwallet.LightningWallet) error {
|
|
a.ResetReservations()
|
|
b.ResetReservations()
|
|
|
|
if err := a.Cfg.Database.Wipe(); err != nil {
|
|
return err
|
|
}
|
|
|
|
return b.Cfg.Database.Wipe()
|
|
}
|
|
|
|
func waitForMempoolTx(r *rpctest.Harness, txid *chainhash.Hash) error {
|
|
var found bool
|
|
var tx *btcutil.Tx
|
|
var err error
|
|
timeout := time.After(30 * time.Second)
|
|
for !found {
|
|
// Do a short wait
|
|
select {
|
|
case <-timeout:
|
|
return fmt.Errorf("timeout after 10s")
|
|
default:
|
|
}
|
|
time.Sleep(100 * time.Millisecond)
|
|
|
|
// Check for the harness' knowledge of the txid
|
|
tx, err = r.Node.GetRawTransaction(txid)
|
|
if err != nil {
|
|
switch e := err.(type) {
|
|
case *btcjson.RPCError:
|
|
if e.Code == btcjson.ErrRPCNoTxInfo {
|
|
continue
|
|
}
|
|
default:
|
|
}
|
|
return err
|
|
}
|
|
if tx != nil && tx.MsgTx().TxHash() == *txid {
|
|
found = true
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func waitForWalletSync(r *rpctest.Harness, w *lnwallet.LightningWallet) error {
|
|
var (
|
|
synced bool
|
|
err error
|
|
bestHash, knownHash *chainhash.Hash
|
|
bestHeight, knownHeight int32
|
|
)
|
|
timeout := time.After(10 * time.Second)
|
|
for !synced {
|
|
// Do a short wait
|
|
select {
|
|
case <-timeout:
|
|
return fmt.Errorf("timeout after 30s")
|
|
case <-time.Tick(100 * time.Millisecond):
|
|
}
|
|
|
|
// Check whether the chain source of the wallet is caught up to
|
|
// the harness it's supposed to be catching up to.
|
|
bestHash, bestHeight, err = r.Node.GetBestBlock()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
knownHash, knownHeight, err = w.Cfg.ChainIO.GetBestBlock()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if knownHeight != bestHeight {
|
|
continue
|
|
}
|
|
if *knownHash != *bestHash {
|
|
return fmt.Errorf("hash at height %d doesn't match: "+
|
|
"expected %s, got %s", bestHeight, bestHash,
|
|
knownHash)
|
|
}
|
|
|
|
// Check for synchronization.
|
|
synced, _, err = w.IsSynced()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// TestInterfaces tests all registered interfaces with a unified set of tests
|
|
// which exercise each of the required methods found within the WalletController
|
|
// interface.
|
|
//
|
|
// NOTE: In the future, when additional implementations of the WalletController
|
|
// interface have been implemented, in order to ensure the new concrete
|
|
// implementation is automatically tested, two steps must be undertaken. First,
|
|
// one needs add a "non-captured" (_) import from the new sub-package. This
|
|
// import should trigger an init() method within the package which registers
|
|
// the interface. Second, an additional case in the switch within the main loop
|
|
// below needs to be added which properly initializes the interface.
|
|
//
|
|
// TODO(roasbeef): purge bobNode in favor of dual lnwallet's
|
|
func TestLightningWallet(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Initialize the harness around a btcd node which will serve as our
|
|
// dedicated miner to generate blocks, cause re-orgs, etc. We'll set
|
|
// up this node with a chain length of 125, so we have plenty of BTC
|
|
// to play around with.
|
|
miningNode, err := rpctest.New(netParams, nil, []string{"--txindex"})
|
|
if err != nil {
|
|
t.Fatalf("unable to create mining node: %v", err)
|
|
}
|
|
defer miningNode.TearDown()
|
|
if err := miningNode.SetUp(true, 25); err != nil {
|
|
t.Fatalf("unable to set up mining node: %v", err)
|
|
}
|
|
|
|
// Next mine enough blocks in order for segwit and the CSV package
|
|
// soft-fork to activate on RegNet.
|
|
numBlocks := netParams.MinerConfirmationWindow * 2
|
|
if _, err := miningNode.Node.Generate(numBlocks); err != nil {
|
|
t.Fatalf("unable to generate blocks: %v", err)
|
|
}
|
|
|
|
rpcConfig := miningNode.RPCConfig()
|
|
|
|
tempDir, err := ioutil.TempDir("", "channeldb")
|
|
if err != nil {
|
|
t.Fatalf("unable to create temp dir: %v", err)
|
|
}
|
|
db, err := channeldb.Open(tempDir)
|
|
if err != nil {
|
|
t.Fatalf("unable to create db: %v", err)
|
|
}
|
|
hintCache, err := chainntnfs.NewHeightHintCache(db)
|
|
if err != nil {
|
|
t.Fatalf("unable to create height hint cache: %v", err)
|
|
}
|
|
chainNotifier, err := btcdnotify.New(
|
|
&rpcConfig, netParams, hintCache, hintCache,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create notifier: %v", err)
|
|
}
|
|
if err := chainNotifier.Start(); err != nil {
|
|
t.Fatalf("unable to start notifier: %v", err)
|
|
}
|
|
|
|
for _, walletDriver := range lnwallet.RegisteredWallets() {
|
|
for _, backEnd := range walletDriver.BackEnds() {
|
|
runTests(t, walletDriver, backEnd, miningNode,
|
|
rpcConfig, chainNotifier)
|
|
}
|
|
}
|
|
}
|
|
|
|
// runTests runs all of the tests for a single interface implementation and
|
|
// chain back-end combination. This makes it easier to use `defer` as well as
|
|
// factoring out the test logic from the loop which cycles through the
|
|
// interface implementations.
|
|
func runTests(t *testing.T, walletDriver *lnwallet.WalletDriver,
|
|
backEnd string, miningNode *rpctest.Harness,
|
|
rpcConfig rpcclient.ConnConfig,
|
|
chainNotifier *btcdnotify.BtcdNotifier) {
|
|
|
|
var (
|
|
bio lnwallet.BlockChainIO
|
|
|
|
aliceSigner input.Signer
|
|
bobSigner input.Signer
|
|
|
|
aliceKeyRing keychain.SecretKeyRing
|
|
bobKeyRing keychain.SecretKeyRing
|
|
|
|
aliceWalletController lnwallet.WalletController
|
|
bobWalletController lnwallet.WalletController
|
|
)
|
|
|
|
tempTestDirAlice, err := ioutil.TempDir("", "lnwallet")
|
|
if err != nil {
|
|
t.Fatalf("unable to create temp directory: %v", err)
|
|
}
|
|
defer os.RemoveAll(tempTestDirAlice)
|
|
|
|
tempTestDirBob, err := ioutil.TempDir("", "lnwallet")
|
|
if err != nil {
|
|
t.Fatalf("unable to create temp directory: %v", err)
|
|
}
|
|
defer os.RemoveAll(tempTestDirBob)
|
|
|
|
walletType := walletDriver.WalletType
|
|
switch walletType {
|
|
case "btcwallet":
|
|
var aliceClient, bobClient chain.Interface
|
|
switch backEnd {
|
|
case "btcd":
|
|
aliceClient, err = chain.NewRPCClient(netParams,
|
|
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
|
|
rpcConfig.Certificates, false, 20)
|
|
if err != nil {
|
|
t.Fatalf("unable to make chain rpc: %v", err)
|
|
}
|
|
bobClient, err = chain.NewRPCClient(netParams,
|
|
rpcConfig.Host, rpcConfig.User, rpcConfig.Pass,
|
|
rpcConfig.Certificates, false, 20)
|
|
if err != nil {
|
|
t.Fatalf("unable to make chain rpc: %v", err)
|
|
}
|
|
|
|
case "neutrino":
|
|
// Set some package-level variable to speed up
|
|
// operation for tests.
|
|
neutrino.BanDuration = time.Millisecond * 100
|
|
neutrino.QueryTimeout = time.Millisecond * 500
|
|
neutrino.QueryNumRetries = 1
|
|
|
|
// Start Alice - open a database, start a neutrino
|
|
// instance, and initialize a btcwallet driver for it.
|
|
aliceDB, err := walletdb.Create(
|
|
"bdb", tempTestDirAlice+"/neutrino.db", true,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create DB: %v", err)
|
|
}
|
|
defer aliceDB.Close()
|
|
aliceChain, err := neutrino.NewChainService(
|
|
neutrino.Config{
|
|
DataDir: tempTestDirAlice,
|
|
Database: aliceDB,
|
|
ChainParams: *netParams,
|
|
ConnectPeers: []string{
|
|
miningNode.P2PAddress(),
|
|
},
|
|
},
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to make neutrino: %v", err)
|
|
}
|
|
aliceChain.Start()
|
|
defer aliceChain.Stop()
|
|
aliceClient = chain.NewNeutrinoClient(
|
|
netParams, aliceChain,
|
|
)
|
|
|
|
// Start Bob - open a database, start a neutrino
|
|
// instance, and initialize a btcwallet driver for it.
|
|
bobDB, err := walletdb.Create(
|
|
"bdb", tempTestDirBob+"/neutrino.db", true,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create DB: %v", err)
|
|
}
|
|
defer bobDB.Close()
|
|
bobChain, err := neutrino.NewChainService(
|
|
neutrino.Config{
|
|
DataDir: tempTestDirBob,
|
|
Database: bobDB,
|
|
ChainParams: *netParams,
|
|
ConnectPeers: []string{
|
|
miningNode.P2PAddress(),
|
|
},
|
|
},
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to make neutrino: %v", err)
|
|
}
|
|
bobChain.Start()
|
|
defer bobChain.Stop()
|
|
bobClient = chain.NewNeutrinoClient(
|
|
netParams, bobChain,
|
|
)
|
|
|
|
case "bitcoind":
|
|
// Start a bitcoind instance.
|
|
tempBitcoindDir, err := ioutil.TempDir("", "bitcoind")
|
|
if err != nil {
|
|
t.Fatalf("unable to create temp directory: %v", err)
|
|
}
|
|
zmqBlockHost := "ipc:///" + tempBitcoindDir + "/blocks.socket"
|
|
zmqTxHost := "ipc:///" + tempBitcoindDir + "/tx.socket"
|
|
defer os.RemoveAll(tempBitcoindDir)
|
|
rpcPort := rand.Int()%(65536-1024) + 1024
|
|
bitcoind := exec.Command(
|
|
"bitcoind",
|
|
"-datadir="+tempBitcoindDir,
|
|
"-regtest",
|
|
"-connect="+miningNode.P2PAddress(),
|
|
"-txindex",
|
|
"-rpcauth=weks:469e9bb14ab2360f8e226efed5ca6f"+
|
|
"d$507c670e800a95284294edb5773b05544b"+
|
|
"220110063096c221be9933c82d38e1",
|
|
fmt.Sprintf("-rpcport=%d", rpcPort),
|
|
"-disablewallet",
|
|
"-zmqpubrawblock="+zmqBlockHost,
|
|
"-zmqpubrawtx="+zmqTxHost,
|
|
)
|
|
err = bitcoind.Start()
|
|
if err != nil {
|
|
t.Fatalf("couldn't start bitcoind: %v", err)
|
|
}
|
|
defer bitcoind.Wait()
|
|
defer bitcoind.Process.Kill()
|
|
|
|
// Wait for the bitcoind instance to start up.
|
|
time.Sleep(time.Second)
|
|
|
|
host := fmt.Sprintf("127.0.0.1:%d", rpcPort)
|
|
chainConn, err := chain.NewBitcoindConn(
|
|
netParams, host, "weks", "weks", zmqBlockHost,
|
|
zmqTxHost, 100*time.Millisecond,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to establish connection to "+
|
|
"bitcoind: %v", err)
|
|
}
|
|
if err := chainConn.Start(); err != nil {
|
|
t.Fatalf("unable to establish connection to "+
|
|
"bitcoind: %v", err)
|
|
}
|
|
defer chainConn.Stop()
|
|
|
|
// Create a btcwallet bitcoind client for both Alice and
|
|
// Bob.
|
|
aliceClient = chainConn.NewBitcoindClient()
|
|
bobClient = chainConn.NewBitcoindClient()
|
|
default:
|
|
t.Fatalf("unknown chain driver: %v", backEnd)
|
|
}
|
|
|
|
aliceSeed := sha256.New()
|
|
aliceSeed.Write([]byte(backEnd))
|
|
aliceSeed.Write(aliceHDSeed[:])
|
|
aliceSeedBytes := aliceSeed.Sum(nil)
|
|
|
|
aliceWalletConfig := &btcwallet.Config{
|
|
PrivatePass: []byte("alice-pass"),
|
|
HdSeed: aliceSeedBytes,
|
|
DataDir: tempTestDirAlice,
|
|
NetParams: netParams,
|
|
ChainSource: aliceClient,
|
|
CoinType: keychain.CoinTypeTestnet,
|
|
}
|
|
aliceWalletController, err = walletDriver.New(aliceWalletConfig)
|
|
if err != nil {
|
|
t.Fatalf("unable to create btcwallet: %v", err)
|
|
}
|
|
aliceSigner = aliceWalletController.(*btcwallet.BtcWallet)
|
|
aliceKeyRing = keychain.NewBtcWalletKeyRing(
|
|
aliceWalletController.(*btcwallet.BtcWallet).InternalWallet(),
|
|
keychain.CoinTypeTestnet,
|
|
)
|
|
|
|
bobSeed := sha256.New()
|
|
bobSeed.Write([]byte(backEnd))
|
|
bobSeed.Write(bobHDSeed[:])
|
|
bobSeedBytes := bobSeed.Sum(nil)
|
|
|
|
bobWalletConfig := &btcwallet.Config{
|
|
PrivatePass: []byte("bob-pass"),
|
|
HdSeed: bobSeedBytes,
|
|
DataDir: tempTestDirBob,
|
|
NetParams: netParams,
|
|
ChainSource: bobClient,
|
|
CoinType: keychain.CoinTypeTestnet,
|
|
}
|
|
bobWalletController, err = walletDriver.New(bobWalletConfig)
|
|
if err != nil {
|
|
t.Fatalf("unable to create btcwallet: %v", err)
|
|
}
|
|
bobSigner = bobWalletController.(*btcwallet.BtcWallet)
|
|
bobKeyRing = keychain.NewBtcWalletKeyRing(
|
|
bobWalletController.(*btcwallet.BtcWallet).InternalWallet(),
|
|
keychain.CoinTypeTestnet,
|
|
)
|
|
bio = bobWalletController.(*btcwallet.BtcWallet)
|
|
default:
|
|
t.Fatalf("unknown wallet driver: %v", walletType)
|
|
}
|
|
|
|
// Funding via 20 outputs with 4BTC each.
|
|
alice, err := createTestWallet(
|
|
tempTestDirAlice, miningNode, netParams,
|
|
chainNotifier, aliceWalletController, aliceKeyRing,
|
|
aliceSigner, bio,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create test ln wallet: %v", err)
|
|
}
|
|
defer alice.Shutdown()
|
|
|
|
bob, err := createTestWallet(
|
|
tempTestDirBob, miningNode, netParams,
|
|
chainNotifier, bobWalletController, bobKeyRing,
|
|
bobSigner, bio,
|
|
)
|
|
if err != nil {
|
|
t.Fatalf("unable to create test ln wallet: %v", err)
|
|
}
|
|
defer bob.Shutdown()
|
|
|
|
// Both wallets should now have 80BTC available for
|
|
// spending.
|
|
assertProperBalance(t, alice, 1, 80)
|
|
assertProperBalance(t, bob, 1, 80)
|
|
|
|
// Execute every test, clearing possibly mutated
|
|
// wallet state after each step.
|
|
for _, walletTest := range walletTests {
|
|
testName := fmt.Sprintf("%v/%v:%v", walletType, backEnd,
|
|
walletTest.name)
|
|
success := t.Run(testName, func(t *testing.T) {
|
|
walletTest.test(miningNode, alice, bob, t)
|
|
})
|
|
if !success {
|
|
break
|
|
}
|
|
|
|
// TODO(roasbeef): possible reset mining
|
|
// node's chainstate to initial level, cleanly
|
|
// wipe buckets
|
|
if err := clearWalletStates(alice, bob); err !=
|
|
nil && err != bbolt.ErrBucketNotFound {
|
|
t.Fatalf("unable to wipe wallet state: %v", err)
|
|
}
|
|
}
|
|
}
|